首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Usutu virus (USUV), a flavivirus of the Japanese encephalitis virus complex, was for the first time detected outside Africa in the region around Vienna (Austria) in 2001 by Weissenb?ck et al. [Weissenb?ck, H., Kolodziejek, J., Url, A., Lussy, H., Rebel-Bauder, B., Nowotny, N., 2002. Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg. Infect. Dis. 8, 652-656]. USUV is an arthropod-borne virus (arbovirus) circulating between arthropod vectors (mainly mosquitoes of the Culex pipiens complex) and avian amplification hosts. Infections of mammalian hosts or humans, as observed for the related West Nile virus (WNV), are rare. However, USUV infection leads to a high mortality in birds, especially blackbirds (Turdus merula), and has similar dynamics with the WNV in North America, which, amongst others, caused mortality in American robins (Turdus migratorius). We hypothesized that the transmission of USUV is determined by an interaction of developing proportion of the avian hosts immune and climatic factors affecting the mosquito population. This mechanism is implemented into the present model that simulates the seasonal cycles of mosquito and bird populations as well as USUV cross-infections. Observed monthly climate data are specified for the temperature-dependent development rates of the mosquitoes as well as the temperature-dependent extrinsic-incubation period. Our model reproduced the observed number of dead birds in Austria between 2001 and 2005, including the peaks in the relevant years. The high number of USUV cases in 2003 seems to be a response to the early beginning of the extraordinary hot summer in that year. The predictions indicate that >70% of the bird population acquired immunity, but also that the percentage would drop rapidly within only a couple of years. We estimated annually averaged basic reproduction numbers between R (0)=0.54 (2004) and 1.35 (2003). Finally, extrapolation from our model suggests that only 0.2% of the blackbirds killed by USUV were detected by the Austrian USUV monitoring program [Chvala, S., Bakonyi, T., Bukovsky, C., Meister, T., Brugger, K., Rubel, F., Nowotny, N., Weissenb?ck, H., 2007. Monitoring of Usutu virus activity and spread by using dead bird surveillance in Austria, 2003-2005. Vet. Microbiol. 122, 237-245]. These results suggest that the model presented is able to quantitatively describe the process of USUV dynamics.  相似文献   

2.
Usutu virus (USUV), family Flaviviridae, has been responsible for avian mortality in Austria from 2001 to 2006. The proportion of USUV-positive individuals among the investigated dead birds decreased dramatically after 2004. To test the hypothesis that establishment of herd immunity might be responsible, serological examinations of susceptible wild birds were performed. Blood samples of 442 wild birds of 55 species were collected in 4 consecutive years (2003--2006). In addition, 86 individuals from a birds of prey rehabilitation centre were bled before, at the peak, and after the 2005 USUV transmission season in order to identify titre dynamics and seroconversions. The haemagglutination inhibition test was used for screening and the plaque reduction neutralization test for confirmation. While in the years 2003 and 2004 the proportion of seropositive wild birds was <10%, the percentage of seroreactors raised to >50% in 2005 and 2006. At the birds of prey centre, almost three quarters of the owls and raptors exhibited antibodies before the 2005 transmission season; this percentage dropped to less than half at the peak of USUV transmission and raised again to almost two thirds after the transmission season. These data show a from year to year continuously increasing proportion of seropositive wild birds. The owl and raptor data indicate significant viral exposure in the previous season(s), but also a number of new infections during the current season, despite the presence of antibodies in some of these birds. Herd immunity is a possible explanation for the significant decrease in USUV-associated bird mortalities in Austria during the recent years.  相似文献   

3.
The emergence and spread of infectious diseases in mid-latitudes, so far mainly observed in the tropics, considerably increase under the current situation of climate change. A recent example is the Usutu virus (USUV) outbreak in Austria. USUV is closely related to the West Nile virus in the U.S. and caused mass mortalities mainly of blackbirds (Turdus merula). The USUV flavivirus persists in a natural transmission cycle between vectors (mosquitoes) and host reservoirs (birds) and leads - once endemic in a population - to periodic outbreaks. In an epidemic model to explain the USUV dynamics in Austria 2001-2005, USUV dynamics were mainly determined by an interaction of bird immunity and environmental temperature. To investigate future scenarios, we entered temperature predictions from five global climate models into the USUV model and also considered four different climate-warming scenarios defined by the I ntergovernmental Panel on Climate Change, IPCC (20 different model-scenario combinations). We downscaled the 20 time series of predicted temperatures (through the year 2100) to represent the region around Vienna. Our simulations predict that USUV will persist in the host population after the epidemic peak observed in 2003. USUV-specific annual blackbird-mortality time series predict that the outbreak frequency increases successively from the beginning to the end of the century. Simulations of worst-case scenarios result in an endemic equilibrium with a decline of the blackbird population of about 24%. Additionally we calculated the annually averaged basic reproduction number for the period 1901-2100. The latter depict that undetected major outbreaks before 2000 were unlikely, whereas it is likely that the USUV becomes endemic after 2040.  相似文献   

4.
West Nile virus (WNV) and Usutu virus (USUV) are arboviruses that are maintained in enzootic transmission cycles between mosquitoes and birds and are occasionally transmitted to mammals. As arboviruses are currently expanding their geographic range and emerging in often unpredictable locations, surveillance is considered an important element of preparedness. To determine whether sera collected from resident and migratory birds in the Netherlands as part of avian influenza surveillance would also represent an effective source for proactive arbovirus surveillance, a random selection of such sera was screened for WNV antibodies using a commercial ELISA. In addition, sera of jackdaws and carrion crows captured for previous experimental infection studies were added to the selection. Of the 265 screened serum samples, 27 were found to be WNV–antibody‐positive, and subsequent cross‐neutralization experiments using WNV and USUV confirmed that five serum samples were positive for only WNV‐neutralizing antibodies and seven for only USUV. The positive birds consisted of four Eurasian coots (Fulica atra) and one carrion crow (Corvus corone) for WNV, of which the latter may suggest local presence of the virus, and only Eurasian coots for USUV. As a result, the screening of a small selection of serum samples originally collected for avian influenza surveillance demonstrated a seroprevalence of 1.6% for WNV and 2.8% for USUV, suggesting that this sustained infrastructure could serve as a useful source for future surveillance of arboviruses such as WNV and USUV in the Netherlands.  相似文献   

5.
The emergence of West Nile virus (WNV) was expected in Austria since the initial discovery of the infection in neighbouring Hungary in 2003/2004. In 2008 six cases of West Nile disease were diagnosed at the Institute for Veterinary Disease Control M?dling, Austrian Agency for Health and Food Safety (AGES), involving five goshawks (Accipiter gentilis) and one gyrfalcon (Falco rusticolus), which were found dead in the eastern Austrian federal states of Lower Austria, Vienna and Styria, respectively. Pathomorphological and immunohistochemical findings suggested a WNV infection. Virus was isolated in embryonated specific pathogen free chicken eggs and propagated in mouse neuroblastoma cells (NA), in which a cytopathic effect occurred. The virus was identified and characterised by electron microscopic examination and molecular detection using RT-PCR, sequencing, and phylogenetic analysis. The Austrian WNV sequences exhibited nucleotide identities of 99.9% to the lineage 2 WNV sequences described in Hungary since 2004. In addition, 71 sera of 14 different bird species were screened for the presence of WNV antibodies using a commercial ELISA: 43.7% of the tested samples showed antibody titers. Selected positive sera were also subjected to WNV neutralisation tests, in which the ELISA results were verified in 66%. The results of this study confirm unambiguously the presence of a lineage 2 WNV infection in birds of prey in the eastern part of Austria.  相似文献   

6.
7.
8.
9.
10.
11.
Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential.  相似文献   

12.
Highly pathogenic avian influenza (HPAI) represents a severe form of generalized avian influenza which is characterized by a rapid and severe course of disease and a very high mortality. All poultry species are susceptible. Turkeys and chickens are most vulnerable. There are no pathognomonic symptoms or specific pathological alterations. The disease is caused by avian influenza virus strains of the subtypes H5 or H7. These viruses arise spontaneously from apathogenic progenitors by insertional mutation in the HA gene. Until recently, outbreaks of HPAI were rare events, however, they have been found to cause increasing losses over the past few years. Since 2003, a widespread occurrence of HPAI has been registered in southeast Asia, and some countries are endemically infected with HPAIV strain H5N1. In six countries this virus has also caused fatal human infections. This has sparked fears that this agent may be the progenitor of a new pandemic influenza virus. During summer 2005 the disease has slowly spread westward. Isolated outbreaks have been reported from Kazakhstan, Russia, Romania, Turkey, Croatia and Ukraine. Migratory birds have been tentatively accused for spreading the infection along their flyways.  相似文献   

13.
Repeated epizootics of highly pathogenic avian influenza (HPAI) virus subtype H5N1 were reported from 2003 to 2005 among poultry in Vietnam. More than 200 million birds were killed to control the spread of the disease. Human cases of H5N1 infection have been sporadically reported in an area where repeated H5N1 outbreaks among birds had occurred. Subtype H5N1 strains are established as endemic among poultry in Vietnam, however, insights into how avian influenza viruses including the H5N1 subtype are maintained in endemic areas is not clear. In order to determine the prevalence of different avian influenza viruses (AIVs), including H5N1 circulating among poultry in northern Vietnam, surveillance was conducted during the years 2006-2009. A subtype H5N1 strain was isolated from an apparently healthy duck reared on a farm in northern Vietnam in 2008 and was identified as an HPAI. Although only one H5N1 virus was isolated, it supports the view that healthy domestic ducks play a pivotal role in maintaining and transmitting H5N1 viruses which cause disease outbreaks in northern Vietnam. In addition, a total of 26 AIVs with low pathogenicity were isolated from poultry and phylogenetic analysis of all the eight gene segments revealed their diverse genetical backgrounds, implying that reassortments have occurred frequently among strains in northern Vietnam. It is, therefore, important to monitor the prevalence of influenza viruses among healthy poultry between epidemics in an area where AIVs are endemic.  相似文献   

14.
In order to determine the actual prevalence of avian influenza viruses (AIV) in wild birds in Germany, extensive surveillance studies were carried out between March 2003 and January 2005. More than 3.000 samples of 79 different species of wild birds (migratory and resident birds) were taken and 1.151 established pools investigated. Samples came from 80 different regions of Germany. Forty AIV isolates representing 14 combinations of eight different hemagglutinin and eight neuraminidase subtypes, among them H5 and H7, were identified. All H5 and H7 isolates were found to be of low pathogenicity. The overall incidence of the investigated pools based on virus isolation was 3,5 % for AIV, with considerable variability noted among species, season and location. All AIV were isolated from birds sampled in autumn. Most of the AIV isolates came from the resting or wintering areas of mallards breeding far north. This study adds to the understanding of the ecology of influenza viruses in wild birds and empahsizes the constant need for surveillance in times of an ongoing and expanding epidemic of highly pathogenic AI.  相似文献   

15.
16.
Although birds infected with avian polyomavirus (APV) subclinically could be a source of infection, no epidemiological studies of APV in psittacine birds have been reported in Japan. In the present study, we investigated subclinical morbidity rate of APV in imported and domestically bred psittacine birds by polymerase chain reaction (PCR). Of 402 live birds from which blood or feather samples were taken between April, 2003 and March, 2004, 11 (2.7%) were found to be APV positive. The DNA sequences of the APV t/T antigen region were determined for five APV-positive randomly selected samples and were found to be conserved.  相似文献   

17.
Objective   To identify and gain an understanding of the influenza viruses circulating in wild birds in Australia.
Design   A total of 16,303 swabs and 3782 blood samples were collected and analysed for avian influenza (AI) viruses from 16,420 wild birds in Australia between July 2005 and June 2007. Anseriformes and Charadriiformes were primarily targeted.
Procedures   Cloacal, oropharyngeal and faecal (environmental) swabs were tested using polymerase chain reaction (PCR) for the AI type A matrix gene. Positive samples underwent virus culture and subtyping. Serum samples were analysed using a blocking enzyme-linked immunosorbent assay for influenza A virus nucleoprotein.
Results   No highly pathogenic AI viruses were identified. However, 164 PCR tests were positive for the AI type A matrix gene, 46 of which were identified to subtype. A total of five viruses were isolated, three of which had a corresponding positive PCR and subtype identification (H3N8, H4N6, H7N6). Low pathogenic AI H5 and/or H7 was present in wild birds in New South Wales, Tasmania, Victoria and Western Australia. Antibodies to influenza A were also detected in 15.0% of the birds sampled.
Conclusions   Although low pathogenic AI virus subtypes are currently circulating in Australia, their prevalence is low (1.0% positive PCR). Surveillance activities for AI in wild birds should be continued to provide further epidemiological information about circulating viruses and to identify any changes in subtype prevalence.  相似文献   

18.
Since 1997, when human infections with a highly pathogenic (HP) avian influenza A virus (AIV) subtype H5N1 – previously infecting only birds – were identified in a Hong Kong outbreak, global attention has focused on the potential for this virus to cause the next pandemic. From December 2003, an unprecedented H5N1 epizootic in poultry and migrating wild birds has spread across Asia and into Europe, the Middle East, and Africa. Humans in close contact with sick poultry and on rare occasion with other infected humans, have become infected. As of early March 2007, 12 countries have reported 167 deaths among 277 laboratory-confirmed human infections to WHO. WHO has declared the world to be in Phase 3 of a Pandemic Alert Period. This paper reviews the evolution of HP AIV H5N1, molecular changes that enable AIVs to infect and replicate in human cells and spread efficiently from person-to-person, and strategies to prevent the emergence of a pandemic virus.  相似文献   

19.
禽流感病毒的致病性和免疫性研究进展   总被引:2,自引:0,他引:2  
介绍了禽流感病毒的病原、基因结构及其对禽类、人类的致病机理和危害,探讨了感染病毒后宿主的反应、机体的体液免疫和细胞免疫,在一定程度上概述了禽流感病毒的固有特点和规律,为进一步研究打下了基础。  相似文献   

20.
As part of ongoing ecological studies of Humboldt penguins (Spheniscus humboldti) at Punta San Juan, Ica Department, Peru, health surveys were conducted in November 1992, 1993, and 1994. In the three surveys, 98 birds in total were handled for examination, and blood was collected for laboratory analysis from 90 of these birds. All birds seemed to be in good condition. Body weights of females were significantly lower in 1994 than in the other years. Fleas (Parapsyllus humboldti) and ticks (Ornithodoros amblus) were found on the penguins and in their nests. Females had significantly higher plasma calcium and phosphorus levels, and they had lower weights than males. No other differences were found between the sexes. Hematology, plasma chemistries, and plasma mineral levels varied between years. Positive antibody titers for Chlamydophila psittaci (62%), avian adenovirus (7%; 1994 only), paramyxovirus-2 (7%; 1993 only), and Salmonella Pullorum (7%) were found. Plasma chemistry and mineral levels differed between individuals testing positive vs. negative on serologic tests for avian adenovirus and Salmonella Pullorum. Serologic tests for antibodies to avian influenza A virus, avian encephalomyelitis virus, infectious bronchitis virus, avian reovirus, duck viral enteritis virus, equine encephalitis (eastern, western, and Venezuelan) viruses, infectious bursal disease virus, infectious laryngotracheitis virus, Aspergillus sp., and paramyxovirus-1 and -3 were negative. All chlorinated pesticide and polychlorinated biphenyl analyses were below detectable limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号