首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Approximately 2,800 fresh dung samples from animals, mainly ruminant livestock, were screened for the presence of nematophagous fungi in Malaysia. Arthrobotrys spp. was noted on numerous occasions, but only one isolate of Duddingtonia flagrans was made. For the purposes of producing sufficient quantities of this fungus for feeding trials in sheep, various, commonly available, cheap plant materials were tested as possible growth substrates. This showed that cereal grains (wheat, millet and rice) were the best media for fungal growth. Pen feeding trials were carried out using sheep, both naturally and experimentally infected with nematode parasites (predominantely Haemonchus contortus), to test the efficiency of D. flagrans when administered either in a grain supplement, or incorporated into a feed block. These showed that the fungus survived gut passage in sheep and that dose rates of approximately 1 x 10(6) D. flagrans spores / animal / day, reduced the percentage of infective larvae developing in faecal cultures by more than 90%. These results indicate that using D. flagrans as a biological control agent of nematode parasites, is a promising alternative to nematode parasite control of small ruminants in Malaysia, where anthelmintic resistance is now a major problem.  相似文献   

2.
Control of nematode parasites of small ruminants in a wet, tropical environment using the nematophagous fungus, Duddingtonia flagrans, was assessed in this study. Two methods of fungal delivery were tested, namely as a daily feed supplement, or incorporated into feed blocks. Initially, pen trials were conducted with individually penned groups of sheep and goats at dose rates of 125,000 spores and 250,000 spores/kg live weight per day. At the lower dose rate this reduction was between 80 and 90% compared with the pre-treatment levels. At the higher dose rate, there was virtually complete suppression (>99% reduction) of larval recovery. Trials using the fungal feed blocks, showed that when animals were individually penned, they consumed only small amounts of the block (particularly goats), hence little effect on larval recovery in faecal cultures was observed. Grouping animals according to species and dose rate induced satisfactory block consumption and subsequent high levels of larval reduction in faecal cultures. These larval reductions were mirrored by the presence of fungus in faecal cultures. This work was followed by a small paddock trial, whereby three groups of sheep were fed either a feed supplement without fungal spores, supplement with spores, or offered fungal blocks. The dose rate of spores in the latter two groups was 500,000 spores/kg live weight per day. Egg counts were significantly reduced in the two fungal groups, compared with the control group and the latter required two salvage anthelmintic treatments to prevent mortality due to haemonchosis. Pasture larval numbers on the two fungal group plots were also much lower than on the control plot.  相似文献   

3.
A field study was undertaken to determine the effects of feeding Duddingtonia flagrans to young Merino sheep on pasture. A total of 60 mixed sex lambs 4-5 months old were divided into six even groups on the basis of liveweight. On Monday to Friday, each week for 6 months, three groups were offered barley grains on which D. flagrans had been cultured while the other three groups remained untreated. Every 4 weeks liveweights were recorded and faecal samples collected for nematode egg count estimation. Feeding D. flagrans reduced faecal egg counts and tended to improve liveweight gains, but considerable differences were observed between groups within treatment. These differences are thought to result from variations between the groups in consumption of the treated barley with the "best" consumers showing the greater effects of treatment.  相似文献   

4.
Two experiments were performed in 2002 and 2003 to evaluate the effect of biological control of gastrointestinal nematodes in sheep through the daily feeding of 500,000 chlamydospores of Duddingtonia flagrans/kg bodyweight to lactating ewes during the first 9 weeks with their young lambs on pasture. In both experiments four groups of eight ewes and their April-borne lambs were used. They were turned out on four separate plots (plots A) at the beginning of May, moved to similar separate plots after 3 (plots B) and 6 weeks (plots C), respectively, and weaning occurred after 9 weeks. In both experiments, two groups were fed spores daily while the two other groups served as controls. The effect of D. flagrans application was evaluated through faecal egg counts of ewes and lambs, the yield of faecal cultures in ewes, pasture larval counts and worm counts of lambs and tracer lambs. The results demonstrated no effect of D. flagrans application during the first 5 (2002) or 4 (2003) weeks. Subsequently, fungus application strongly reduced the yield in faecal cultures of the ewes. This was, however, not reflected in the pasture larval counts, but lower worm burdens were observed in tracer lambs of 'treated' plots C in 2002 than on those of 'control' plots. In 2003 worm burdens in 'treated' lambs returned to plots B were lower than those of 'control' lambs and a tendency for the same was observed for plots C. However, in all groups, lambs and tracer lambs developed severe haemonchosis.  相似文献   

5.
A series of experiments was carried out to examine the effects of two different isolates of the nematode-trapping fungus Duddingtonia flagrans to reduce the number of free-living larvae of the bovine lungworm, Dictyocaulus viviparus. A laboratory dose-titration assay showed that isolates CI3 and Troll A of D. flagrans significantly reduced (P < 0.05 to P < 0.001) the number of infective D. viviparus larvae in cultures at dose-levels of 6250 and 12,500 chlamydospores/g of faeces. The larval reduction capacity was significantly higher for Troll A compared to CI3 when lungworm larvae were mixed in faecal cultures with eggs of Cooperia oncophora or Ostertagia ostertagi and treated with 6250 chlamydospores/g of faeces. Both fungal isolates showed a stronger effect on gastrointestinal larvae than on lungworm larvae. Two plot trials conducted in 1996 and 1997 involved deposition of artificial faecal pats containing free-living stages of D. viviparus and C. oncophora on grass plots. Herbage around the pats was collected at regular intervals and infective larvae recovered, counted and identified. These experiments showed that both D. flagrans isolates reduced the number of gastrointestinal as well as lungworm larvae in faecal pats. During both plot trials, the transmission of C. oncophora larvae, but not D. viviparus, from faecal pats to the surrounding herbage was clearly affected by climatic conditions. After collection of faecal pats from the grass plots one month after deposition, the wet and dry weight of pats as well as organic matter content were determined. No differences were found between the fungus-treated and non-treated control pats. This indicated that the rate of degradation of faeces was not affected by the addition of the fungus.  相似文献   

6.
An in vitro trial with carbendazim fungicide on the growth profile of the predatory fungus Duddingtonia flagrans was undertaken and in vivo trials in sheep and buffaloes, fed on chlamydospores of D. flagrans and administered albendazole anthelmintic, were conducted. Although no growth inhibition was detected at a carbendazim concentration of 0.05 ppm, growth inhibition was recorded of 50% and above at concentrations of 0.25 and 1.00 ppm (p < 0.001) and of around 90% at concentrations of 2.00 to 5.00 ppm (p <0.0001). Scanty recovery of the fungus was made from faecal culture 48 h following a single dose of albendazole both in sheep and buffaloes. However, profuse fungal recovery was made from 96 h post dosing onwards. When the drug was used as an intraruminal slow-release capsule, no faecal fungal recovery could be made from day 3 after administration of the capsule, when the albendazole sulphoxide concentration was around 1.0 microg/ml. However, profuse and scanty fungal recovery could be made on days 1 and 2, respectively, after administration of the capsule, when the plasma albendazole sulphoxide concentration was around 0.4 and 0.9 microg/ml, respectively. The implications for use of a combination of anthelmintics and biological control in sustainable parasite control programmes are discussed.  相似文献   

7.
A field study was conducted on three Swiss farms to investigate the efficacy of Duddingtonia flagrans against naturally acquired infections of gastrointestinal nematodes in adult dairy sheep. On each farm the ewes were divided into two equal groups. One group received Duddingtonia during a period of 4 months at a daily dose rate of 10(6) chlamydospores per kilogram body weight, the second group acted as controls. At an overall moderate infection level in all farms D. flagrans did not have a significant effect on the observed parasitological parameters with the exception of a significantly reduced herbage infectivity in one farm. In contrast, the results from faecal cultures indicated a mean suppression of larval development during the fungus-feeding period between 82, 89 and 93% on the three farms, respectively. The discrepancy observed between the fungus efficacy in coprocultures and on pasture, which was also observed in several other studies deserves further research.  相似文献   

8.
The nematode-trapping fungus Duddingtonia flagrans may be used in biological control of parasitic nematode larvae in faeces of domestic host animals after feeding the hosts with fungal chlamydospores. In this experiment a possible undesirable fungal impact on earthworms, of the species Aporrectodea longa, was investigated. As earthworms eat animal faeces, D. flagrans may come into contact with earthworms both in their alimentary tract and on their body surface. However during the experimental period of 20 days, when earthworms were living in soil and eating cattle faeces that were heavily infested with viable chlamydospores of D. flagrans there were no indications of internal or external mycosis among the earthworms.  相似文献   

9.
Gastrointestinal nematodes are of concern in sheep production because of production and economic losses. Control of these nematodes is primarily based on the use of anthelmintic treatment and pasture management. The almost exclusive use of anthelmintic treatment has resulted in development of anthelmintic resistance which has led to the need for other parasite control options to be explored. The blood sucking abomasal parasitic nematode Haemonchus contortus causes severe losses in small ruminant production in the warm, humid sub-tropic and tropics. This study evaluated the effectiveness of a nematode trapping fungus, Duddingtonia flagrans, in reducing availability of parasitic nematode larvae, specifically H. contortus, on pasture. Chlamydospores of D. flagrans were mixed with a supplement feed which was fed daily to a group of crossbred ewes for the duration of the summer grazing season. A control group was fed the same supplement feed without chlamydospores. A reduction in infective larval numbers was observed in fecal cultures of the fungus-fed group. Herbage samples from the pasture grazed by the fungus-fed group also showed a reduction in infective larvae. There were no significant (P > 0.05) differences in overall fecal egg count, packed cell volume or animal weight between fungus-fed and control groups. Tracer animals were placed on the study pastures at the end of the study to assess pasture infectivity. Although tracer animals were only two per group, those that grazed with the fungus-fed group had substantially reduced (96.8%) nematode burdens as compared to those from the control group pasture. Results demonstrated that the fungus did have activity against nematode larvae in the feces which reduced pasture infectivity and subsequently nematode burdens in tracer animals. This study showed that D. flagrans, fed daily to grazing ewes, was an effective biological control agent in reducing a predominantly H. contortus larval population on pasture.  相似文献   

10.
Four groups of nine Saanen goat does with a naturally acquired mixed trichostrongylid infection were grazed on four paddocks. Two groups received a daily dose of Duddingtonia flagrans at the rate of 5 x 10(7) chlamydospores per animal per day for the 26-day grazing period. After a 19-day pasture resting period, 20 worm free 12-week-old tracer kids were introduced to the paddocks for 14 days prior to removal for worm burden analysis. Four groups of five does and four kids were drenched then turned out onto the paddocks and faecal egg count (FEC) monitored. The FEC between groups was comparable throughout the initial grazing period. There were significant reductions in number of Teladorsagia circumcincta (54.8%, P=0.004) and Haemonchus contortus (85.0%, P=0.02) worms recovered from tracer animals. FEC of animals subsequently grazing pasture were significantly reduced (P=0.036) with reductions of 44% observed 4 weeks post-turnout. No significant difference was observed after 6 weeks grazing. This trial has demonstrated the potential of D. flagrans to reduce larval numbers on pasture grazed by goats under New Zealand conditions.  相似文献   

11.
Previous observations showed that Duddingtonia flagrans chlamydospores were visualized in McMaster chambers containing faeces of treated sheep. This trial explored the McMaster technique as a tool to quantify chlamydospores in sheep faeces. A range of individual chlamydospore doses (from 19.5 x 10(6) to 177.5 x 10(6)) were offered orally to nine lambs for 7 consecutive days. A faecal sample (5 g) was daily obtained from the rectum of each animal (from days 1 to 13) to perform the McMaster technique using a sugar flotation fluid with 1.27 g/mL density. Each chlamydospore counted in the McMaster chamber was considered as 50 chlamydospores per g of faeces (CPG). The results confirmed that the estimated CPG was associated with the daily dose offered to the animals (r(2)=0.90; P<0.001). Furthermore, the total chlamydospore dose received by each animal was strongly associated to the total quantity of CPG obtained from the bulk faeces (TCtot) (r(2)=0.96; P<0.0001). Quantification of CPG can be used as a helpful tool to determine the number of chlamydospores reaching the faeces in orally dosed animals. This could be used to evaluate the efficacy of D. flagrans for the control of gastrointestinal nematode larvae in sheep faeces.  相似文献   

12.
Consequences of nematode infections due to Haemonchus contortus are a serious constraint for the sheep industry worldwide. Development of anthelmintic resistance and increasing concern about the impact of anthelmintic use dictate the need of alternative control. Such an alternative is using the nematode trapping fungus Duddingtonia flagrans to reduce infective larvae levels on pasture. Two trials were conducted to determine the effect of D. flagrans in reducing infective larvae (predominantly H. contortus) in feces. The first trial determined the dose effect of D. flagrans in reducing infective larvae in feces. Eighteen ewes were dewormed to remove existing infections and randomly assigned to six treatment groups: 5 x 10(4), 1 x 10(5), 2.5 x 10(5), 5 x 10(5), 1 x 10(6) or no (control) spores of D. flagrans per kg of body weight mixed in their feed for 7 days. Fecal samples were collected daily from these and from infected donor ewes. Feces from individual-treated ewes were mixed with equal amounts of donor ewe feces, theoretically approximating oral dose spore concentrations of 2.5 x 10(4), 5 x 10(4), 1.25 x 10(5), 2.5 x 10(5), 5 x 10(5) and no spores, and were cultured. Across dosages and during the 7 days of fungus feeding, percent reduction of infective larvae ranged from 76.6 to 100.0%. The second trial determined the effect of D. flagrans at the dose of 10(5) spores per kg body weight on reducing infective larvae in feces from naturally infected lambs. Twenty lambs were randomly assigned to either treatment or control groups based on fecal egg count. Treatment lambs were fed spores mixed in feed for 7 days. Feces were collected daily and cultured. During the 7 days of fungus feeding, the percent reduction of infective larvae ranged from 82.8 to 99.7%. Results of these trials demonstrated that the nematode trapping fungus D. flagrans was highly effective in reducing infective larvae in sheep feces and should be considered as a biological control agent for integrated nematode control programs.  相似文献   

13.
The control of sheep nematode parasites in extensive mountain/transhumant management systems using the nematophagous fungus Duddingtonia flagrans was assessed in this study. Two groups of Churra Tensina ewes were allowed to graze for 8 weeks in autumn on two separate paddocks of infected pasture near their winter sheds in the valley. At lambing, ewes and their twin lambs were turned out into the same paddocks for the following 12 weeks. One group of ewes received a daily dose of 5 x 10(5) chlamydospores of Duddingtonia flagrans/kg live weight per day both in autumn and in spring, while the other group was used as a non-treated control. Daily dosing of grazing ewes with the fungus D. flagrans had a clear effect on reducing autumn pasture contamination. This had a subsequent effect on the over-wintering larvae population that was confirmed by a 20% lower worm burden of tracer lambs kept in early spring on the paddock previously grazed by fungus treated ewes. In spring, pasture contamination was also significantly reduced in the paddock grazed by fungi-treated ewes and their lambs showed a 61% lower worm burden and a better performance than the control lambs. Results herein show that fungal spores fed to sheep at critical times with regard to the epidemiology of parasite infection, can have a significant effect on the infective larvae present on pasture, which could further improve lambs performance. This novel approach to parasite control would be of interest amongst both organic and conventional sheep farmers operating in mountain regions.  相似文献   

14.
The aim of this study was to determine the trapping efficacy of Duddingtonia flagrans against Haemonchus contortus at the temperature ranges experienced around lambing in the major sheep producing regions of Australia. Faeces were collected from Merino wethers, maintained in an animal house and which had received either D. flagrans chlamydospores for a 6-day period (DF) or not (NIL). Faeces were incubated at one of four daily temperature regimens which were composed of hourly steps to provide 6-19 degrees C, 9-25 degrees C, 14-34 degrees C and 14-39 degrees C to mimic normal diurnal air temperature variation. Enumeration of the number of preinfective and infective larvae that had migrated from or remained in faecal pellets was used to calculate percentage recovery and trapping efficacy of D. flagrans. Recovery of H. contortus larvae of both stages was significantly lower in DF faeces but the magnitude of the effect was considerably greater for infective larvae. Mean recovery of infective larvae from NIL and DF faeces was 10.6 and 0.4%, respectively, indicating a mean trapping efficacy of 96.4%. The lowest trapping efficacy (80.7%) was observed at 6-19 degrees C but total recovery of infective larvae, from DF faeces, was greatest at the two highest temperature regimens, although still less than 0.9%. The results of this study indicate that typical Australian lambing temperatures should not be a barrier to the use of D. flagrans as an effective biocontrol of H. contortus in Australia.  相似文献   

15.
Investigations were made into the timing of administration of Duddingtonia flagrans as a biological control agent against ovine parasitic nematodes including stongylid and Nematodirus spp. Faeces from 3-4 months old male lambs were deposited onto pasture plots that had never been grazed by sheep. The trial was conducted over two consecutive years (1998 and 1999). For both years, the following three plot types were involved: Sim plots had faeces containing nematode eggs and Duddingtonia flagrans spores deposited simultaneously; Post plots had faeces containing nematode eggs followed 2 weeks later by faeces containing D. flagrans spores alone; Control plots had faeces containing only nematode eggs; Prior plots (included in 1999) had faeces containing D. flagrans spores alone followed 2 weeks later by faeces containing nematode eggs. In each year, two deposition periods were involved: July and August in 1998 and June and July in 1999. During the first year pasture samples were collected at 2, 4, 6, 8 and 12 weeks after initial deposition. In 1999, additional samples were collected at 10, 16 and 20 weeks. Larvae were extracted from the pasture samples and counts performed to estimate the number and species of infective third-stage (L(3), larvae) present. The number of third-stage strongylid larvae on pasture was significantly lower on Sim plots compared to the remaining plot types for both years at all deposition times (P<0.001). This was also the case for the number of Nematodirus infective larvae in August deposition plots in 1998 (P<0. 02). There was no significant difference between treatments in both deposition times in 1999 and July deposition plots in 1998 for the Nematodirus data. These results suggest that D. flagrans, if deposited at the same time as parasite eggs prevents transmission of third-stage larvae from the faecal deposit onto pasture, including occasionally Nematodirus species, but does not have an effect on third-stage parasitic nematode larvae in the surrounding soil.  相似文献   

16.
An experiment was completed to determine if copper oxide wire particles (COWP) had any effect on the activity of the nematode-trapping fungus Duddingtonia flagrans in growing lambs. COWP has been used recently as a dewormer in small ruminants because of nematode resistance to anthelmintics. D. flagrans has been used to control free-living stages of parasitic nematodes in livestock. Katahdin and Dorper lambs, 4 months of age, were administered no or 4 g COWP (n=24/dose) in early October 2003. Haemonchus contortus was the predominant gastrointestinal parasite during the trial, which was acquired naturally from pasture. Half the lambs from each COWP group were supplemented with corn/soybean meal with or without D. flagrans for 35 days. Fecal egg counts (FEC) and packed cell volume (PCV) were determined weekly between days 0 (day of COWP administration) and 35. Feces from lambs in each treatment group were pooled and three replicates per group were cultured for 14 days at room temperature. Larvae (L3) were identified and counted per gram of feces cultured. Treatment with COWP was effective in decreasing FEC, which remained low compared with FEC from lambs not treated with COWP. This led to an increase in PCV in these lambs (COWP x day, P<0.001). Number of larvae was decreased in feces from lambs treated with COWP and D. flagrans between days 14 and 35 compared to the other groups of lambs (COWP x D. flagrans x day, P<0.003). Percentage of larvae identified as H. contortus decreased in feces collected from lambs treated with COWP and D. flagrans between days 14 and 28 compared with other treatments (COWP x D. flagrans x day, P<0.05). Other trichostrongyles were present and remained less than 7% in feces collected from control lambs. There was no adverse effect of COWP on the ability of D. flagrans to trap residual larvae after COWP treatment. With fewer eggs being excreted due to the effect of copper on H. contortus, and the additional larval reducing effect exerted by the nematode destroying fungus D. flagrans, the expected result would be a much lower larval challenge on pasture when these two tools are used together in a sustainable control strategy.  相似文献   

17.
The effectiveness of selective anthelmintic treatments and use of nematophagous fungi Duddingtonia flagrans in reducing levels of gastrointestinal nematodes in goats was investigated at Onderstepoort, South Africa. Nineteen (19) naturally infected indigenous male goats, aged 10 months, were separated into four groups and grazed in separate previously ungrazed paddocks for two worm seasons (February 2002-March 2003). Two groups of goats were fed D. flagrans chlamydospores daily and two groups did not receive fungi. The FAMACHA system was used to determine which goats required anthelmintic treatments. Twice as many goats in the no-fungi fed group required treatments as compared with the fungi fed group. Mean FAMACHA scores in the no-fungi fed group were higher during most of the sampling occasions compared to the group fed fungi, but the difference was not significant. The group-mean faecal egg counts and PCV% were comparable between the two treatment groups throughout the study. Haemonchus was the predominant parasite genus in composite group faecal cultures. Group-mean body weights and body condition scores were higher for the no-fungi fed group from May 2002 up to the end of the study, though statistical differences were not significant. Mean worm burdens indicated that the most abundant species infecting animals were Haemonchus contortus and Trichostrongylus spp. and were higher in the fungi fed group. More animals required individual anthelmintic treatments in the no-fungi fed group. The requirement for extra treatments in the no-fungi fed group must, however, be considered against the financial cost of the fungi, the requirement of daily feeding of the fungi, the lower performance and higher worm burdens in the fungi fed group.  相似文献   

18.
A study was conducted over 3 years (1998-2000) to investigate larval availability of gastrointestinal nematodes from faeces of cattle reared under different parasite control schemes. These cattle were part of a parallel, but separate grazing trial, and were used as donor animals for the faecal material used in this experiment. At monthly intervals, faeces were collected and pooled from three groups of first-season grazing cattle. These groups were either untreated, ivermectin bolus treated or fed the nematophagous fungus Duddingtonia flagrans. The untreated and fungus treated animals were infected with gastrointestinal nematodes and the number of eggs per gram (epg) pooled faeces ranged between 50 and 700 in the untreated group and between 25 and 525 epg in the fungus treated group. Each year between June and September, artificial 1 kg dung pats were prepared and deposited on pasture and protected from birds. The same treatments, deposition times and locations were repeated throughout the study. Larval recovery from herbage of an entire circular area surrounding the dung pats was made in a sequential fashion. This was achieved by clipping samples in replicate 1/4 sectors around the dung pats 4, 6, 8 and 10 weeks after deposition. In addition, coinciding with the usual time of livestock turn-out in early May of the following year, grass samples were taken from a circular area centred where the dung pats had been located to estimate the number of overwintered larvae, which had not been harvested during the intensive grass sampling the previous year. It was found that recovery and number of infective larvae varied considerably within and between seasons. Although the faecal egg counts in 1999 never exceeded 300 epg of the faecal pats derived from the untreated animals, the abnormally dry conditions of this year generated the highest level of overwintered larvae found on herbage in early May 2000, for the 3 years of the study. Overall, biological control with D. flagrans significantly reduced larval availability on herbage, both during and between the grazing seasons, when compared with the untreated control. However, the fungus did not significantly reduce overwintered larvae derived from early season depositions (June and July), particularly when dung pats disappeared within 2 weeks after deposition. Very low number of larvae (<3 per kg dry herbage) were sporadically recovered from grass samples surrounding the ivermectin bolus faecal pats.  相似文献   

19.
The ability of the nematophagous fungus Duddingtonia flagrans to reduce the number of infective nematode larvae in coproculture was investigated in goats using different doses of chlamydospores (0, 1.25 x 10(5), 2.5 x 10(5), 5 x 10(5) chlamydospores/kg BW/day) given by oral administration or by voluntary consumption in feed during natural or experimental infections with nematodes. The kinetics of excretion of D. flagrans chlamydospores in the faeces was also determined using a dose of 5 x 10(5) chlamydospores/kg BW/day for five days. For all the trials, the faecal nematode egg outputs were determined by a modified McMaster method and standard coprocultures were set up (14 days, 25 degrees C) to determine the number of larvae emerging from culture in fungus treated and control faeces. When chlamydospores were orally administered, the number of larvae were reduced by 50 to 97% when compared to control cultures. No difference in the level of larval emergence from the culture was seen for experimental or natural infections at the different chlamydospore dose rates. In contrast, when chlamydospores were distributed in the feed, a dose-dependent relationship was observed 10 days after the start of administration, the larval development being 2.0%, 14.0% and 86.9% for 5 x 10(5), 2.5 x 10(5) and 0 spores/kg BW/day, respectively. In addition, the kinetic study showed that the larval emergence from coproculture in the fungus group was statistically lower than in the control group from the second day of administration of the chlamydospores and remained lower until the second day after the last administration (p < 0.05). The results indicate that, for goats in farm conditions, a minimum daily dose of 5 x 10(5) chlamydospores/kg BW must be used to ensure a high treatment efficacy and that daily administration is preferable for maintenance of efficacy over time.  相似文献   

20.
The small lungworm Muellerius capillaris is very prevalent in goats and causes production losses. Its control is particularly difficult. The nematophagous fungus Duddingtonia flagrans has been shown to be effective in trapping a large range of gastro-intestinal nematode larvae but its trapping activity against small lungworm remains to be assessed. The purpose of this work was firstly, to evaluate the ability of first-stage larvae of M. capillaris (L1) to induce trap formation in in vitro conditions and secondly, to determine the effect of D. flagrans on the L1 infectivity to snails. In experiments on agar, the presence of L1 failed to induce any D. flagrans traps whereas in the same conditions, gastro-intestinal third-stage larvae induced 44-135 traps/cm(2) depending on the species. Moreover, when the traps were pre-induced by Haemonchus contortus larvae, the L1 of M. capillaris were not trapped. For the in vivo trial, two goats naturally infected with M. capillaris received D. flagrans chlamydospores at the daily dose rate of 5x10(5) spores/kg BW for 8 days. Faeces were collected individually before, during and 11 days after spore administration. On each day of harvest, the initial larval output was determined. The remaining faeces were subjected to coproculture at 21 degrees C for 7 days. At the end of this period, L1 were collected and used to infect snails (30 snails per goat isolate each snail given 40 L1 by direct deposit of the larvae on the foot of the snail). These snails were artificially challenged in contrast to others that were exposed to natural infection by exposure to faeces carrying first-stage M. capillaris larvae. The natural infection used the same number of snails, i.e. 30 snails deposited on the faeces of each goat. After 3 weeks at room temperature, the infective larvae present in the snail foot were counted. There was no difference in the survival of the L1 in faeces after coproculture whether the faeces contained D. flagrans or not. The infectivity of the extracted larvae from the two goats before and after fungal administration was the same. The number of infective larvae per snail obtained after "natural" infection showed variations that were not related to the presence of D. flagrans mycelium in faeces. These trials clearly indicate that D. flagrans was unable to trap or to alter the infectivity of M. capillaris first-stage larvae and thus cannot be considered as a non-chemotherapeutic alternative approach to the control of the small lungworm in goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号