首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary C and N mineralization potentials were determined, in a 12-week laboratory incubation study, on soil samples obtained from recently cleared land which had been cropped to barley for 4 years (field soils) and from nearby undisturbed taiga (forest soils). Treatments for the cropped soils were conventional and no-tillage with and without crop residues removed. An average of about 3% of the total C was evolved as CO2 from the field soils compared with > 10% and 4% for the upper (Oie) and lower (Oa) forest-floor horizons, respectively. Significantly more C was mineralized from the Ap of the no-till treatment with residue left on the surface than from the other field Ap horizons. Both forest-floor horizons showed rather long lag periods for net mineralization compared with the field soils, but at the end of the incubation, more mineral N was recovered from the forest Oie despite a rather wide C:N ratio, than from the field soils. After 12 weeks about 115, 200 and 20 g mineral N/g soil were recovered from the field Ap, the forest Oie and the forest Oa horizons, respectively. Very little C or N was mineralized from the B horizon of the forest or the field soils. Nitrification was rapid and virtually complete for the field soils but was negligible for both forest-floor O horizons.Paper no J-188 of the Journal Series of the Alaska Agricultural and Forestry Experiment Station  相似文献   

2.
Summary Large-scale argicultural development in high latitude regions could lead to large losses of soil C due to accelerated decomposition. Changes in decomposition rates of forest floor material upon land clearing in interior Alaska were simulated by measuring, over a 2-year period, changes in mass, cellulose, lignin, and N of forest floor materials and in mass of filter papers and wood in a forest floor and a fallowed field. All materials decomposed slowly at the surface, with about 90% of the original weight remaining after 2 years. Decomposition rates were higher for materials buried in the field than the forest. Cellulose loss in forest floor materials closely followed mass loss, whereas lignin loss was not significant. However, weight loss of wood was rapid when buried in the field, with about 20% of the initial mass remaining after 2 years. Relationships between mass loss of buried forest floor materials and soil degree days were significant (r=70%–80%). Temperature was a major, but not the only factor, controlling decomposition rates. Forest floor materials showed significant N losses, indicating net N mineralization and that N deficiency was not a factor affecting decomposition. C loss to the atmosphere due to decomposition of forest floor materials after forest clearing will be minimal and similar to that in the undisturbed forest if left on the soil surface, but will be substantial if incorportated into the soil. Incorporation is necessary for cropping; thus some accelerated decomposition is unavoidable in clearing subarctic forests for cultivation.  相似文献   

3.
A sound understanding of nutrient dynamics in ecosystems is required in order to manage these systems on a sustainable basis. A valuable approach to studying phosphorus (P) dynamics in soil-plant systems has been the use of P isotope techniques. Isotope techniques used for studying P cycling in agricultural and forest soils are reviewed in this paper with particular reference to advances made in the part 15 years. A brief discussion of the properties of P isotopes and their measurements is included together with techniques for measuring exchangeable P in the soil, dissolution and decomposition rates of inorganic and organic P sources applied to the soil, rates of organic P immobilization and mineralization, rates of P release and retention in the soil, root activity and lifter decomposition rates in forest soils, and gene probing and hybridization. Basic principles, assumptions, procedures, limitations and merits of methods are discussed. These techniques have served as or have the potential to be valuable tools for advancing our understanding of P dynamics in soil-plant systems, and for studying the molecular characteristics of microbial communities in relation to the cycling of nutrients in the soil.  相似文献   

4.
酸雨对土壤有机碳氮潜在矿化的影响   总被引:16,自引:0,他引:16  
Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control ofpH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg^-1 dry soil, net production of available N from 17.37 to 48.95 mg kg^-1 dry soil, and net production of NO3-N from 9.09 to 46.23 mg kg^-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P 〈 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.  相似文献   

5.
Summary Microbial biomass, activities of dehydrogenase, phosphatase, and urease, and numbers of ammonium oxidizers were determined at monthly intervals on soil samples obtained from an on-going tillage residue-management study during the summers of 1985 and 1986. The site was cleared of black spruce (Picea mariana, Mill.) in 1979 and has been planted to spring barley (Hordeum vulgare) since 1982. Tillage treatments were no-tillage or disked twice, and residuemanagement treatments were removal of stubble and loose straw or leaving all straw on the plots. Microbial biomass and enzyme activities were moderate to high in the Ap horizon but very low in the B horizon. There was no difference in any parameter measured due to tillage or residue management. In 1986, comparisons were made between the Ap horizon and the agricultural soil and the A horizon of the soil beneath an adjacent black-spruce forest. Total microbial biomass and enzyme activities were generally greater in the forest soil than in the agricultural soil. However, specific activity of the biomass was generally greater in the agricultural soil. Soil microbial biomass and urease activities of both agricultural and forest soils were similar to those reported for warmer climates, but dehydrogenase activity was higher and phosphatase was lower.  相似文献   

6.
A knowledge of the nutrient dynamics that occur with land use changes, e.g., in clearing forests for farmland, is useful in choosing the most efficient soil and fertilizer management practices. To determine net in situ P and N mineralization and nitrification rates of forest floor materials and their nutrient value for agricultural crops, plastic bags containing different materials (moss, O horizon, and A horizon) collected from a subarctic black spruce (Picea mariana Mill.) forest were incubated for 2 years in their respective forest horizons and at 7.5 cm depth in a nearby fallow field. Net amounts of P and N mineralized were highest in moss and were similar in forest and field when the temperature and moisture content were similar, but smaller in forest when the water content was higher. Net nitrification was negligible in O and A horizon material but significant in moss during the 2nd year, occurring sooner and producing higher NO inf3 sup- levels in the field (171 mg ha-1) than in the forest (13 mg ha-1). Moss P and N mineralization rates were correlated in the fallow field. Temperature, moisture content, and substrate quality were important factors controlling P and N dynamics of forest floor materials in a subarctic fallow field and native forest. In subarctic regions, incorporation and mineralization of forest floor materials could provide an early source of N and P (70 and 17 kg ha-1, respectively) for succeeding agricultural crops.  相似文献   

7.
The relationship between mineralization of soil nitrogen and immobilization of added nitrogen in submerged soils were studied under various soil conditions in a laboratory experiment. Selected factors which constituted soil conditions were content of soil organic nitrogen, quantity of nitrogen addition, temperature, soil drying, puddling, and period of incubation. Each factor contained some treatments in it.

The ratio of mineralization to immobilization, M/I, was relatively constant under various soil conditions. The values of M/I were around 2 except the soil drying treatments, indicating that the amount equivalent to about half of mineralized nitrogen is immobilized simultaneously under nitrogen added condition. Even so, if considered in detail, treatments that stimulate the microbial activities were observed to have increasing effect on M/I.

The ratio of additional mineralization caused by nitrogen addition to immobilization, ΔM/I, is considered to be an index to know the influence of nitrogen addition on the quantitative change of soil nitrogen level. This value was around 1 in the soil without any application of organic matters, and around 0.6 in the soil receiving straw compost for 10 years. Factors that have close relations with the value of ΔM/I were soil organic nitrogen level, temperature, soil drying, and period of incubation.  相似文献   

8.
 This study examines the effect of soil P status and N addition on the decomposition of 14C-labelled glucose to assess the consequences of reduced fertilizer inputs on the functioning of pastoral systems. A contrast in soil P fertility was obtained by selecting two hill pasture soils with different fertilizer history. At the two selected sites, representing low (LF) and high (HF) fertility status, total P concentrations were 640 and 820 mg kg–1 and annual pasture production was 4,868 and 14,120 kg DM ha–1 respectively. Soils were amended with 14C-labelled glucose (2,076 mg C kg–1 soil), with and without the addition of N (207 mg kg–1 soil), and incubated for 168 days. During incubation, the amounts of 14CO2 respired, microbial biomass C and 14C, microbial biomass P, extractable inorganic P (Pi) and net N mineralization were determined periodically. Carbon turnover was greatly influenced by nutrient P availability. The amount of glucose-derived 14CO2 production was high (72%) in the HF and low (67%) in the LF soil, as were microbial biomass C and P concentrations. The 14C that remained in the microbial biomass at the end of the 6-month incubation was higher in the LF soil (15%) than in the HF soil (11%). Fluctuations in Pi in the LF soil during incubation were small compared with those in HF soil, suggesting that P was cycling through microbial biomass. The concentrations of Pi were significantly greater in the HF samples throughout the incubation than in the LF samples. Net N mineralization and nitrification rates were also low in the LF soils, indicating a slow turnover of microorganisms under limited nutrient supply. Addition of N had little effect on biomass 14C and glucose utilization. This suggests that, at limiting P fertility, C turnover is retarded because microbial biomass becomes less efficient in the utilization of substrates. Received: 18 October 1999  相似文献   

9.
Summary Forest floor and mineral soil from ponderosa-pine, Douglas-fir, aspen and spruce-fir ecosystems located along a rising gradient in New Mexico were tested with laboratory assays for factors controlling N mineralization and nitrification. We concluded that low pH in combination with factors associated with organic quality controlled N mineralization and almost completely limited nitrification in spruce-fir soils, while N mineralization in the forest floor of ponderosa-pine was limited by low nutrient availability (other than N). Organic quality of the substrate and temporal changes in organic quality appeared to control N-mineralization and nitrification processes in forest-floor and mineral soils from all other sites.  相似文献   

10.
L. M. MARAFA  K. C. CHAU 《土壤圈》2005,15(2):181-188
This research examined nitrogen mineralization in the top 10 cm of soils with a vegetation gradient in Hong Kong at sites where fire has been absent for 0, 1, 3, 6 and 17 years (at the time of the study), and the relationships between N mineralization and successional development of vegetation in the absence of fire. The sites including a newly burnt area (S1), short grassland (S2), tall grassland (S3), mixed tall grassland and shrubland (S4), and woodland (S5) were selected, with the in situ core incubation method used to estimate nitrogen mineralization. Throughout the 60-day incubation in four periods, more nitrogen was mineralized at the S3 and S4 sites, the predominantly grassland sites, which contained the highest levels of soil organic matter (SOM) and total Kjeldahl nitrogen (TKN), than the S1 site, while immobilization occurred at the S2 and S5 sites. Leaching loss decreased with successional development of the vegetation, in the order of S1 > S2 > S3 > S4 > S5. The pattern of nitrogen uptake with ecological succession was less conspicuous, being complicated by the immediate effect of fire and possibly the ability of the woodland species to extract nitrogen from the deeper ground. In the absence of fire for 3 to 6 years, the build-up of SOM and TKN was accompanied by active mineralization, thus paving the way for the invasion of shrub and tree species. A close relationship existed between nitrogen mineralization and ecological succession with this vegetation gradient. Inherent mechanisms to preserve nitrogen in a fire-prone environment including immobilization and uptake and the practical relevance of nitrogen mineralization to reforestation are discussed.  相似文献   

11.
An understanding of the C and N dynamics of crop residues is important for efficient nutrient management. The present experiment was conducted to determine the rate of mass and N loss from alfalfa, faba bean, barley, and rape crop residues in a subarctic agricultural soil. Mass, C, and N losses were measured from residues contained in mesh bags and placed on the soil surface or buried 15 cm below the surface. The mass loss from October, 1988, to May, 1989, was the same for surface and buried alfalfa, barley, and rape residues, averaging 40, 20, and 61%, respectively, while surface and buried faba bean residue sustained 30 and 40% mass loss, respectively. The mass loss of the buried residues continued over the summer but not of those placed on the soil surface, resulting in an average 23% greater mass loss of the buried materials after 1 year. The N loss from October to May was similar from the surface and from the buried placements for the alfalfa, faba bean, and rape residues, averaging 11.3, 10.3 and 38.4 g N kg-1 residue, respectively, while the surface and buried barley lost 2.9 and 4.2 g N kg-1, respectively. The C:N ratio of all of the residues increased during the winter. These data indicate that the rate of decomposition and N mineralization from crop residues in subarctic environments can equal that measured in temperate climates. Furthermore, the concurrent loss of mass and N combined with an increase in the C:N ratio of the residues suggests that physical rather than biological processes were functioning during the winter. Most of the mass and N loss from these residues occurred during the winter, out of phase with crop demand, thereby creating the potential for N loss from the system and inefficient use of crop residue N.  相似文献   

12.
Soil organic P (Po) mineralization plays an important role in soil P cycling. Quantitative information on the release of available inorganic P (Pi) by this process is difficult to obtain because any mineralized Pi gets rapidly sorbed. We applied a new approach to quantify basal soil Po mineralization, based on 33PO4 isotopic dilution during 10 days of incubation, in soils differing in microbiological activity. The soils originated from a 20 years old field experiment, including a conventional system receiving exclusively mineral fertilizers (MIN), a bio-organic (ORG) and bio-dynamic (DYN) system. Indicators of soil microbiological activity, such as size and activity of the soil microbial biomass and phosphatase activity, were highest in DYN and lowest in MIN. In order to assess Po hydrolysis driven by phosphatase in sterile soils, a set of soil samples was γ-irradiated. Basal Po mineralization rates in non-irradiated samples were between 1.4 and 2.5 mg P kg−1 day−1 and decreased in the order DYN>ORG≥MIN. This is an amount lower, approximately equivalent to, or higher than water soluble Pi of MIN, ORG and DYN soils, respectively, but in every soil was less than 10% of the amount of P isotopically exchangeable during one day. This shows that physico-chemical processes are more important than basal mineralization in releasing plant available Pi. Organic P mineralization rates were higher, and differences between soils were more pronounced in γ-irradiated than in non-irradiated soils, with mineralization rates ranging from 2.2 to 4.6 mg P kg−1 day−1. These rates of hydrolysis, however, cannot be compared to those in non-sterile soils as they are affected by the release of cellular compounds, e.g. easily mineralizable Po, derived from microbial cells killed by γ-irradiation.  相似文献   

13.
This study examines the effects of atrazine on both microbial biomass C and C mineralization dynamics in two contrasting agricultural soils (organic C, texture, and atrazine application history) located at Galicia (NW Spain). Atrazine was added to soils, a Humic Cambisol (H) and a Gleyic Cambisol (G), at a recommended agronomic dose and C mineralization (CO2 evolved), and microbial biomass measurements were made in non-treated and atrazine-treated samples at different time intervals during a 12-week aerobic incubation. The cumulative curves of CO2–C evolved over time fit the simple first-order kinetic model [Ct = Co (1 − e kt )], whose kinetic parameters were quantified. Differences in these parameters were observed between the two soils studied; the G soil, with a higher content in organic matter and microbial biomass C and lower atrazine application history, exhibited higher values of the total C mineralization and the potentially mineralizable labile C pool than those for the H soil. The addition of atrazine modified the kinetic parameters and increased notably the C mineralized; by the end of the incubation the cumulative CO2–C values were 33–41% higher than those in the corresponding non-added soils. In contrast, a variable effect or even no effect was observed on the soil microbial biomass following atrazine addition. The data clearly showed that atrazine application at normal agricultural rates may have important implications in the C cycling of these two contrasting acid soils.  相似文献   

14.
Rewetting a dry soil has long been known to cause a burst of respiration (the “Birch Effect”). Hypothesized mechanisms for this involve: (1) release of cellular materials as a result of the rapid increase in water potential stress and (2) stimulating C-supply to microbes via physical processes. The balance of these factors is still not well understood, particularly in the contexts of multiple dry/wet cycles and of how resource and stress patterns vary through the soil profile. We evaluated the effects of multiple dry/wet cycles on surface and subsurface soils from a California annual grassland. Treatments included 4, 6, and 12 cycles that varied the length of the drying period between rewetting events. Respiration was monitored after each wetting event while extractable C and N, microbial biomass, and microbial activity were assayed initially, after the first rewetting event, and at the end of the experiment. Initially, microbial biomass and activity (respiration, dehydrogenase, and N mineralization) in subsurface soils were ca. 10% and 20% of surface soil levels. After multiple cycles, however, subsurface soil microbial biomass and activity were enhanced by up to 8-fold, even in comparison to the constantly moist treatment. By comparison, surface soil microbial biomass and activity were either moderately (i.e. 1.5 times increase) or not affected by wetting and drying. Drying and rewetting led to a cascade of responses (soluble C release, biomass growth, and enhanced activity) that mobilized and metabolized otherwise unavailable soil carbon, particularly in subsurface soils.  相似文献   

15.
Effect of pH on nitrogen mineralization in crop-residue-treated soils   总被引:1,自引:0,他引:1  
Summary This study compares N mineralization in soils treated with crop residues [corn (Zea mays L.), soybean (Glycine max (L.) Merr.), sorghum (Sorghum vulgare Pers.)] or alfalfa (Medicago sativa L.) at three adjusted soil pH values (4, 6, and 8); pH was adjusted with dilute H2SO4 or KOH. A sample of soil (20 g) was treated with 0.448 g plant material (equivalent to 50t ha–1), mixed with 20 g silica sand adjusted to the pH of the soil, and packed in a leaching tube. The soil-sand mixture was leached with 100 ml 5 mM CaCl2 adjusted to the same pH as that of the treated soil to remove the initial mineral N, and incubated at 30°C. The leaching procedure was repeated every 2 weeks for 20 weeks. Results from three soils showed that N mineralization increased as the soil pH increased. In one soil (Lester soil), significant amounts of NH 4 + -N accumulated at pH 4 during the first 12 weeks. Treatment with corn and soybean residues resulted in a marked reduction in N mineralization, especially at pH 4. The percentage of organic N mineralized from sorghum residue and alfalfa added to soils increased as the soil pH increased; the values ranged from 7.7% to 37.0% for sorghum and from 17.2% to 30.1% for alfalfa.  相似文献   

16.
Sulfur mineralization rates and potentials of soils   总被引:3,自引:0,他引:3  
Summary Field-moist soil and glass beads mixtures were packed in glass tubes and leached with 100 ml of 5 mM CaCl2 and incubated at 20 or 30°C. The leaching procedure was repeated every 2 weeks for 14 weeks. The leachates were analysed for SO inf4 sup2– and NO3 . The S uptake by three successive croppings of corn (Zea mays L.) or soybean [Glycine max (L.) Merr.] at 40- or 60-day intervals, respectively, or three cuttings of ryegrass (Lolium multiflorum L.) at 30-day intervals were studied under greenhouse conditions. Results showed that significantly greater amounts of S were mineralized at 30°C than at 20°C in each of 13 Iowa and 7 Chilean surface soils. Expressed as percentages of organic S in soils, the amounts of S mineralized in the Iowa surface soils in 14 weeks at 20 and 30°C ranged from 1.2% to 9.8% and from 2.4% to 17.5%, respectively. The corresponding values for the Chilean soils ranged from 0.9% to 7.2%6 and from 1.4% to 12.1%. The Q10 values of S mineralization ranged from 1.7 to 4.4 (average 2.5) for the Iowa soils and from 1.7 to 3.1 (average 2.1) for the Chilean soils. The cumulative S mineralized at 20°C in 14 weeks was significantly correlated with the cumulative N mineralized (linear model, r=0.72**; quadratic model, r=0.84***). Similarly, the cumulative S mineralized at 30°C was significantly correlated with the cumulative N mineralized at this temperature (linear model, r=0.81***; quadratic model, r = 0.82***). The potentially mineralizable S pool (S0), calculated by using an exponential equation for the S mineralized at 20°C, ranged from 5 to 44 mg kg–1 for the Iowa soils and from 10 to 25 mg kg–1 for the Chilean soils. The corresponding values obtained by using a reciprocal-plot technique ranged from 6 to 48 mg kg–1 and from 12 to 26 mg kg–1, respectively. The S0 values calculated for S mineralized at 30°C, in general, were higher than those obtained at 20°C. The S mineralization rate constant (k) and the time required to mineralize 50% of S0 (K t), calculated by using the cumulative SO inf4 sup2– released during 14 weeks of incubation, varied considerably among the soils. Up take of S by corn and soybean (tops+roots) were, in general, lower than the total SO inf4 sup2– mineralized in 14 weeks at 20°C.  相似文献   

17.
In forest soils where a large fraction of total phosphorus (P) is in organic forms, soil micro-organisms play a major role in the P cycle and plant availability since they mediate organic P transformations. However, the correct assessment of organic P mineralization is usually a challenging task because mineralized P is rapidly sorbed and most mineralization fluxes are very weak. The objectives of the present work were to quantify in five forest Spodosols at soil depths of 0-15 cm net mineralization of total organic P and the resulting increase in plant available inorganic P and to verify whether net or gross P mineralization could be estimated using the C or N mineralization rates. Net mineralization of total organic P was derived from the net changes in microbial P and gross mineralization of P in dead soil organic matter. We studied very low P-sorbing soils enabling us to use lower extractants to assess the change in total inorganic P as a result of gross mineralization of P in dead soil organic matter. In addition, to enable detection of gross mineralization of P in dead soil organic matter, a long-term incubation (517 days) experiment was carried out. At the beginning of the experiment, total P contents of the soils were very low (19-51 μg g−1) and were essentially present as organic P (17-44 μg g−1, 85-91%) or microbial P (6-14 μg g−1; 24-39%). Conversely, the initial contents of inorganic P were low (2-7 μg g−1; 9-15%). The net changes in the pool size of microbial P during the 517 days of incubation (4-8 μg g−1) and the amounts of P resulting from gross mineralization of dead soil organic matter (0.001-0.018 μg g−1 day−1; 0.4-9.5 μg g−1 for the entire incubation period) were considerable compared to the initial amounts of organic P and also when compared to the initial diffusive iP fraction (<0.3 μg g−1). Diffusive iP corresponds to the phosphate ions that can be transferred from the solid constituents to the soil solution under a gradient of concentration. Net mineralization of organic P induced an important increase in iP in soil solution (0.6-10 μg g−1; 600-5000% increase) and lower increases in diffusive iP fractions (0.3-5 μg g−1; 300-2000% increase), soil solid constituents having an extremely low reactivity relative to iP. Therefore, soil micro-organisms and organic P transformations play a major role in the bioavailability of P in these forest soils. In our study, the dead soil organic matter was defined as a recalcitrant organic fraction. Probably because gross mineralization of P from this recalcitrant organic fraction was mainly driven by the micro-organisms’ needs for energy, the rates of gross mineralization of C, N and P in the recalcitrant organic fraction were similar. Indirect estimation of gross mineralization of P in dead soil organic matter using the gross C mineralization rate seems thus an alternative method for the studied soils. However, additional studies are needed to verify this alternative method in other soils. No relationships were found between microbial P release and microbial C and N releases.  相似文献   

18.
Abstract

The top two horizons of 14 major hill land soils of the Appalachian Region were evaluated for activities of add phospha‐tase (AP), pyrophosphatase (PP1), arylsuifatase (AS) and urease (UR) enzymes. A relationship between enzyme activities and soil properties was examined. Surface horizons contained higher enzyme activities than the subsurface horizons. Overall, enzyme activities were positively correlated with soil moisture content, percent water‐filled porosity, C, N, K, Mn and CEC. Activities of AP and PP1 were negatively correlated with soil pH. The AP and UR activities were positively related to various forms of P. Enzyme activities were positively related to total and organic S. Pot trial was performed 1n green house conditions to evaluate the relationship between enzyme activities and snapbean (Phaseolus vulgaris L.) growth and N, P, and S uptake. With a few exceptions, activities of AP, AS and UR were positively related to snapbean shoot wt. and shoot content of N, P, and S. The PP1 activities of subsurface horizons were positively related to shoot wt. and mineral content. Enzyme activities varied from one soil horizon to another. The effects of various soil properties and their interacting factors on activities of the four enzyme systems are discussed.  相似文献   

19.
We used chemical extraction methods and 31P-nuclear magnetic resonance (NMR) to investigate the effects of vegetation on the amount and structural composition of phosphorous (P) in the sub-alpine soils of central Taiwan. Chemical extraction methods were used to measure inorganic P (Pi) and organic P (Po) in main soil horizons. The soil P composition was assessed by 31P-NMR spectroscopy on alkaline EDTA–NaOH extracts. According to the results of chemical extractions, the forest soil had a higher amount of Pi than the grassland soil, which might be a result of the mineralization of Po. 31P-NMR spectra showed inorganic orthophosphate (up to 67%) and orthophosphate monoesters (up to 75%) as the major forms of P extracted in forest and grassland soils, respectively. Smaller proportions of orthophosphate diesters and trace amounts of phosphonates and pyrophosphate were found. With possible hydrolysis of P compounds during chemical extraction and slight systemic error in the processes of extraction with NMR, the results from NMR analysis are, in general, consistent with those of chemical extraction.  相似文献   

20.
Over-fertilization has caused significant phosphorus(P) accumulation in Chinese greenhouse vegetable production(GVP) soils. This study, for the first time, quantified profile P accumulation directly from soil P measurements, as well as subsoil P immobilization, in three alkaline coarse-textured GVP soil profiles with 5(S5), 15(S15), and 30(S30) years of cultivation in Tongshan, Southeast China. For each profile, soil samples were collected at depths of 0–10(topsoil), 10–20, 20–40, 40–60, 60–80, and 80–100 cm. Phosphorus accumulation was estimated from the difference in P contents between topsoil and parent material(60–100 cm subsoil). Phosphorus mobility was assessed from measurements of water-soluble P concentration(PSol). Finally, P sorption isotherms were produced using a batch sorption experiment and fitted using a modified Langmuir model. High total P contents of 1 980(S5), 3 190(S15), and 2 330(S30) mg kg~(-1) were measured in the topsoils versus lower total P content of approximately 600 mg kg~(-1) in the 80–100 cm subsoils. Likewise, topsoil PSol values were very high, varying from 6.4 to 17.0 mg L~(-1). The estimated annual P accumulations in the topsoils were 397(S5), 212(S15), and 78(S30) kg ha~(-1) year~(-1). Sorption isotherms demonstrated the dominance of P desorption in highly P-saturated topsoils, whereas the amount of adsorbed P increased in the 80–100 cm subsoils with slightly larger P adsorption capacity. The total P adsorption capacity of the 80–100 cm subsoils at a solution P concentration of0.5 mg L~(-1) was 15.7(S5), 8.7(S15), and 6.5(S30) kg ha~(-1), demonstrating that subsoils were unable to secure P concentrations in leaching water below 0.5 mg L~(-1) because of their insufficient P-binding capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号