首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Arterial hypertension developed in a horse anesthetized for arthroscopy and lavage of an inflamed right carpal joint. Anesthesia was induced with xylazine HCl, butorphanol, guaifenesin, and thiamylal Na and was maintained with halothane in oxygen. Arterial hypertension and tachycardia developed within 15 minutes after a pneumatic tourniquet was placed 8 to 10 cm proximal to the right carpus and inflated to 800 mm of Hg. The surgical procedure was expedited, halothane was discontinued and anesthesia was maintained with guaifenesin to facilitate bandaging. Heart rate decreased from 72 to 42 beats/min after the tourniquet cuff was deflated. Mean arterial pressure decreased from 260 mm of Hg to 128 mm of Hg. Differential diagnosis for a rapidly increasing arterial pressure during halothane anesthesia include inadequate plane of anesthesia, signs of pain, hypercapnia, hypoxemia, and/or hyperthermia.  相似文献   

2.
A fractured frontal bone in an 8-year-old Arabian gelding was repaired surgically. The horse exhibited no detectable neurologic deficits before surgery. Anesthesia was induced with a combination of guaifenesin and sodium thiamylal and maintained on halothane in oxygen. Postoperatively, the neurologic status of the horse deteriorated, and it died. On postmortem examination, intracranial hemorrhage accompanied by pressure-induced malacia of the adjacent brain parenchyma was discovered. The hemorrhage was not associated with the surgical site. The authors hypothesize that increased intracranial pressure occurred in the perioperative period.  相似文献   

3.
Five horses were anesthetized similarly by use of xylazine, guaifenesin, thiamylal sodium, and halothane in oxygen on 3 consecutive days, and minor surgical procedures were performed. For 1 to 10 days after the last anesthetic exposure, clinical, hematologic, and serum biochemical features were monitored, and after necropsy, histologic examination of major organ tissues was performed. Predominant hematologic changes from base-line values included leukocytosis (maximal at 27 hours, 10,500 +/- 1,750 cells/microliter), neutrophilia (maximal at 51 hours, 7,485 +/- 1,719 cells/microliter), and lymphopenia (minimal at 51 hours, 1,636 +/- 564 cells/microliter). Alterations observed in other clinicopathologic features were minor and indicative of mild renal disturbance and nonspecific cellular necrosis. Histopathologic lesions in the liver were mild.  相似文献   

4.
On 74 occasions, 54 horses and 6 foals were anesthetized with xylazine and ketamine or xylazine, guaifenesin, and ketamine, with or without butorphanol. On 64 occasions, anesthesia was prolonged for up to 70 minutes (34 +/- 15 min) by administration of 1 to 9 supplemental IV injections of xylazine and ketamine at approximately a third the initial dosage. All horses except 5 were positioned in lateral recumbency, and oxygen was insufflated. In adult horses, the time from induction of anesthesia to the first supplemental xylazine and ketamine injection was 13 +/- 4 minutes and the time between supplemental injections was 12.1 +/- 3.7 minutes. These results were consistent with predicted plasma ketamine concentration calculated from previously published pharmacokinetic data for ketamine in horses. Respiratory and heart rates and coccygeal artery pressure remained consistent for the duration of anesthesia. The average interval between the last injection of ketamine and assumption of sternal position was approximately 30 minutes, and was the same regardless of the number of supplemental injections. The time to standing was significantly longer (P less than 0.05) in horses given 2 supplemental injections, compared with those not given any or only given 1, but was not longer in horses given 3 supplemental injections. Recovery was considered unsatisfactory in 5 horses, but did not appear to be related to prolongation of anesthesia.  相似文献   

5.
OBJECTIVE: To evaluate anesthetic effects of 4 drug combinations used for total intravenous anesthesia of horses undergoing surgical removal of an abdominal testis. DESIGN: Clinical trial. ANIMALS: 32 healthy cryptorchid horses. PROCEDURE: Horses were sedated with xylazine and butorphanol and were randomly assigned to 1 of 4 groups: induction of anesthesia with ketamine and diazepam and maintenance with bolus administration of ketamine and xylazine (KD/KX); induction and maintenance of anesthesia with bolus administration of tiletamine-zolazepam, ketamine, and detomidine (TKD); induction and maintenance of anesthesia with continuous infusion of xylazine, guaifenesin, and ketamine; and induction and maintenance of anesthesia with continuous infusion of guaifenesin and thiopental. Horses that moved 3 consecutive times in response to surgical stimulation or for which surgery time was > 60 minutes were administered an inhalant anesthetic, and data from these horses were excluded from analysis. RESULTS: Quality of induction was not significantly different among groups. Muscle relaxation and analgesia scores were lowest for horses given KD/KX, but significant differences among groups were not detected. Horses anesthetized with TKD had a significantly greater number of attempts to stand, compared with the other groups, and mean quality of recovery from anesthesia for horses in the TKD group was significantly worse than for the other groups. Anesthesia, surgery, and recovery times were not significantly different among groups. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that all 4 drug combinations can be used to induce short-term anesthesia for abdominal cryptorchidectomy in horses. However, horses receiving TKD had a poorer recovery from anesthesia, often requiring assistance to stand.  相似文献   

6.
Eight ponies were anesthetized with a solution containing 50 mg of guaifenesin, 1 mg of ketamine, and 0.5 mg of xylazine X ml-1 of 5% dextrose in water. Anesthesia was induced by IV injection (1.1 ml X kg-1), followed by continuous IV infusion at 2.75 ml X kg-1 X hr-1. Heart rate, rate-pressure product, mean pulmonary artery pressure, and standard bicarbonate were not significantly changed throughout the study. Systolic, diastolic, and mean arterial pressures and left ventricular stroke work index were significantly decreased at 5 and 15 minutes after a bolus of the anesthetic solution was injected. Systolic blood pressure returned to within the base-line range at 30 minutes, but diastolic and mean arterial pressures were significantly decreased throughout the study. Cardiac index and arterial pH were decreased at 5 minutes only. Systemic vascular resistance was significantly decreased 60 minutes after bolus injection was given. Hypoventilation, as indicated by increased PaCO2, occurred 5 minutes after bolus injection was given.  相似文献   

7.
Llama anesthetic programs   总被引:1,自引:0,他引:1  
Llamas are anesthetized conveniently with guaifenesin thiamylal mixes, or, for short periods of time, with xylazine/ketamine. Small individuals must be accurately weighed. Estimating weight without experience is dangerous in this species. The greatest levels of safety and control, especially for critical patients, is afforded by inhalation anesthesia techniques using small animal equipment. All neonates and juveniles can be masked readily but in adults intravenous induction is most satisfactory. Intubation is aided by a long blade laryngoscope. Blood pressure monitoring is best accomplished with an arterial line in the ear artery. However, doppler equipment on the tail or distal leg usually works well.  相似文献   

8.
The purpose of this study was to determine a satisfactory combination of guaifenesin, ketamine, and xylazine (GKX) that would produce safe and satisfactory total intravenous anesthesia in donkeys for use under field conditions. Donkeys require higher amounts of ketamine in GKX to achieve satisfactory anesthetic levels without producing excessive depression with guaifenesin. Five adult standard donkeys (average weight, 264 kg) were anesthetized with 1.5 mg/mL ketamine, 0.5 mg/mL xylazine, 50 mg/mL guaifenesin (GKX-1); 2.0 mg/mL ketamine, 0.5 mg/mL xylazine, 50 mg/mL guaifenesin (GKX-2); or 2.0 mg/mL ketamine, 0.75 mg/mL xylazine, 50 mg/mL guaifenesin (GKX-3). For the first trial, two donkeys received GKX-1, two received GKX-2, and one received GKX-3. One donkey received GKX-1, one received GKX-2, and three received GKX-3 for the second trial. In the final trial, two received GKX-1, two received GKX-2, and one received GKX-3. Donkeys were sedated with xylazine (1.1 mg/kg body weight) intravenously, and anesthesia was induced using intravenous GKX-1, GKX-2, or GKX-3. Anesthesia was maintained for 45 minutes; temperature, respiration rate, heart rate, hemoglobin saturation, partial pressure of arterial oxygen (PaO2), partial pressure of carbon dioxide in arterial gas (PaCO2), and pH were measured. There was no significant difference between combinations for temperature, respiration rate, heart rate, hemoglobin saturation, PaCO2, or pH. At 30 and 45 minutes, GKX-3 produced significantly (P < .05) lower PaO2 values than GKX-1 and GKX-2. GKX-3 is not recommended for field use in donkeys because of respiratory depression (PaO2= 48.7 [±5.84] and 46.0 ± 3.11 mmHg at 30 and 45 minutes, respectively), whereas more voluntary movement was apparent with GKX-1. GKX-2 produced satisfactory anesthesia without significant respiratory depression in donkeys and should produce safe and effective anesthesia in donkeys under field conditions.  相似文献   

9.
The effect of xylazine on the arrhythmogenic dose of epinephrine (ADE) was studied in 9 horses. Anesthesia was induced by administration of guaifenesin (50 mg/kg of body weight, IV) followed by thiamylal (4 to 6 mg/kg, IV) and was maintained at 1 minimal alveolar concentration (MAC) of halothane (0.89%). Base apex ECG and facial artery pressure were recorded. Epinephrine was infused in a sequence of arithmetically spaced increasing rates (initial rate 0.25 micrograms/kg/min) for a maximum of 10 minutes. The ADE was defined as the lowest epinephrine infusion rate to the nearest 0.25 micrograms/kg/min at which at least 4 premature ventricular depolarizations occurred in a 15-second period. Xylazine (1.1 mg/kg, IV) was administered after the control ADE was determined. Xylazine did not significantly alter the ADE (control, 1.12 +/- 0.38 micrograms/kg/min; xylazine, 1.21 +/- 0.46 micrograms/kg/min). Blood pressure increased transiently for 8 minutes after xylazine administration. Baseline systolic and diastolic arterial pressures and heart rate were not significantly different from control baseline pressures and heart rate 15 minutes after xylazine administration. Blood pressure and heart rate increased significantly during control and xylazine ADE determinations. Significant differences in pH, PaO2, PaCO2, or base excess were not observed between baseline and ADE in the control or xylazine groups. One horse developed atrial fibrillation, and 2 horses developed ventricular fibrillation during ADE determinations.  相似文献   

10.
Dobutamine was infused (1.7 micrograms/kg/minute) into 200 anesthetized horses as treatment for hypotension. The horses had been premedicated with xylazine, and anesthesia was induced with guaifenesin and ketamine and maintained with halothane. One hundred fifty-seven horses (79%) responded with an average increase in systolic blood pressure of at least 10 mm Hg within 10 minutes. A cardiac arrhythmia developed in 56 horses (28%) after dobutamine administration: 34 with sinus bradycardia, 18 with atrioventricular block, 2 with premature atrial contractions, and 2 with atrioventricular dissociation. Dobutamine intravenous infusion was effective treatment for hypotension in horses anesthetized with halothane.  相似文献   

11.
OBJECTIVE: To evaluate effects of infusion of guaifenesin, ketamine, and medetomidine in combination with inhalation of sevoflurane versus inhalation of sevoflurane alone for anesthesia of horses. DESIGN: Randomized clinical trial. ANIMALS: 40 horses. PROCEDURE: Horses were premedicated with xylazine and anesthetized with diazepam and ketamine. Anesthesia was maintained by infusion of guaifenesin, ketamine, and medetomidine and inhalation of sevoflurane (20 horses) or by inhalation of sevoflurane (20 horses). A surgical plane of anesthesia was maintained by controlling the inhaled concentration of sevoflurane. Sodium pentothal was administered as necessary to prevent movement in response to surgical stimulation. Hypotension was treated with dobutamine; hypoxemia and hypercarbia were treated with intermittent positive-pressure ventilation. The quality of anesthetic induction, maintenance, and recovery and the quality of the transition to inhalation anesthesia were scored. RESULTS: The delivered concentration of sevoflurane (ie, the vaporizer dial setting) was significantly lower and the quality of transition to inhalation anesthesia and of anesthetic maintenance were significantly better in horses that received the guaifenesin-ketamine-medetomidine infusion than in horses that did not. Five horses, all of which received sevoflurane alone, required administration of pentothal. Recovery time and quality of recovery were not significantly different between groups, but horses that received the guaifenesin-ketamine-medetomidine infusion required fewer attempts to stand. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in horses, the combination of a guaifenesin-ketamine-medetomidine infusion and inhalation of sevoflurane resulted in better transition and maintenance phases while improving cardiovascular function and reducing the number of attempts needed to stand after the completion of anesthesia, compared with inhalation of sevoflurane.  相似文献   

12.
The effect of general anaesthesia and arthroscopic surgery on blood glucose and lactate, plasma non-esterified fatty acids, insulin, beta-endorphin and cortisol was investigated in seven horses. Animals were premedicated with xylazine and anaesthesia was induced with guaifenesin and sodium thiamylal and maintained with halothane vaporised in oxygen. Blood samples were collected in the pre-, intra- and post operative period. Induction of anaesthesia was associated with a transient hyperglycaemia and a significant rise in plasma insulin levels. Plasma insulin values fell during surgery but showed a significant increase post operatively. Surgery stimulated a small but significant rise in plasma beta-endorphin and cortisol values but these had returned to baseline values in the early post operative period. No changes in blood lactate were recorded.  相似文献   

13.
OBJECTIVE: To describe management of anesthesia for transvenous electrical cardioversion (TVEC) in horses and report perianesthetic complications. DESIGN: Retrospective case series. ANIMALS: 62 horses with atrial fibrillation and without underlying cardiac disease and 60 horses without atrial fibrillation. PROCEDURES: Medical records of horses with atrial fibrillation anesthetized for TVEC were reviewed, as were records of horses without atrial fibrillation anesthetized for magnetic resonance imaging (MRI). The TVEC group horses were compared with MRI group horses for incidence of intraoperative bradycardia and use of inotropic drugs. Data obtained included patient signalment, weight, duration of anesthesia, heart rate and arterial blood pressure during anesthesia, anesthetic drugs administered, mode of ventilation, perioperative complications, and quality of recovery. RESULTS: The TVEC group horses were > 1 year of age and were predominantly Standardbreds. The TVEC group horses underwent a total of 76 anesthetic episodes. For 40 (52.6%) anesthetic episodes, horses received xylazine only for premedication, and for 26 (34.2%) anesthetic episodes, horses received xylazine and butorphanol. Induction of anesthesia consisted of ketamine administration in various combinations with diazepam and guaifenesin for 74 (97.4%) anesthetic episodes and ketamine alone for 2 (2.6%). Bradycardia in horses was encountered during 15 of 76 (19.7%) anesthetic episodes. Minor signs of possible postanesthetic myopathy occurred following 6 (7.9%) anesthetic episodes. No significant difference was found between TVEC and MRI group horses regarding incidence of bradycardia and inotropic drug administration. CONCLUSIONS AND CLINICAL RELEVANCE: Short-duration anesthesia for TVEC of atrial fibrillation in horses without underlying cardiac disease was a safe procedure.  相似文献   

14.
Ventricular arryhythmias including ventricular fibrillation were produced with epinephrine in dogs induced to an anesthetic state with thiamylal and maintained with halothane. In dogs given (premedicated) xylazine 20 minutes prior to anesthesia, ventricular arrhythmias, including ventricular fibrillation, were induced with much smaller doses of epinephrine than in nonpremedicated dogs. Dogs premedicated with acetylpromazine 20 minutes prior to anesthesia with thiamylal and halothane displayed protection from epinephrine-induced arrhythmias. Caution is advised from using xylazine in the presence of halothane if epinephrine is to be administered.  相似文献   

15.
Swine were anesthetized with a 5% solution of dextrose in water containing 50 mg of guaifenesin, 1 mg of ketamine, and 1 mg of xylazine X ml-1 (G-K-X) infused IV at a rate of 2.2 ml X kg-1 X hr-1. Mean arterial blood pressure and systemic vascular resistance were significantly increased from base-line values throughout the 2 hours of G-K-X infusion. Cardiac index decreased significantly initially, but returned to near base line at 30 minutes. Fifteen minutes after G-K-X infusion was discontinued, cardiac index was not significantly different from base line. Heart rate decreased significantly from base line 90 minutes after infusion of G-K-X began and remained so throughout the study. However, the mean heart rate remained within the acceptable range for swine. Rate-pressure product was not significantly altered. The PaCO2 decreased, and arterial pH increased significantly from base line, supporting our clinical impression that pigs breathe well when anesthetized with G-K-X. We conclude that G-K-X is a satisfactory combination of drugs for induction and maintenance of surgical anesthesia in healthy swine for a period of 2 hours.  相似文献   

16.
Five horses were anaesthetised twice with thiopentone sodium, guaifenesin and halothane. The second anaesthesia was 16 days after the first and two days following oral administration of trichlorfon. Heart rate, carotid arterial, pulmonary arterial and right atrial pressures, cardiac output and blood temperature were measured every 15 minutes for 120 minutes. Heart rate, carotid arterial pressure and cardiac output were similar on both occasions. Pulmonary arterial and right atrial pressures were highest during anaesthesia after treatment with trichlorfon when compared with values obtained before treatment. Pulmonary vascular resistance was significantly decreased at four measurement times during anaesthesia after treatment with trichlorfon. All cardiovascular measurements were within ranges accepted as normal for halothane anaesthesia in horses. In a second experiment, four ponies were anaesthetised with xylazine and ketamine on two occasions one week apart. Two ponies received trichlorfon two days before the second anaesthesia. Heart rate, arterial pressure and respiratory rate recorded during anaesthesia were not different in ponies after organophosphate treatment. The time to standing after the second anaesthesia was significantly increased in all ponies.  相似文献   

17.
Anesthesia induced by use of a combination of xylazine, ketamine, and halothane, under conditions of spontaneous and mechanically controlled ventilation, was evaluated in 5 llamas positioned in dorsal recumbency. Using chronically implanted catheters, systemic arterial blood pressure, pulmonary arterial pressure, right atrial pressure, heart rate and rhythm, cardiac output, blood pH and gas tensions, body temperature, and respiratory rate were measured before anesthesia induction (baseline), throughout the anesthetic period, and for 1 hour into the recovery period. During anesthesia, llamas undergoing spontaneous ventilation developed hypercapnia and respiratory acidosis. Cardiovascular function was decreased during both types of ventilation. The combination of xylazine, ketamine, and halothane in various doses and 2 ventilation procedures (spontaneous and controlled) provided a reliable method for general anesthesia in llamas, but marked cardiovascular depression developed during anesthesia maintenance with halothane. Spontaneous ventilation resulted in potentially clinically important respiratory acidosis.  相似文献   

18.
Nine horses were premediated with acepromazine, and anesthesia was induced with guaifenesin and thiamylal. Anesthesia was maintained in four horses with halothane in oxygen, and in five horses with halothane in oxygen plus a constant dose infusion of detomidine. Both maintenance regimens produced a MAC equivalent of 1.4 at the ambient barometric pressure. Hemodynamic and respiratory measurements were made after the horses were anesthetized, during surgical manipulations involving skin or tissues other than nerves, during manipulation and transection of digital nerves, and after surgery while the limbs were being bandaged. Heart rate was significantly higher in horses anesthetized with halothane only than in horses that also received detomidine; there were no other differences in hemodynamic function or recovery characteristics. Respiratory rate was significantly higher than baseline during soft tissue and nerve manipulations; arterial blood pressure was significantly higher after surgery began and highest during neurectomy; cardiac output and cardiac index were significantly decreased during surgery; systemic vascular resistance was significantly increased during neurectomy and bandaging and highest during neurectomy. The data suggest that the increase in blood pressure often associated with surgical stimulation is caused by increased vascular resistance and may be accompanied by a decrease in cardiac output.  相似文献   

19.
OBJECTIVE: To compare the analgesic and cardiopulmonary effects of medetomidine and xylazine when used for premedication of horses undergoing general anesthesia. DESIGN: Randomized clinical trial. ANIMALS: 40 horses. PROCEDURE: Twenty horses were premedicated with medetomidine (10 microg/kg [4.5 microg/lb], i.m.) and the other 20 were premedicated with xylazine (2 mg/kg [0.9 mg/kg], i.m.). Horses were then anesthetized with a combination of guaifenesin and ketamine; anesthesia was maintained with halothane. Additional doses of medetomidine or xylazine were given if horses were not sufficiently sedated at the time of anesthetic induction. After induction of anesthesia, sodium pentothal was administered as necessary to prevent limb movements. Hypotension was treated with dobutamine; hypoventilation and hypoxemia were treated with intermittent positive-pressure ventilation. The quality of anesthetic induction, maintenance, and recovery and the quality of the transition to inhalation anesthesia were scored. RESULTS: Scores for the quality of the transition to inhalation anesthesia were significantly higher for horses premedicated with medetomidine than for horses premedicated with xylazine. However, other scores, recovery times, and numbers of attempts needed to achieve sternal recumbency and to stand were not significantly different between groups. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that medetomidine is suitable for premedication of horses undergoing general anesthesia. Analgesic and cardiopulmonary effects of medetomidine were similar to those of xylazine, except that the transition to inhalation anesthesia was smoother when horses were premedicated with medetomidine, rather than xylazine.  相似文献   

20.
The effects of xylazine given to cats before anesthetization was induced with pentobarbital were determined. Cardiac hemodynamic variables and regional blood flow rates in the heart and other organs were measured, using radiolabeled microspheres. Two groups, each of 10 cats, were included in the study: one group (group 1) was anesthetized with pentobarbital given intraperitoneally and subsequently given xylazine; the other group (group 2) was first given 1 mg of xylazine/kg, IM, and then anesthetized with pentobarbital given IV. Anesthesia was maintained in both groups with nitrous oxide. The preanesthetic administration of xylazine decreased the amount of pentobarbital used for surgical anesthesia by approximately 50%. It also resulted in decreased heart rate, cardiac contractility, and cardiac output and increased left ventricular end-diastolic pressure, compared with those values in cats given pentobarbital (group 1). After the latter cats (anesthetized with pentobarbital) were given xylazine, heart rate, cardiac contractility, and cardiac output decreased and left ventricular end-diastolic pressure increased to values similar to those found in group 2 (given xylazine before anesthetization). Myocardial tissue blood flow rates in the left and right ventricles were lower in the cats of group 2. In group 1 cats, myocardial blood flow rates decreased when xylazine was subsequently added. Blood flow rates in the kidneys and gastrointestinal tract were generally decreased by xylazine. Xylazine profoundly changed cardiac hemodynamic function and perfusion in the heart, as well as several other organ systems, because of marked cardiodepression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号