首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study aimed to assess the dynamics of oxyhydroxides via termite mounds in a tropical savannah of Central Nigeria, where the soils often contain oxyhydroxides as a major component of soil minerals. To this end, the quantities of oxyhydroxides stored in mounds built by Macrotermes bellicosus (Smeathman) were compared to those stored in surface (Ap1) soils, and their turnover rates were estimated. Both the mound wall and nest of M. bellicosus were enriched two- to 10-fold with acidified ammonium oxalate soluble iron (Feo) and aluminum (Alo) and dithionite-citrate-bicarbonate (DCB) soluble iron (Fed) and aluminum (Ald) relative to the adjacent surface soil horizon. These oxyhydroxide contents were positively correlated with the clay content (< 0.05), suggesting that M. bellicosus preferentially used silicate clay-associated oxyhydroxides for mound construction. The Fed, Ald and DCB-soluble manganese (Mnd) preserved in the M. bellicosus mounds ran up to 112 ± 25.6, 5.72 ± 1.41 and 2.17 ± 0.68 kg ha?1, accounting for 1.91 ± 0.23%, 1.00 ± 0.60% and 0.35 ± 0.09% of the total amount stored in the surface soil horizon, respectively. Furthermore, the estimated turnover rates of Fed, Ald and Mnd were 6.6, 0.33 and 0.14 kg ha?1 year?1, respectively. These findings suggest that the mound-building termites significantly impacted the dynamics of free oxyhydroxides in an African savannah soil.  相似文献   

2.
The role of mounds of the fungus-growing termite Macrotermes bellicosus (Smeathman) in nutrient recycling in a highly weathered and nutrient-depleted tropical red earth (Ultisol) of the Nigerian savanna was examined by measuring stored amounts of selected nutrients and estimating their rates of turnover via the mounds. A study plot (4?ha) with a representative termite population density (1.5?mounds?ha?1) and size (3.7?±?0.4?m in height, 2.4?±?0.2?m in basal diameter) of M. bellicosus mounds was selected. The mounds were found to contain soil mass of 9249?±?2371?kg?ha?1, composed of 7502?±?1934?kg?ha?1 of mound wall and 1747?±?440?kg?ha?1 of nest body. Significant nutrient enrichment, compared to the neighboring topmost soil (Ap1 horizon: 0–16?cm), was observed in the nest body for total nitrogen (N) and exchangeable calcium (Ca), magnesium (Mg) and potassium (K), and in the mound wall for exchangeable K only. In contrast, available (Bray-1) phosphorus (P) content was found to be lower in both the mound wall and the nest body than in the adjacent topmost soil horizon. Consequently, the mounds formed by M. bellicosus contained 1.71?±?0.62?kg?ha?1 of total N, 0.004?±?0.003?kg?ha?1 of available P, 3.23?±?0.81?kg?ha?1 of exchangeable Ca, 1.11?±?0.22?kg?ha?1 of exchangeable Mg and 0.79?±?0.21?kg?ha?1 of exchangeable K. However, with the exception of exchangeable K (1.2%), these nutrients amounted to less than 0.5% of those found in the topmost soil horizon. The soil nutrient turnover rate via M. bellicosus mounds was indeed limited, being estimated at 1.72?kg?ha?1 for organic carbon (C), 0.15?kg?ha?1 for total N, 0.0004?kg?ha?1 for available P, 0.15?kg?ha?1 for exchangeable Ca, 0.05?kg?ha?1 for exchangeable Mg, and 0.06?kg?ha?1 for exchangeable K per annum. These findings suggest that the mounds of M. bellicosus, while being enriched with some nutrients to create hot spots of soil nutrients in the vicinity of the mounds, are not a significant reservoir of soil nutrients and are therefore of minor importance for nutrient cycling at the ecosystem scale in the tropical savanna.  相似文献   

3.
Abstract

Termites play a significant role in soil-forming processes of the tropics. The influence of termites on pedogenesis as affected by the toposequence, however, has rarely been explored. We investigated the soil physicochemical and morphological characteristics of epigeal mounds constructed by Macrotermes bellicosus (Smethman) compared with those of surrounding pedons along a toposequence (bottom, fringe and upland sites) of an inland valley in central Nigeria. The physicochemical and morphological properties of the mound soils varied according to structural units but were generally different from those of the adjacent pedons. The differences included finer texture, higher electrical conductivity, total N, exchangeable bases (Ca, Mg and K) and effective cation exchange capacity and lower C/N ratio and exchange acidity in the mound than the pedon at each toposequence position. This tendency to modify the soil properties was more prominent in the nest body where the termites actually live, that is, in the hives, royal cell and base-plate, than in the soils below the nest and the other mound parts, that is, the external wall, internal wall and pillars. We found this trend to a greater or lesser degree at all toposequence positions. Our findings suggest that: (1) M.?bellicosus can manipulate the mound soils according to functional applications of structure units or environmental requirements for its livelihood, regardless of local soils; (2) M.?bellicosus makes ecological patches (hot spots) at all toposequence positions in the same measure; (3) the influence of M.?bellicosus on the pedogenesis is reduced in the lowlands compared with the uplands because the number and volume of the mounds were substantially lower in the bottom and fringe sites compared with the upland site.  相似文献   

4.
Little is known about the effects of neotropical mound-building termites in soil chemical and physical properties. The influence of soil termite activity on soil characteristics was studied by assessing chemical, physical and micromorphological properties of a toposequence of Latosols (Oxisols). Soil samples were collected from the walls and inner parts of termite mounds and also from adjacent soil. A high diversity of termite genera was found in the mounds along the toposequence, together with the inquiline termites and other soil-dwelling arthropods. Chemical analyses showed that pH and the contents of organic C and N, P, Ca and Mg were significantly higher in termite mounds compared with adjacent areas, with an inverse trend for Al content. Significant differences in pH and exchangeable Al were observed between soil and mound across the slopes. The mound density across the landscape was higher at the upper slope segment, followed by the hill top, middle slope and lower slope segments. Considering a lifespan of 30 years and dimensions of termite mounds found in the toposequence we conclude that the textural and chemical uniformity of Latosols may be increased, following the pedobiological turnover during mound building, with local rates varying from 2.1 to 7.5 m3 ha− 1.  相似文献   

5.
The various iron fractions were quantified by selective dissolution (Fed, Feo, Fet) in four Red Mediterranean soils, developed on metarhyolite and metadolerite. They were similar in all profiles. A strong trend of iron removal from the surface horizon and of its subsequent illuvial translocation to the argillic horizons was observed. In all profiles, Feo was not related to the organic matter content indicating the Mediterranean xeric soil environment. The Feo/Fed ratio and the percentage of crystalline iron oxides (Fed-Feo) suggested that the pedoenvironment in which the profiles P1, P2 were formed, allowed the high crystallization of iron oxides. As indicated by the Fed/Fet values, the weathering process was more intense in the metarhyolite-developed soils. In contrast, the metadolerite-developed soils present conditions of poorly crystallized iron oxides and a lower degree of development.  相似文献   

6.
Iron, Al, and Mn were extracted by oxalate and dithionite from two Brown Mediterranean Soils, two Red Mediterranean Soils, one Vertisol and one Gley soil, all derived from basalt or scoria in the sub-humid and humid Mediterranean regions of the Golan Heights. Ratios of oxalate: dithionite extracted iron (Feo:Fed) were low in all soils, indicating that the predominant form of free iron is crystalline. Feo accumulates in the argillic B horizons of the Mediterranean soils, while Fed accumulates in the surface horizons. A large part of the free iron oxide in the surface horizons of Mediterranean soils is associated with non-clay fractions. While manganese behaves in a manner somewhat similar to that of iron, no definite trends could be discerned in the vertical distribution of free aluminium. In the Vertisol, Feo and Mno accumulate in the subsoil. Fed and Mnd increase slightly with soil depth. In the Gley soil, amorphous iron accumulates in the surface horizon, total free iron in the bottom horizon. Both amorphous and total free Mn had been depleted from the upper horizons of the Gley soil.  相似文献   

7.
《Geoderma》1986,37(1):45-55
Nine profiles representing the Alfisol, Inceptisol and Entisol orders were sampled on three terraces forming a chronosequence. Total iron, dithionite-extractable iron and oxalate-extractable iron were determined for all horizons of all profiles, and the clay mineralogy for horizons of three profiles. The percentage of total Fe (Fet) extracted by dithionite (Fed) increased with age of terraces, as did the difference between Fed and Feo (oxalate-extractable). Analysis of variance (ANOVA) of the horizon data showed that the ratios Fed/Fet and FedFeo/Fet were closely related to the ages of the terraces. Clay minerals were also related to terrace ages, with 2:1 minerals dominant in the profiles on the youngest and mixed-layer minerals and kaolinite more abundant in profiles on the older terraces.  相似文献   

8.
Twelve termite mounds and adjacent Ah and Ap horizons were sampled at three sites near Salisbury, Rhodesia. The mass of termite mounds occupied by M. falciger at one site was estimated at 620 t/ha, and contained the following amounts of nutrients expressed as percentages of the amounts in mounds and Ap horizon combined: extractable Ca 95%, mineral N 81% extractable K 69%, and available P 69%. Pot experiments using perennial ryegrass gave higher dry matter yields from termite mounds than from the Ap and Ah horizons. Crop production could therefore be increased by mixing termite mounds with the soil.  相似文献   

9.
Nest structures of six termite species, four with epigeous (above-ground) and two with subterranean nests were analysed to find out how their building and feeding habits could be related to their nests phosphorus status compared with control soils. Termite nest structure was found to affect significantly the P status in savanna soils: mounds of the African Trinervitermes geminatus and the South American Nasutitermes ephratae (both grass-feeders) displayed a greater amount of available P, especially in the inner part of the nest, than the surrounding soil. The abundant quantities of dead grass material stored in the mound can explain the available soil P increase. A similar increase in P availability was also found for the soil-feeder Cubitermes severus. In mounds of Macrotermes bellicosus, on the other hand, there was a drastic increase in P sorption (and a corresponding decrease in available P) compared to adjacent soils, which was attributed to the building strategy of this species. M. bellicosus selected clay from subsoil to build its nest structure. The data obtained for the subterranean species Ancistrotermes cavithorax and Microtermes toumodiensis indicated also that there is an increase in P sorption in mounds when compared with associated topsoils. Consequently, the nest structures of only certain termite species should be considered, and utilised, as a soil amendment in place of fertilisers. This impact on the P cycle in savannas seems to be related to the termite feeding status and to the type of material utilised in nest building. This should be taken into account before using termite nest material in soil fertility status improvement.  相似文献   

10.
Termites are estimated to contribute between <5 and 19% of the global methane (CH4) emissions. These estimates have large uncertainties because of the limited number of field-based studies and species studied, as well as issues of diurnal and seasonal variations. We measured CH4 fluxes from four common mound-building termite species (Microcerotermes nervosus, M. serratus, Tumulitermes pastinator and Amitermes darwini) diurnally and seasonally in tropical savannas in the Northern Territory, Australia. Our results showed that there were significant diel and seasonal variations of CH4 emissions from termite mounds and we observed large species specific differences. On a diurnal basis, CH4 fluxes were least at the coolest time of the day (∼07.00 h) and greatest at the warmest (∼15.00 h) for all species for both wet and dry seasons. We observed a strong and significant positive correlation between CH4 flux and mound temperature for all species. A mound excavation experiment demonstrated that the positive temperature effect on CH4 emissions was not related to termite movement in and out of a mound but probably a direct effect of temperature on methanogenesis in the termite gut. Fluxes in the wet season were 5-26-fold greater than those in the dry season. A multiple stepwise regression model including mound temperature and mound water content described 70-99% of the seasonal variations in CH4 fluxes for different species. CH4 fluxes from M. nervosus, which was the most abundant mound-building termite species at our sites, had significantly lower fluxes than the other three species measured. Our data demonstrate that CH4 flux estimates could result in large under- or over-estimation of CH4 emissions from termites if the diurnal, seasonal and species specific variations are not accounted for, especially when flux data are extrapolated to landscape scales.  相似文献   

11.
The iron oxides fractions of four major physiographic units obtained from a transect of calcareous materials were studied to assess the effects of key pedogenic processes and local hydrology conditions as well as physiographic units in controlling iron oxides forms in the north-west of Iran. Samples from different horizons belonging to six pedons were selected and analyzed for soil physicochemical properties, clay minerals, and Fe oxides forms (Fed, Feo, Fep). In general, the soils indicated some variation in the concentration of iron oxides that could be related to rate of weathering, pedogenic accumulations, geomorphologic conditions (as results of different in physiographic units), wet and dry cycle, and organic matter. A wide relative variation in mean values of Fed (6.4–9.9 g kg?1), Feo (2.9–4 g kg?1), and Fep (0.68–1.3 g kg?1) was observed among physiographic units. On the plateau unit, the presence of the most stable geomorphologic conditions and high rate in situ weathering (reflected in clay content), coupled with minor deposition of sediment suggest that the soils have more dynamic conditions than other units, reflecting in the greatest amount Fed and the lowest Feo/Fed ratio. Fed content of the soils containing less clay content (15–25%) was significantly different from those with greater clay content (25–35%).  相似文献   

12.
Organic mounds of the red wood ants (Formica rufa group; RWA) have been shown to be “hot spots” of carbon dioxide (CO2) efflux from the European forest soils. However, little information is available on the variability of CO2 effluxes from RWA mounds and on the factors regulating CO2 efflux. We assessed the seasonal and diurnal changes in CO2 effluxes, temperatures and volumetric water contents from mounds of Formica aquilona, the important RWA of the boreal forests in Finland. The daily average CO2 efflux from RWA mounds ranged 1.1-6.9 g CO2 m−2 h−1 during the active ant season (May-September), and from 0.2 to 1.1 g CO2 m−2 h−1 during their dormant period (October-April). Mound CO2 efflux from May to September was 3.6-6.0 times higher than from the surrounding forest floors, and most likely came from RWA respiration. Seasonal changes in mound CO2 effluxes were significantly correlated with mound temperature, but not with volumetric water content (7% on average). The high CO2 efflux associated with increased volumetric water content (up to 34%) after a RWA mound was abandoned indicated that these dry mound conditions restrict microbial decomposition of mound organic matter. CO2 effluxes were highest at night and lowest during the day, which is likely due to an increased ant activity or numbers in the mound at night. Diurnal changes in mound CO2 efflux were negatively correlated with air temperature, and positively correlated with the difference between the mound and air temperature. This suggests that thermal convection of warmer mound air to the colder outside air at night might be also a cause of the diurnal changes. We conclude that seasonal and diurnal variations in mound CO2 effluxes are dependent on RWA activities and fluctuation in RWA mound and outside temperatures.  相似文献   

13.
Termites are reported to improve soil physicochemical properties thereby enhance soil fertility of their mound and foraging areas. Empirical study pertaining to these effects is missing in Southwest Ethiopia. For this study, soil samples affected by termite activities were collected at 1 m interval within 0–3 m distance from the base of six termite mounds on gently sloping and sloping land and analyzed for physicochemical parameters. The result of the analysis depicted that soil bulk density (1.38–1.15 g cm?3) and moisture content (21.1–9.9%) decreased with increased distance from the mound base. While clay content decreased with increased distance from the mound base from72.0% to 45.5%, sand and silt contents increased from 8.0% to 21.3% and 19.3% to 28.5%, respectively. PH (6.23), organic carbon (3.85%), total nitrogen (0.4%), cation exchange capacity CEC (30.43 cmol kg?1), exchangeable Ca (13.73 cmol kg?1), Mg (3.15 cmol kg?1), and PBS (56.8%) were higher on termite mounds. While, electrical conductivity (0.03 dS m?1–0.06 dS m?1), exchangeable K (0.52–0.93 cmol kg?1) and Na (0.02–0.03 cmol kg?1) showed increasing trend with the distance from the mound base. Our results indicated that termite mounds are important sinks of organic matter and mineral nutrients, and hence contribute to the enhancement of soil fertility. Thus, for subsistent farmers the uses of termite mounds as a fertilizer present an opportunity to improve agricultural production.  相似文献   

14.
Around Lubumbashi, the introduction of large-scale pivot-irrigated agriculture entails leveling of large termite mounds during field preparation. The effect on soil fertility and crop yield (Solanum tuberosum and Alium cepa) is evaluated along 11 transects extending from a former termite mound location to reference soil that received no termite mound material. Spreading mound material was found to increase the pH, calcium carbonates CaCO3 content, and the amount of resin-extractable phosphorus (P), other possible effects being undone by fertilizer application. On the other hand, poor physical properties of the mound material seem to have adverse effects on crop production. While the benefits of spreading out mound material seem limited for large-scale farmers with access to fertilizers, the use of mound material may present an opportunity to resource-poor farmers throughout the miombo eco-region, provided that the application of mound materials is optimized and that any adverse effect on soil physical properties can be mitigated.  相似文献   

15.
A soil toposequence in NE Italy was studied, which consists of a terra rossa on Cretaceous limestone on the upper slope grading downwards into a colluvial fan with terra rossa material and finally into alluvial river sediments. It is postulated that the red colluviated terra rossa material has come under a moister hydroregime which provided reducing conditions. Because hematite of the terra rossa dissolved preferentially over goethite, as shown by quantitative Fe oxide mineralogy, soil color changed from 2.5YR to 7.5YR. The soils contained two types of concretions, red ones with a low Feo/Fed ratio and a high content of hematite and low content of Mn-oxides and black ones with a high Feo/Fed ratio, a small amount of hematite and abundant Mn oxides. The red concretions are therefore considered as inherited from an earlier period of pedogenesis whereas the black ones are neoformed in the present pedoenvironment. This is further supported by the lower Al-for-Fe substitution of goethite in the black concretions as compared to a higher Al substitution in the goethite inherited from the terra rossa.  相似文献   

16.
Termite mounds form islands of fertility in savanna landscapes and create foraging hotspots for herbivores, but the magnitude and spatial extent of these influences is unknown. We mapped terrain, termite mound and woody vegetation three-dimensional (3-D) structure at 56 cm resolution across a large-scale (254 ha), long-term (34 years) herbivore exclusion experiment in the Kruger National Park, with the Carnegie Airborne Observatory (CAO). We compared vegetation 3-D structure in areas protected from herbivores with those accessible to herbivores, both on termite mounds and in the landscape matrix between termite mounds. Termite mound density was 1.1 ha−1 across the study area and mound size did not differ between protected and accessible areas. Woody vegetation canopy cover was ∼100% greater on protected than accessible mounds, but was only ∼20% greater in the protected inter-mound matrix when compared to the accessible matrix. Woody canopy height class distributions differed significantly between protected and accessible areas, with the tallest vegetation (>10 m) occurring on protected termite mounds. The impacts of herbivore browsing were evident at distances of up to 20 m from termite mound centres. Spatial analysis of mound distribution revealed that the sphere of termite mound influence constitutes ∼20% of the total landscape. Termite influences on herbivore browsing operate at scales much larger than the spatial extent of their mound building activities.  相似文献   

17.
As ecosystem engineers, ants can mediate soil processes and functions by producing biogenic structures. In their mounds, ants not only directly produce CO2 by respiration, but may also indirectly impact soil greenhouse gas emissions by affecting substrate availability and soil physicochemical characteristics. Recent studies focused on overall gas production from ant mounds. However, little is known about mound material respiration and N2O emissions in ant mounds in wetlands. We measured CO2 and N2O emissions from mound soils of three different ant species (Lasius niger Linnaeus, Lasius flavus Fabricius, and Formica candida Smith) and natural marsh soils in a laboratory incubation experiment. On the whole, average soil CO2 and N2O emission rates from ant mounds were significantly higher than from the natural marsh soils. Over the 64 days incubation, the cumulative soil CO2 and N2O production from ant mounds was, respectively, 1.5–3.0 and 1.9–50.2 times higher than from the natural soils. Soil gas emissions from ant mounds were significantly influenced by the specific ant species, with soil CO2 and N2O emissions from L. niger mounds being higher than those from F. candida or L. flavus mound soils. Cumulative CO2 and N2O emissions from ant mound soils were positively correlated with soil clay, total carbon, dissolved organic carbon, total nitrogen and NH4+ content. Our laboratory results indicated that mound soil is an important source of CO2 and N2O emission from ant mounds in marshes, making mounds potential “hot spots” for CO2 and N2O emissions. Ants may increase the spatial heterogeneity of soil gas emissions by changing mound soil physicochemical properties, especially carbon and nutrition content, and soil texture. Contributions from ant mound materials should be considered when describing soil C and N cycles and their driving factors in wetland ecosystems.  相似文献   

18.
Red wood ants (Formica rufa group) are important elements in boreal forest ecosystems, where they occur in high abundance and build large and long-lasting, above-ground mounds of organic material. However, little is known on their role in the carbon (C) cycling in boreal forests. We measured temperature and carbon dioxide (CO2) efflux from three different-sized wood ant mounds and the surrounding forest floor from May 2004 to April 2005 in Norway spruce [Picea abies (L.) Karst.] dominated forests in eastern Finland. Additionally, mound and forest floor temperatures were measured continuously and CO2 effluxes at 2-4-week-intervals. During the ants’ active season (May-September), measurements were conducted in the morning, afternoon, evening and at night, while fluxes were measured once a day during the ants’ inactive season. CO2 emissions from the mounds were up to nearly eight times higher than those from the surrounding forest floor during the active season of the ants, but no statistically significant differences were observed during the period from October to February. Both mound and forest floor CO2 fluxes were highly correlated to mound or forest floor temperature. Based on our measurements, we are able to estimate the annual CO2 efflux from ant mounds and the surrounding forest floor, based on nonlinear regression analyses using CO2 flux as dependant and mound or forest floor temperatures as independent variables. Although red wood ant mounds were found to be “hot spots” for CO2 efflux, that increase the spatial heterogeneity of C emissions within a forest ecosystem, their annual emissions were only 0.30% of that from the forest floor. Thus, our results indicate that red wood ant mounds do not directly contribute significantly to the overall C budget of the boreal forest ecosystem studied.  相似文献   

19.
Studies were conducted to examine factors which might influence the status and distribution of S in some surface horizons and typical profiles of soils derived from Xiashu loess on the upper slope (US), middle slope (MS) and lower slope (LS) of Nanjing-Zhenjiang-Yangzhou hilly zone. The total S contents varied from 70.30 to 350.21 mg/kg, and the average for all surface soils was 218.3 mg/kg. The average S contents in the profiles followed the sequence: USo) and the ratio of amorphous iron oxide to free iron oxide (Feo/Fea), but no significant relationship was found between total S and the ratio of free iron oxide to total iron (Fed/Fet). Inorganic sulphate in paddy soils (MS and LS) was nearly higher in surface soil than in subsurface soil and subsoil, it, however, remained relatively unchanged with increasing depth for the original soil profile (US). The average organic S accounted for 94% of the total S in the surface soils, but the percentage decreased with depth in the profiles. Like the total S, the organic and inorganic S contents were highly significantly correlated with organic matter, total N, Feo and Feo/Fed ratio, but they were insignificantly related to Fed/Fet ratio. The C/S and N/S ratios in this study were somewhat lower than the results reported by others. The C/N/S ratios varied considerably within the same profile and among different soils but they fell within the range of values reported worldwide.  相似文献   

20.
Soils that are forming on volcanic parent materials have unique physical and chemical properties and in most cases, on wet and humid climates, are classified as Andisols. The main purpose of this study is to examine if the soils that are forming on volcanic materials under a dry Mediterranean climate, in Nisyros Island (Greece), meet the requirements to be classified as Andisols. Soils from seven sites were sampled and examined for their main physico-chemical properties and selective dissolution analysis. Dithionite–citrate–bicarbonate (DCB) extractable Al and Fe (Áld, Fed), acid ammonium oxalate extractable Al, Fe, and Si (Álo, Feo and Sio), and sodium pyrophosphate extractable Al and Fe (Alp, Fep) were measured. In addition, Al and Si were determined after reaction with hot 0.5 M NaOH, (AlNaOH and SiNaOH) and with Tiron-(C6H4Na2O8S2), (AlT and SiT). P-retention was also measured. The soils are characterised by coarse texture, low organic matter content, low values of cation exchange capacity (CEC), and high pH values. Values of Sio, Alo and Feo are less than 0.022%, 0.09% and 0.35% respectively, highlighting the lack of noncrystalline components. The ratio (Fed–Feo)100/Fed is quite high expressing the degree of crystallisation of free iron oxides. For all samples tested, values of the Alo + 1/2Feo index are extremely low (< 0.24%). High SiNaOH and SiT (arising 2.76% and 2.18% respectively) indicate the presence of silica in amorphous forms. P-retention values are very low (< 12.6%). The results indicated the absence of noncrystalline minerals except for amorphous silica, and do not exhibit andic or vitric soil characteristics to be classified as Andisols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号