首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heading date in rice (Oryza sativa L.) is a critical agronomic trait with a complex inheritance. To investigate the genetic basis and mechanism of gene interaction in heading date, we conducted genetic analysis on segregation populations derived from crosses among the indica cultivars Bo B, Yuefeng B and Baoxuan 2. A set of dominant complementary genes controlling late heading, designated LH1 and LH2, were detected by molecular marker mapping. Genetic analysis revealed that Baoxuan 2 contains both dominant genes, while Bo B and Yuefeng B each possess either LH1 or LH2. Using larger populations with segregant ratios of 3 : 1, we fine-mapped LH1 to a 63-kb region near the centromere of chromosome 7 flanked by markers RM5436 and RM8034, and LH2 to a 177-kb region on the short arm of chromosome 8 between flanking markers Indel22468-3 and RM25. Some candidate genes were identified through sequencing of Bo B and Yuefeng B in these target regions. Our work provides a solid foundation for further study on gene interaction in heading date and has application in marker-assisted breeding of photosensitive hybrid rice in China.  相似文献   

2.
Chlorophyll content is one of the most important traits controlling crop biomass and economic yield in rice. Here, we isolated a spontaneous rice mutant named thermo-sensitive chlorophyll deficit 1 (tscd1) derived from a backcross recombinant inbred line population. tscd1 plants grown normally from the seedling to tiller stages showed yellow leaves with reduced chlorophyll content, but showed no significant differences after the booting stage. At temperatures below 22°C, the tscd1 mutant showed the most obvious yellowish phenotype. With increasing temperature, the yellowish leaves gradually turned green and approached a normal wild type color. Wild type and tscd1 mutant plants had obviously different chloroplast structures and photosynthetic pigment precursor contents, which resulted in underdevelopment of chloroplasts and a yellowish phenotype in tscd1. Genetic analysis indicated that the mutant character was controlled by a recessive nuclear gene. Through map-based cloning, we located the tscd1 gene in a 34.95 kb region on the long arm of chromosome 2, containing two BAC clones and eight predicted candidate genes. Further characterization of the tscd1 gene is underway. Because it has a chlorophyll deficit phenotype before the tiller stage and little influence on growth vigor, it may play a role in ensuring the purity of hybrids.  相似文献   

3.
Cold temperature during the reproductive phase leads to seed sterility, which reduces yield and decreases the grain quality of rice. The fertilization stage, ranging from pollen maturation to the completion of fertilization, is sensitive to unsuitable temperature. Improving cold tolerance at the fertilization stage (CTF) is an important objective of rice breeding program in cold temperature areas. In this study, we characterized fertilization behavior under cold temperature to define the phenotype of CTF and identified quantitative trait loci (QTLs) for CTF. A wide variation in CTF levels has been identified among local cultivars in Hokkaido, which is one of the most northern regions for rice cultivation in the world. Clear varietal differences in pollen germination, and pollen tube elongation due to cold temperature have been observed. These differences may confer a degree of CTF among this population. We conducted QTL analysis for CTF using 120 backcrossed inbred lines derived from a cross between Eikei88223 (vigorous CTF) and Suisei (very weak CTF). Three QTLs for CTF were identified. A clear effect by QTL, qCTF7, for increasing the level of CTF was validated using advanced progeny. These results will facilitate marker-assist selection for desirable QTLs for CTF in rice breeding program.  相似文献   

4.
Brown spot is a devastating rice disease. Quantitative resistance has been observed in local varieties (e.g., ‘Tadukan’), but no economically useful resistant variety has been bred. Using quantitative trait locus (QTL) analysis of recombinant inbred lines (RILs) from ‘Tadukan’ (resistant) × ‘Hinohikari’ (susceptible), we previously found three QTLs (qBS2, qBS9, and qBS11) that conferred resistance in seedlings in a greenhouse. To confirm their effect, the parents and later generations of RILs were transplanted into paddy fields where brown spot severely occurred. Three new resistance QTLs (qBSfR1, qBSfR4, and qBSfR11) were detected on chromosomes 1, 4, and 11, respectively. The ‘Tadukan’ alleles at qBSfR1 and qBSfR11 and the ‘Hinohikari’ allele at qBSfR4 increased resistance. The major QTL qBSfR11 coincided with qBS11 from the previous study, whereas qBSfR1 and qBSfR4 were new but neither qBS2 nor qBS9 were detected. To verify the qBSfR1 and qBSfR11 ‘Tadukan’ resistance alleles, near-isogenic lines (NILs) with one or both QTLs in a susceptible background (‘Koshihikari’) were evaluated under field conditions. NILs with qBSfR11 acquired significant field resistance; those with qBSfR1 did not. This confirms the effectiveness of qBSfR11. Genetic markers flanking qBSfR11 will be powerful tools for marker-assisted selection to improve brown spot resistance.  相似文献   

5.
Improving the eating quality of cooked rice has been one of the most important objectives in rice breeding programs. Eating quality of cooked rice is a complex trait including several components, such as external appearance, taste, aroma, and texture. Therefore, dissection of these components followed by marker-assisted selection of detected QTL(s) may be a useful approach for achieving desirable eating quality in rice breeding. Whiteness of cooked rice (WCR) is an important factor related to the external appearance of cooked rice. WCR is known to be associated with the amylose and protein contents of the endosperm. However, the genetic basis of WCR remains unclear. In this study, we evaluated phenotypic variation in WCR among recently developed rice cultivars from Hokkaido, Japan. Then, we developed doubled haploid lines (DHLs) derived from a cross between two cultivars from Hokkaido, Joiku No. 462 (high WCR) and Jokei06214 (low WCR). Using the DHLs, we detected two QTLs for WCR, qWCR3 and qWCR11, on chromosomes 3 and 11, respectively. We also examined the dosage effect of the two QTLs based on both the categorized segregants in the DHLs and the relationship between the WCR phenotype and inheritance around the QTL regions in cultivars from Hokkaido.  相似文献   

6.
Root system development is an important target for improving yield in rice. Active roots that can take up nutrients more efficiently are essential for improving grain yield. In this study, we performed quantitative trait locus (QTL) analyses using 215 recombinant inbred lines derived from a cross between Xieqingzao B (XB), a maintainer line with short roots and R9308, a restorer line with long roots. Only a QTLs associated with root length were mapped on chromosomes 7. The QTL, named qRL7, was located between markers RM3859 and RM214 on chromosome 7 and explained 18.14–18.36% of the total phenotypic variance evaluated across two years. Fine mapping of qRL7 using eight BC3F3 recombinant lines mapped the QTL to between markers InDel11 and InDel17, which delimit a 657.35 kb interval in the reference cultivar Nipponbare. To determine the genotype classes for the target QTL in these BC3F3 recombinants, the root lengths of their BC3F4 progeny were investigated, and the result showed that qRL7 plays a crucial role in root length. The results of this study will increase our understanding of the genetic factors controlling root architecture, which will help rice breeders to breed varieties with deep, strong and vigorous root systems.  相似文献   

7.
Drought cycling and soil re-watering trends due to intermittent rainfall patterns are key stress factors that influence rice growth and yield under upland cultivation conditions. However, upland rice adaptation responses to fluctuating soil moisture conditions remain poorly understood. This study investigated root and shoot responses of upland New Rice for Africa (NERICA) varieties to episodic drought and re-watering during growth. We examined root and shoot growth of NERICA 1 and NERICA 4 compared with those of IR72, an improved lowland variety, and Dular, a traditional drought-tolerant variety, in terms of soil moisture fluctuations with different levels of nitrogen fertilization under field conditions that impeded deep root development. During soil moisture fluctuation, all varieties reduced shoot dry weight compared with well-watered plants, regardless of nitrogen fertilization levels. However, total root length for the three upland varieties was enhanced by soil moisture fluctuations at moderate and high nitrogen fertilization, while that of the lowland variety was reduced. Comparing root development during water fluctuations revealed that NERICA 1 had a greater root system than NERICA 4, which was attributed to lateral root development. Furthermore, we found that NERICA varieties increase lateral root mass during soil desiccation under adequate nitrogen fertilization, while Dular and IR72 reduced their root growth rate during drought and increased it after re-watering. Both root growth patterns developed, from around maximum tillering to heading. The analysis of regression between root elongation and shoot growth with fluctuating soil moisture indicated that an enhanced root system during drought, on adequate nitrogen fertilization, can contribute to shoot growth when sufficient water becomes available, specifically around the maximum tillering to the heading growth stage of rice.  相似文献   

8.
A total of 324 Japanese rice accessions, including landrace, improved, and weedy types were used to 1) investigate genetic variations in blast resistance to standard differential isolates, and 2) across the genome using polymorphism data on 64 SSR markers. From the polymorphism data, the accessions were classified into two clusters. Accessions from irrigated lowland areas were included mainly in cluster I, and upland and Indica types were mainly in cluster II. The accessions were classified into three resistance subgroups, A2, B1 and B2, based on the reaction patterns to blast isolates. The accessions in A2 were postulated to have at least two resistance genes Pish and Pik-s, whereas those in B1 had various combinations of the resistance genes Pish, Pia, Pii, Pi3, Pi5(t), and Pik alleles. The B2 accessions were resistant to almost all isolates, and many accessions of cluster II were included, and had Pish, Pia, Pii, Pi3, Pi5(t), certain Pik, Piz and Pita alleles, and unknown genes. The frequencies of accessions of B1 originating in Hokkaido, and those of B2 originating in the Kanto and Tohoku regions were remarkably higher than in the other regions.  相似文献   

9.
在水稻品种Dongjin的T-DNA插入突变体库中筛选到一份黄绿叶突变体T113,该突变体在生长的整个时期叶片都呈现黄绿色,且越到后期表型越明显。T113与野生型亲本Dongjin相比,叶片光合色素含量明显降低,株高变矮,结实率降低,每穗着粒数、穗长和千粒重均明显减少,抽穗期延迟,且黄绿叶性状不受温度影响,叶绿体中的类囊体排列较为疏松,出现更多的嗜锇体,叶绿素合成和质体发育相关基因表达量发生改变。遗传分析表明,T113的突变性状由1对隐性核基因控制。利用T113/N22的F2群体,将突变基因定位在第2染色体长臂Indel标记CX2和JX18之间,物理距离约为79 kb,此区间内包含12个预测基因。  相似文献   

10.
Vigorous cold tolerance at the fertilization stage (CTF) is a very important characteristic for stable rice production in cold temperature conditions. Because CTF is a quantitatively inherited trait, pyramiding quantitative trait loci (QTLs) using marker-assisted selection (MAS) is effective for improving CTF levels in rice breeding programs. We previously identified three QTLs controlling CTF, qCTF7, qCTF8 and qCTF12, using backcrossed inbred lines derived from a cross between rice cultivar Eikei88223 (vigorous CTF) and Suisei (very weak CTF). However, pyramiding of these QTLs for the application of MAS in practical rice breeding programs have not yet been elucidated. In this study, we examined the effect of pyramiding QTLs for improvement of CTF level using eight possible genotype classes from the 152 F3 population derived from a cross between Eikei88223 and Suisei. Increasing of CTF levels in combinations between qCTF7 and qCTF12 and between qCTF8 and qCTF12 were detected. Furthermore, we compared the haplotype pattern around the QTLs for CTF among the rice cultivars from Hokkaido. These results are useful for improvement of new cultivars with high CTF levels using MAS and identification of genetic resources with the novel QTL(s) for CTF.  相似文献   

11.
叶绿素是植物生长发育必不可缺的元件。叶色突变体的发掘与研究在叶绿体发育、叶绿素代谢、光合作用等研究中具有重要作用。利用化学诱变剂EMS诱变水稻(Oryza sativa L.)籼型恢复系缙恢10号,从其后代中筛选出一份突变性状稳定遗传的叶脉白化突变体wpsm (white primary and secondary midrib)。与野生型相比,该突变体苗期表现正常,孕穗后期剑叶、倒二叶、倒三叶整张叶片的主叶脉和次级叶脉白化,叶肉细胞无显著变化,该性状一直持续到成熟期。抽穗期突变体wpsm的光合色素含量极显著低于野生型,净光合速率(Pn)及表观电子传递速率(ETR)极显著降低,株高、每穗实粒数、千粒重、结实率等农艺性状均显著降低。该突变性状受一对隐性核基因调控,利用892株西农1A/wpsm的F2隐性定位群体,将该基因定位在第6染色体上引物InDel 10与InDel 4之间,遗传距离分别为0.06 cM和0.12 cM,物理距离约为56 kb。本研究为WPSM基因的克隆和功能研究奠定了基础。  相似文献   

12.
To identify quantitative trait loci (QTLs) associated with the primary target traits for selection in practical rice breeding programs, backcross inbred lines (BILs) derived from crosses between temperate japonica rice cultivars Nipponbare and Koshihikari were evaluated for 50 agronomic traits at six experimental fields located throughout Japan. Thirty-three of the 50 traits were significantly correlated with heading date. Using a linkage map including 647 single-nucleotide polymorphisms (SNPs), a total of 122 QTLs for 38 traits were mapped on all rice chromosomes except chromosomes 5 and 9. Fifty-eight of the 122 QTLs were detected near the heading date QTLs Hd16 and Hd17 and the remaining 64 QTLs were found in other chromosome regions. QTL analysis of 51 BILs having homozygous for the Koshihikari chromosome segments around Hd16 and Hd17 allowed us to detect 40 QTLs associated with 27 traits; 23 of these QTLs had not been detected in the original analysis. Among the 97 QTLs for the 30 traits measured in multiple environments, the genotype-by-environment interaction was significant for 44 QTLs and not significant for 53 QTLs. These results led us to propose a new selection strategy to improve agronomic performance in temperate japonica rice cultivars.  相似文献   

13.
Rice tungro disease (RTD) is one of the destructive and prevalent diseases in the tropical region. RTD is caused by Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. Cultivation of japonica rice (Oryza sativa L. ssp japonica) in tropical Asia has often been restricted because most japonica cultivars are sensitive to short photoperiod, which is characteristic of tropical conditions. Japonica1, a rice variety bred for tropical conditions, is photoperiod-insensitive, has a high yield potential, but is susceptible to RTD and has poor grain quality. To transfer RTD resistance into Japonica1, we made two backcrosses (BC) and 8 three-way crosses (3-WC) among Japonica1 and RTSV-resistant cultivars. Among 8,876 BC1F2 and 3-WCF2 plants, 342 were selected for photoperiod-insensitivity and good grain quality. Photoperiod-insensitive progenies were evaluated for RTSV resistance by a bioassay and marker-assisted selection (MAS), and 22 BC1F7 and 3-WCF7 lines were selected based on the results of an observational yield trial. The results demonstrated that conventional selection for photoperiod-insensitivity and MAS for RTSV resistance can greatly facilitate the development of japonica rice that is suitable for cultivation in tropical Asia.  相似文献   

14.
张玲  李晓楠  王伟  杨生龙  李清  王嘉宇 《作物学报》2014,40(12):2128-2135
以南方籼型杂交稻恢复系泸恢99和北方粳型超级稻沈农265杂交衍生的重组自交系群体(recombinant inbred lines, RILs)为试验材料, 对株型性状(株高、穗长、分蘖和叶片性状)进行不同环境下的数量性状基因位点(quantitative trait locus, QTL)分析。共检测到39个相关QTL, 分布在水稻第1、第2、第3、第6、第7、第8和第9染色体上, LOD值介于2.50~16.90之间, 有11个QTL能在两年中被检测到。株型相关的QTL在染色体上成簇分布, 主要分布于第1、第6和第9染色体上, 这可能与株型性状间显著或极显著相关有关。其中, 在第9染色体上RM3700B–RM7424区间存在1个QTL簇, 含4个QTL, 即qPH9、qPL9、qFLL9和qSLL9, 这4个QTL在两年中均被检测到。此外, 进一步鉴定出5个能稳定表达的QTL, 其中, qPH8、qFLW6和qSLW6效应较大。这些信息综合反映了株型相关性状遗传的复杂性, 有助于我们更全面地了解和掌握株型性状的遗传基础。  相似文献   

15.
Marker assisted backcrossing has been used effectively to transfer the submergence tolerance gene SUB1 into popular rice varieties, but the approach can be costly. The selection strategy comprising foreground marker and phenotypic selection was investigated as an alternative. The non-significant correlation coefficients between ranking of phenotypic selection and ranking of background marker selection in BC2F1, BC3F1 and BC3F2 generations indicated inefficiency of phenotypic selection compared to marker-assisted background selection with respect to recovery of the recipient genome. In addition, the introgression size of the chromosome fragment containing SUB1 was approximately 17 Mb, showing the effects of linkage drag. The significant correlation coefficient between rankings of phenotypic selection with the percentage of recipient alleles in the BC1F1 generation suggested that background selection could be avoided in this generation to minimize the genotyping cost. The phenotypically selected best plant of the BC3F1 generation was selfed and backcross recombinant lines were selected in the resulting BC3F4 generation. The selection strategy could be appropriate for the introgression of SUB1 QTL in countries that lack access to high-throughput genotyping facilities.  相似文献   

16.
植物叶色变化对叶绿体发育和叶绿素生物合成等光合系统结构和调控机制的研究有着重要的理论意义。水稻叶缘白化突变体mal (marginal albino leaf),来源于恢复系缙恢10号(Oryza sativa L.ssp. indica)的EMS诱变群体,经过多代自交,其突变性状遗传稳定。与野生型相比,mal突变体整个生育期叶片边缘白化且叶片变窄,抽穗期倒三叶叶片、倒二叶叶边缘以及倒三叶叶边缘的叶绿素含量极显著降低。透射电镜观察发现,mal突变体叶片绿色部位细胞与叶绿体发育完全,白化部分叶肉细胞大部分中空,无明显完整的细胞器,叶绿体内部完全降解。遗传分析表明该突变体受隐性核基因控制,MAL被定位在第8染色体上SSR标记M22和InDel标记ID27之间,物理距离为171 kb。本研究将为MAL基因的图位克隆及功能研究奠定基础。  相似文献   

17.
Plant breeding programs in local regions may generate genetic variations that are desirable to local populations and shape adaptability during the establishment of local populations. To elucidate genetic bases for this process, we proposed a new approach for identifying the genetic bases for the traits improved during rice breeding programs; association mapping focusing on a local population. In the present study, we performed association mapping focusing on a local rice population, consisting of 63 varieties, in Hokkaido, the northernmost region of Japan and one of the northern limits of rice cultivation worldwide. Six and seventeen QTLs were identified for heading date and low temperature germinability, respectively. Of these, 13 were novel QTLs in this population and 10 corresponded to the QTLs previously reported based on QTL mapping. The identification of QTLs for traits in local populations including elite varieties may lead to a better understanding of the genetic bases of elite traits. This is of direct relevance for plant breeding programs in local regions.  相似文献   

18.
水稻黑条矮缩病是水稻主要病毒病害之一。目前由于缺乏规模、高效的黑条矮缩病抗性鉴定体系,制约了抗黑条矮缩病水稻资源的发掘,限制了抗黑条矮缩病的育种进程和基础研究。本研究通过分析水稻黑条矮缩病田间鉴定所需灰飞虱的有效接种密度、带毒率及播期等,提出水稻黑条矮缩病田间鉴定有效接种的灰飞虱密度在800万头 hm-2左右较为合理,而带毒率应不低于5%。并进一步对现有黑条矮缩病人工接种鉴定的循回期、接种虫量、接种时间及虫龄等进行了优化。利用上述鉴定体系,2010年对来源于20个国家的共1240份水稻种质进行黑条矮缩病田间鉴定,初步获得发病率低于10%的品种34个;2011、2012连续两年对该34个品种进行多年多点重复抗性鉴定,发现来自东南亚地区的3个品种Kanyakumari 29、Madurai 25和Vietnam 160连续3年发病率均低于10%,表现较高的黑条矮缩病的抗性。进一步分期播种鉴定的结果表明,Kanyakumari29在3个播期、3个鉴定点的发病率均低于12%,而Madurai 25和Vietnam 160发病率均低于9%。此外,在人工接种条件下Kanyakumari 29、Madurai 25和Vietnam 160的发病率均低于9%。因此,多年多点田间鉴定和人工室内接种鉴定的结果均表明,Kanyakumari 29、Madurai 25和Vietnam 160稳定、高抗黑条矮缩病。综上所述,本研究建立的田间鉴定与室内鉴定相结合的黑条矮缩病鉴定体系准确、可靠,可用于黑条矮缩病的大规模鉴定,该体系的建立及高抗黑条矮缩病水稻资源的发掘为水稻抗黑条矮缩病基因的鉴定及育种利用提供了重要的方法和材料基础。  相似文献   

19.
叶色突变体是研究高等植物光合作用、叶绿素代谢途径、叶绿体结构与功能分子机制的理想材料。本研究从EMS(ethyl methane sulfonate)处理的缙恢10号(Oryza sativa L.ssp.indica)诱变群体中发现了一个苗期呈现黄绿色、抽穗期渐变为淡绿色的叶色突变体,命名为yellow green leaf 9(ygl9)。与野生型相比,ygl9苗期和分蘖期光合色素极显著降低,抽穗期光合色素显著降低,气孔长度、气孔导度和蒸腾速率极显著增加,净光合速率无明显变化。透射电镜观察表明,ygl9的嗜锇小体增多、基粒模糊、基质片层减少且疏松,但叶绿体结构基本完整。遗传分析显示该突变性状受1对隐性核基因调控。利用西农1A/ygl9 F2群体中的759株隐性单株,最终将YGL9定位在第3染色体短臂SSR标记S03-1和In Del标记Ind03-19之间,遗传距离分别为0.13 c M和0.07 c M,物理距离为63 kb。本研究为YGL9基因的克隆和功能分析奠定了基础。  相似文献   

20.
Sheath blight, caused by Rhizoctonia solani, is one of the most serious diseases of rice. Among 33 rice accessions, mainly from National Institute of Agrobiological Sciences (NIAS) Core Collection, we found three landraces from the Himalayas—Jarjan, Nepal 555 and Nepal 8—with resistance to sheath blight in 3 years’ field testing. Backcrossed inbred lines (BILs) derived from a cross between Jarjan and the leading Japanese cultivar Koshihikari were used in QTL analyses. Since later-heading lines show fewer lesions, we used only earlier-heading BILs to avoid association with heading date. We detected eight QTLs; the Jarjan allele of three of these increased resistance. Only one QTL, on chromosome 9 (between markers Nag08KK18184 and Nag08KK18871), was detected in all 3 years. Chromosome segment substitution lines (CSSLs) carrying it showed resistance in field tests. Thirty F2 lines derived from a cross between Koshihikari and one CSSL supported the QTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号