首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Long-term effects of chemical fertilizers and farmyard manure (FYM) in rice (Oryza sativa)–wheat (Triticum aestivum) cropping system were monitored for two consecutive years after 38 and 39 years on productivity and soil biological properties of Mollisols. The study encompasses varying chemical fertilizer levels of optimum fertilizer rate (120, 26 and 37 kg ha?1 N, P and K, respectively) for both the crops. The treatments were application of 50% NPK, 100% NPK, 150% NPK, 100% NPK + hand weeding (HW), 100% NPK + Zn, 100% NP, 100% N, 100% NPK + 15 t FYM ha?1, 100% NPK(-S) and unfertilized control. The rice and wheat yields were highest with 100% NPK + 15 t FYM ha?1. This treatment also gave maximum and significantly more counts of bacteria, fungi and actinomycetes in soil than all the other treatments after crop harvest. The soil microbial biomass C (410.0 and 407.5 µg g?1) and N (44.53 and 48.30 µg g?1) after rice and wheat, respectively, were highest with 100% NPK + 15 t FYM ha?1, which were significantly higher over all the other treatments. The activities of soil enzymes like dehydrogenase, acid and alkaline phosphatase, arylsulphatase and urease and CO2 evolution rate with 100% NPK + 15 t FYM ha?1 were also found significantly higher over the other treatments. Fertilizer treatments with 100% NPK and 150% NPK were comparable and significantly better than application of 50% NPK, 100% N, 100% NP and 100% NPK(-S) in various studied soil biological properties. Integrated use of 100% NPK with FYM sustained the higher yields and soil biological properties under ricewheat cropping system in Mollisols. Application of Zn and hand weeding with 100% NPK were found better over 100% NPK alone in rice and wheat productivity. Imbalanced use of chemical fertilizers had the harmful effect on soil biological health.  相似文献   

2.
An experiment was conducted at Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India during 2001–2003 to study the effect of levels of fertility and straw mulch on a rapeseed (Brassica campestris var yellow sarson)–greengram (Vigna radiata)–rice (Oryza sativa) cropping system under a rainfed upland ecosystem. The experiment was laid out in a split-plot design having 14 treatment combinations of organic and inorganic nutrients along with straw mulch in three replicates. The results revealed that conjunctive use of organic and inorganic nutrients as well as paddy straw mulch resulted higher yield in both rapeseed and greengram, and the residual effects of different levels of fertilization and mulching also gave rise to higher grain yield in the succeeding rice crop. The uptake of nutrients, by the cropping system as a whole, to the tune of 204.29 and 183.00 kg ha?1 of N, 72.84 and 74.07 kg ha?1 of P and 179.95 and 175.41 kg ha?1 of K took place, with the treatment receiving 10 t ha?1 of farmyard manure (FYM) applied (to rapeseed) along with 50% recommended dose (RD) of NPK to all the crops in the sequence in two consecutive years, respectively. The same treatment resulted in a higher percentage of porosity vis-à-vis lower bulk density. Soil physico-chemical properties were superior in mulch-treated plots compared with no mulch treatment. Application of organic and inorganic nutrients along with proper moisture conservation practices can enhance the yields maintaining a good soil health.  相似文献   

3.
Abstract

Linear alkylbenzene sulphonates (LASs) are anionic surfactants commonly used in commercial detergents. A potential risk associated with the recycling of sewage waste materials is the presence of LASs and their primary degradation products, which could accumulate in sludge, especially during anaerobic processing. The long‐term accumulation of these contaminants in soils and especially the potential disturbance of soil functions need to be studied in more detail. In our study, the influence of the amendment added to an agricultural soil with different organic wastes containing LASs on organic matter content and nitrogen (N) content evolution and mineralization was studied in field conditions. A completely randomized 3×3 factorial arrangement, representing two sewage sludge types (composted and uncomposted) and three levels of LAS presence (0, 15, and 30 g/m2) in treated soils, was established using field plots (7×2 m); the results are compared with untreated plots. Statistical models based on covariance analysis were used to understand the dynamics of and the main factors influencing carbon (C) and N mineralization in sewage sludge amended–soils in the presence of LAS. LAS seemed to alter nitrogen mineralization, especially the nitrate dynamics.  相似文献   

4.
Field experiments were conducted during spring–rainy (kharif) seasons of 2005 and 2006 on a sunflower–mungbean cropping system at the research farm of the Division of Agronomy, Indian Agricultural Research Institute (IARI), New Delhi, India. The objectives of this study were to investigate the residual effect of nitrogen sources, sulfur and boron levels applied to sunflower on productivity, nutrient concentrations and their uptake by the succeeding mungbean crop in a sunflower–mungbean cropping system. The experiment with 19 treatments was laid out in factorial randomized block design for both sunflower and mungbean. The residual effects of nutrients applied to sunflower were significant on the succeeding mungbean crop in terms of biometric parameters, yield attributing characters, seed yield and soil nutrient status. The highest mungbean seed yield (961.2 kg ha?1) was produced with 50 kg ha?1 sulfur application to the preceding sunflower crop, which was significantly (p < 0.05) higher than with 0 and 25 kg sulfur ha?1. The concentrations and uptake of nitrogen, sulfur and boron were also greater in the succeeding mungbean crop due to the residual effects of nutrients applied to the preceding sunflower crop. The soil nutrient status before and after mungbean indicated that the available nitrogen and sulfur were higher due to application to the preceding crop, while available boron after mungbean was even higher than after sunflower due to its slow release and static nature in the soil.  相似文献   

5.
In a long-term field trial (Halle, Germany, founded in 1949 by K. Schmalfuß, soil type Haplic Phaeozem), the effects of different mineral and organic fertilization on dry matter yields, soil C and N contents and N balances were investigated. Over a period of 60 years, yields increased on average in all cultivated crops (winter and spring cereals, potatoes, sugar beets, silage maize), even without any fertilization. Nitrogen deficiency in unfertilized and PK treatments caused strong decreases in yield (up to 48%) in comparison with the N2PK standard treatment. The effect of omitting K or P supply was smaller (up to 18% and 7% yield reduction, respectively). The highest yields were obtained with high mineral N + PK application and (except winter wheat) with farmyard manure in combination with mineral fertilization. The N balances were negative in all treatments. However, if N immission from the air (40 kg ha?1 a?1) was included in the calculation, N balances were negative only in low N treatments. The soil C and N contents increased up to 1975. A considerable decrease has been seen since about 1985. The highest soil C and N contents were observed in the farmyard manure treatments. In addition to fertilization effects, this development of soil properties reflects changes in environmental pollution, climatic changes, as well as shifts in cultivation methods like tillage depths, over recent decades.  相似文献   

6.
Rainfed Inceptisol soils, despite their agricultural potential, pose serious problems, including soil erosion, low fertility, nutrient imbalance, and low soil organic matter, and ultimately lead to poor soil quality. To address these constraints, two long-term experiments were initiated to study conservation agricultural practices, comprising conventional and low tillage as well as conjunctive use of organic and inorganic sources of nutrients in Inceptisol soils of Agra center of the All-India Coordinated Research Project for Dryland Agriculture (AICRPDA). The first experiment included tillage and nutrient-management practices, whereas the second studied only conjunctive nutrient-management practices. Both used pearl millet (Pennisetum americanum (L.) Linn) as test crop. These experiments were adopted for soil quality assessment studies at 4 and 8 years after their completion, respectively, at the Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, India. Soil quality assessment was done by identifying the key indicators using principal component analysis (PCA), linear scoring technique (LST), soil quality indices (SQI), and relative soil quality indices (RSQI). Results revealed that most of the soil quality parameters were significantly influenced by the management treatments in both the experiments. In experiment 1, soil quality indices varied from 0.86 to 1.08 across the treatments. Tillage as well as the nutrient-management treatments played a significant role in influencing the SQI. Among the tillage practices, low tillage with one interculture + weedicide application resulted in a greater soil quality index (0.98) followed by conventional tillage + one interculture (0.94), which was at par with low tillage + one interculture (0.93). Among the nutrient-management treatments, application of 100% organic sources of nutrients gave the greatest SQI of 1.05, whereas the other two practices of 50% nitrogen (N) (organic) + 50% (inorganic source) (0.92) and 100% N (inorganic source) (0.88) were statistically at par with each other. The various parameters that emerged as key soil quality indicators along with their percentage contributions toward SQI were organic carbon (17%), exchangeable calcium (Ca) (10%), available zinc (Zn) (9%), available copper (Cu) (6%), dehydrogenase assay (6%), microbial biomass carbon (25%) and mean weight diameter of soil aggregates (27%). In experiment 2, SQI varied from 2.33 to 3.47, and 50% urea + 50% farmyard manure (FYM) showed the greatest SQI of 3.47, which was at par with 100% RDF + 25 kg zinc sulfate (ZnSO4) (3.20). Under this set of treatments, the key soil quality indicators and their contributions to SQI were organic carbon (19%), available N (20%), exchangeable Ca (3%), available Zn (4%) and Cu (17%), labile carbon (20%), and mean weight diameter of soil aggregates (17%). The quantitative relationship established in this study between mean pearl millet yields (Y) and RSQI irrespective of the management treatments for both the experiments together could be quite useful to predict the yield quantitatively with respect to a given change in soil quality for these rainfed Inceptisols. The methodology used in this study is not only useful to these Inceptisols but can also be used for varying soil types, climate, and associated conditions elsewhere in the world.  相似文献   

7.
A five-year (2001/02–2006/07) field experiment was carried out on acidic clay loam soil classified as Typic Hapludalf with a maize–mustard crop sequence to study the effect of continuous application of nitrogen, phosphorus, and potassium (NPK) fertilizers alone and in combination with lime, farmyard manure (FYM), and biofertilizers on soil physical properties, soil organic carbon (SOC), soil microbial biomass carbon (SMBC), and crop yields on the hilly ecosystem of Meghalaya. Significant improvement in the soil physical conditions of the soil was observed under integrated application of organic manure and inorganic fertilizers. Addition of NPK fertilizers along with organic manure, lime, and biofertilizers increased soil organic carbon (SOC) content, aggregate stability, moisture-retention capacity, and infiltration rate of the soil while reducing bulk density. The SOC content under the treatment of 100% NPK + lime + biofertilizer + FYM was significantly greater (68.58%) than in control plots. Maize and mustard crop yields also significantly increased (4.73- and 21.09-folds, respectively) with continuous application of balanced inorganic (100% NPK) + lime + biofertilizer + FYM as compared to the control plots. However, crop yields drastically reduced under application of integrated nutrients without FYM as compared to the treatment with FYM application. Thus, the results suggest that integrated use of a balanced inorganic fertilizer in combination with lime and organic manure sustains a soil physical environment that is better for achieving higher crop productivity under intensive cropping systems in the hilly ecosystem of northeastern India.  相似文献   

8.
The present long-term study was initiated to quantify the long-term effects of conjunctive nutrient management on soil quality, identify key indicators, and assess soil quality indices under a rainfed maize–wheat system in marginal Inceptisol soils in India. Results of the study revealed that soil organic carbon was significantly influenced by the conjunctive nutrient-management treatments. Among the nine treatments, the application of 100% recommended dose of nitrogen (RDN) (80 kg N ha?1), 15 kg N (compost) + 20 kg N ha?1 (inorganic), 25 kg N (compost), and 15 kg N (compost) + 10 kg N ha?1 (green leaf) resulted in greater organic carbon contents of 5.57, 5.32, 5.27, and 5.26 g kg?1, which were greater by 29.5%, 24%, 23%, and 22%, respectively, over the control. The greatest soil quality index (1.61) was observed with application of 25 kg nitrogen (N; compost) as well as with application of 15 kg N (compost) + 10 kg N ha?1 (green leaf). The order of percentage contribution of key indicators toward soil quality indices was available potassium (K) (34%) > available phosphorus (P) (32%) > available N (13%) > microbial biomass carbon (12%) > exchangeable calcium (Ca) (9%). The linear regression equation revealed the principal role of soil quality indicators in maize crop yield. The methodology and the results of the study could be of great relevance in improving and assessing soil quality not only for the study locations but also for other climatically and edaphically identical regions across the world.  相似文献   

9.
A long-term experiment was conducted at the Central Research Institute for Dryland Agriculture for 13 years to evaluate the effect of low tillage cum cheaper conjunctive nutrient management practices in terms of productivity, soil fertility, and nitrogen chemical pools of soil under sorghum–mung bean system in Alfisol soils. The results of the study clearly revealed that sorghum and mung bean grain yield as influenced by low tillage and conjunctive nutrient management practices varied from 764 to 1792 and 603 to 1008 kg ha?1 with an average yield of 1458 and 805 kg ha?1 over a period of 13 years, respectively. Of the tillage practices, conventional tillage (CT) maintained 11.0% higher yields (1534 kg ha?1) over the minimum tillage (MT) (1382 kg ha?1) practice. Among the conjunctive nutrient management treatments, the application of 2 t Gliricidia loppings + 20 kg nitrogen (N) through urea to sorghum crop recorded significantly highest grain yield of 1712 kg ha?1 followed by application of 4 t compost + 20 kg N through urea (1650 kg ha?1) as well as 40 kg N through urea alone (1594 kg ha?1). Similar to sorghum, in case of mung bean also, CT exhibited a significant influence on mung bean grain yields (888 kg ha?1) which was 6.7% higher compared to MT (832 kg ha?1). Among all the conjunctive nutrient management treatments, 2 t compost + 10 kg N through urea and 2 t compost + 1 t Gliricidia loppings performed significantly well and recorded similar mung bean grain yields of 960 kg ha?1 followed by 1 t Gliricidia loppings + 10 kg N through urea (930 kg ha?1). The soil nitrogen chemical fractions (SNCFs) were also found to be significantly influenced by tillage and conjunctive nutrient management treatments. Further, a significant correlation of SNCF with total soil nitrogen was observed. In the correlation study, it was also observed that N fraction dynamically played an important role in enhancing the availability pool of N in soil and significantly influenced the yield of sorghum grain and mung bean.  相似文献   

10.
11.
12.
The purpose of the study was to determine the role of land use, seasonality, and hydrometeorological conditions on the relationship between stream water potassium (K+) concentration and discharge during different types of floods—short- and long-duration rainfall floods as well as snowmelt floods on frozen and thawed soils. The research was conducted in small catchments (agricultural, woodland, mixed-use) in the Carpathian Foothills (Poland). In the woodland catchment, lower K+ concentrations were noted for each given specific runoff value for summer rainfall floods versus snowmelt floods (seasonal effect). In the agricultural and mixed-use catchments, the opposite was true due to their greater ability to flush K+ out of the soil in the summer. In the stream draining woodland catchment, higher K+ concentrations occurred during the rising limb than during the falling limb of the hydrograph (clockwise hysteresis) for all flood types, except for snowmelt floods with the ground not frozen. In the agricultural catchment, clockwise hystereses were produced for short- and long-duration rainfall floods caused by high-intensity, high-volume rainfall, while anticlockwise hystereses were produced for short- and long-duration rainfall floods caused by low-intensity, low-volume rainfall as well as during snowmelt floods with the soil frozen and not frozen. In the mixed-use catchment, the hysteresis direction was also affected by different lag times for water reaching stream channels from areas with different land use. K+ hystereses for the woodland catchment were more narrow than those for the agricultural and mixed-use catchments due to a smaller pool of K+ in the woodland catchment. In all streams, the widest hystereses were produced for rainfall floods preceded by a long period without rainfall.  相似文献   

13.
14.
15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号