首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zucchini yellow mosaic virus (ZYMV) is the most prevalent virus in cucurbits in Syria. Two Syrian ZYMV isolates, SYZY-1 and SYZY-3, collected from a courgette field in 2006 were characterized using molecular and biological means for the first time. These isolates showed biological diversity with regard to their pathogenicity and symptoms. SYZY-1 was more aggressive in cucurbits, but could not induce any infection in Fabaceae. On the contrary, SYZY-3 could not infect cucumber and melon plants, induced milder symptoms in courgette and watermelon but induced local and occasional systemic infection in Fabaceae tested. Nonetheless, according to their molecular characteristics, SYZY-1 and SYZY-3 were closely related. The SYZY-1 CP nucleotide and amino acid sequences had similarity of 99.5% and 100% with those of SYZY-3, respectively. The high similarity of the CP nucleotide sequences of SYZY-1 and SYZY-3 with that of a ZYMV isolate from Germany suggests a common origin. Adaptation to different hosts might have caused the variable biological properties of these Syrian ZYMV isolates.  相似文献   

2.
ABSTRACT Mixed infections of cucurbits by Cucumber mosaic virus (CMV) and potyviruses exhibit a synergistic interaction. Zucchini squash and melon plants coinfected by the potyvirus Zucchini yellow mosaic virus (ZYMV) and either Fny-CMV (subgroup IA) or LS-CMV (subgroup II) displayed strong synergistic pathological responses, eventually progressing to vascular wilt and plant death. Accumulation of Fny- or LS-CMV RNAs in a mixed infection with ZYMV in zucchini squash was slightly higher than infection with CMV strains alone. There was an increase in CMV (+) strand RNA levels, but no increase in CMV (-) RNA3 levels during mixed infection with ZYMV. Moreover, only the level of capsid protein from LS-CMV increased in mixed infection. ZYMV accumulated to similar levels in singly and mixed infected zucchini squash and melon plants. Coinfection of squash with the potyvirus Watermelon mosaic virus (WMV) and CMV strains increased both the Fny-CMV RNA levels and the LS-CMV RNA levels. However, CMV (-) strand RNA3 levels were increased little or not at all for CMV on coinfection with WMV. Infection of CMV strains (LS and Fny) containing satellite RNAs (WL47-sat RNA and B5*-sat RNA) reduced the accumulation of the helper virus RNA, except when B5*-sat RNA was mixed with LS- CMV. However, mixed infection containing ZYMV and the CMV strains with satellites reversed the suppression effect of satellite RNAs on helper virus accumulation and increased satellite RNA accumulation. The synergistic interaction between CMV and potyviruses in cucurbits exhibited different features from that documented in tobacco, indicating there are differences in the mechanisms of potyvirus synergistic phenomena.  相似文献   

3.
携带eGFP的ZYMV侵染性克隆的构建及其侵染性   总被引:1,自引:1,他引:0  
 小西葫芦黄花叶病毒(zucchini yellow mosaic virus,ZYMV)是瓜类作物主要病毒之一,严重威胁瓜类产业的可持续发展。本研究在ZYMV 甜瓜分离物CH-87侵染性克隆基础上,利用同源重组策略在NIb和CP编码序列之间插入了eGFP,命名为pXT1-ZYMV-eGFP。将pXT1-ZYMV-eGFP转化农杆菌并接种西瓜和甜瓜,结果发现pXT1-ZYMV-eGFP可以系统侵染西瓜和甜瓜,引起典型的花叶症状,在紫外灯下发病植株呈现绿色荧光。经摩擦接种证实,该克隆接种后所产生的病毒子代可以稳定的传播繁殖。研究表明携带eGFP的ZYMV侵染性克隆成功构建,可用于该病毒致病性及病毒与寄主互作的相关研究。  相似文献   

4.
A study was conducted to better understand the population structure of Zucchini yellow mosaic virus (ZYMV), a severe virus affecting cucurbit crops worldwide, in Tunisia and to estimate whether the use of resistant cultivars may provide durable control. Analysis of the polymerase and coat protein (NIb‐CP) partial sequences of 83 isolates collected in the three main cucurbit‐growing areas in Tunisia showed that ZYMV grouped into two distinct clusters within ZYMV molecular group A. An important variability was observed in the MREK motif of the P3 protein, a motif associated with tolerance breaking in ZYMV‐tolerant zucchini squash cultivars. Interestingly, significant differences were found in the distribution of the MREK variants in the two clusters defined by the partial NIb‐CP sequences, MREK and MKEK sequences being more common in cluster 1 and cluster 2, respectively. When combining NIb‐CP and P3 sequence information, ZYMV molecular variability was shown to be significantly higher in the Cap Bon region than in the Bizerte area. An important biological variability was observed in a subset of 23 isolates regarding symptomatology in susceptible or resistant cucurbits. Some isolates overcame ZYMV tolerance or resistance in zucchini squash and melon, but not in cucumber. Three serotypes were differentiated using a set of 13 monoclonal antibodies (MAbs). Seven parameters characterizing the 23 isolates, including molecular, serological and biological properties, were used for a multiple component analysis (MCA). This analysis revealed that symptom intensity of a given isolate was similar in different susceptible cucurbit hosts, suggesting similar degrees of aggressiveness in different hosts.  相似文献   

5.
6.
Gal-On A 《Phytopathology》2000,90(5):467-473
Sequence comparison had previously shown three amino acid changes in conserved motifs in the 455-amino acid sequence of the helper component-protease (HC-Pro) between a severe field strain of Zucchini yellow mosaic virus (ZYMV-NAT) and a mild field strain of ZYMV (ZYMV-WK). In this study, exchange of fragments and site-directed mutagenesis within the HC-Pro gene in an infectious clone of ZYMV enabled the effects of the mutations on symptom expression to be mapped. The substitution of Ile for Arg at position 180 in the conserved motif Phe-Arg-Asn-Lys (FRNK) of potyviruses was found to affect symptom expression. Infection of cucurbits with the engineered ZYMV (ZYMV-AG) that contained this mutation caused a dramatic symptom change from severe to mild in squash and to a symptom-free appearance in cucumber, melon, and watermelon. The Ile to Arg mutation was found to be stable, and no revertant virus was found after several passages through plants after long incubation periods. The AG strain was detected 4 days postinoculation and accumulated in cucurbits to a level and with kinetics similar to that of the wild-type ZYMV-AT strain. Cucurbit plants infected with the AG strain were protected against infection by the severe strain.  相似文献   

7.
Zucchini yellow mosaic virus   总被引:24,自引:0,他引:24  
Zucchini yellow mosaic potyvirus (ZYMV), first isolated in Italy in 1973, described in 1981, and then identified in all continents within a decade, is one of the most economically important viruses of cucurbit crops. It is efficiently aphid-transmitted in a nonpersistent manner and it is also seed-borne in zucchini squash, which could have contributed to its rapid spread worldwide. Biological variability has been observed among ZYMV isolates, concerning host range, symptomatology and aphid transmissibility. More recent studies also revealed a serological and molecular variability. The survival of ZYMV in areas where cucurbits are not grown throughout the year remains to be elucidated, because very few natural over-wintering hosts have been identified so far. Partial control of ZYMV can be achieved by limiting transmission of the virus to the crops by aphids, using adapted cultural practices. Cross-protection with a mild strain has been shown to be effective against most ZYMV isolates. Resistance genes found in cucurbit germplasms are currently being introduced into cultivars with good agronomical characteristics. Pathogen-derived resistance strategies using the expression of ZYMV genes in transgenic plants have also been developed and appear promising. Nevertheless, the high biological variability of ZYMV justifies a careful evaluation of the deployment of genetic control strategies in order to increase their durability.  相似文献   

8.
甘肃省南瓜及西葫芦小西葫芦黄花叶病毒病鉴定   总被引:1,自引:0,他引:1  
文朝慧  刘雅莉 《植物保护》2010,36(4):120-122
利用双抗夹心酶联免疫吸附测定(DAS-ELISA)的方法对甘肃出入境南瓜、西葫芦种子及采自河西地区显症病株叶片进行检测,在种子及病叶组织中均检测到ZYMV病毒,其中南瓜种子带毒批次占12.5%,西葫芦种子带毒批次占11.8%。根据已报道的小西葫芦黄花叶病毒(Zucchini yellow mosaic virus)基因组核苷酸序列,设计引物扩增其外壳蛋白(CP)基因,以ELISA阳性种子或病叶组织总RNA为模板,进行RT-PCR扩增,对预期大小的扩增产物进行测序,结果表明扩增获得的核苷酸序列与世界各地的ZYMV分离物CP基因具有高度一致性,综合ELISA检测和RT-PCR的结果,确定南瓜、西葫芦种子可携带ZYMV,且ZYMV是侵染甘肃瓜类作物的重要病毒种类。  相似文献   

9.
10.
A potyvirus (designated as no. 656) causing mosaic or vein-banding symptoms on melons was isolated and characterized. The virus was mechanically transmitted to 14 herbaceous plant species, and induced mosaic symptoms in most cucurbitaceous plants. Aphis gossypii transmitted the virus non-persistently, and flexuous filamentous virus particles c. 755 nm in length were consistently observed in extracts of the infected pumpkin leaf tissues. Pinwheel and tubular inclusions were observed in the cytoplasm of infected zucchini leaf tissues. The virus was purified from infected pumpkin leaves by isopycnic centrifugation (Cs2SO4). The molecular weights of purified capsid and cylindrical inclusion proteins as estimated by SDS-PAGE were 32·5 and 73 KDa, respectively. In SDS-immunodiffusion tests, antiserum to virus particles from isolate 656 was serologically unrelated to ZYMV, WMV-2, PRV-W and a type W variant of PRV, but antiserum to its cylindrical inclusion protein did produce spur precipitin bands between homologous and WMV-2 antigen wells. However, neither WMV-2 virus particle nor cylindrical inclusion antisera reacted with this virus. Furthermore, this virus was not serologically related to BCMV, BYMV, CYVV, SMV, WMV-M or ZYFV. Based on test results and symptomatology, this virus appears to be a new potyvirus, for which the name melon vein-banding mosaic virus (MVbMV) is proposed.  相似文献   

11.
12.
小西葫芦黄花叶病毒山东南瓜分离物的分子特性   总被引:2,自引:0,他引:2  
 Zucchini yellow mosaic virus (ZYMV) was detected by RT-PCR from pumpkin (Cucurbita moschata) plant showing yellowing and mosaic symptom from Liaocheng, Shandong Province. The 3'-termial 1 684 bp genomic sequence covered 633 bp of NIb encoding sequence, 840 bp of cp gene and 211 bp of 3'-untranslated region of the isolate ZYMV-Liaocheng was determined. The cp gene of ZYMV-Liaocheng shared identities of 81.4%-98.8% and 89.4%-99.5% at nucleotide and amino acid levels, respectively, with other ZYMV sequences available in the GenBank. Phylogenetic analysis indicated that ZYMV could be clustered to 6 genotypes. ZYMV-Liaocheng belonged to genotypeⅠ, which contained isolates from Asia, Europe and America. Genotypes Ⅲ and Ⅴ were unique and contained only isolates from East Asia. The isolates from East Asia had the highest variability.  相似文献   

13.
Characterization and occurrence of Zucchini Yellow Mosaic Virus in Sudan   总被引:1,自引:0,他引:1  
Zucchini yellow mosaic potyvirus (ZYMV) was isolated in 1993 from a squash plant ( Cucurbita pepo cv. Eskandrani) showing severe leaf and fruit distortions, collected in the Gezira region (Sudan). This isolate (ZYMV-Su) was found to be very closely serologically related if not identical to the type strain from Italy. The host range was mostly limited to Cucurbitaceae but systemic infection was found to occur on sesame ( Sesamum indicum ), an important cultivated crop in Sudan. ZYMV-Su induced mosaic symptoms on the resistant melon accession PI 414723, indicating that it belongs to pathotype 2, but did not cause wilting of melon cv. Doublon. ZYMV-Su was efficiently transmitted by Myzus persicae and Aphis gossypii in a non-persistent manner. Surveys conducted from 1993 to 1995 revealed that ZYMV occurred in the major cucurbit growing areas in Sudan, in a diversity of crops and agroecosystems.  相似文献   

14.
Zucchini yellow mosaic virus (ZYMV) has emerged as an important pathogen of cucurbits within the last few years in Hungary. The Hungarian isolates show a high biological variability, have specific nucleotide and amino acid sequences in the N-terminal region of coat protein and form a distinct branch in the phylogenetic tree. The virus is spread very efficiently in the field by several aphid species in a non-persistent manner. It can be transmitted by seed in holl-less seeded oil pumpkin (Cucurbita pepo (L) var Styriaca), although at a very low rate. Three isolates from seed transmission assay experiments were chosen and their nucleotide sequences of coat proteins have been compared with the available CP sequences of ZYMV. According to the sequence analysis, the Hungarian isolates belong to the Central European branch in the phylogenetic tree and, together with the ZYMV isolates from Austria and Slovenia, share specific amino acids at positions 16, 17, 27 and 37 which are characteristic only to these isolates. The phylogenetic tree suggests the common origin of distantly distributed isolates which can be attributed to widespread seed transmission.  相似文献   

15.
Zucchini yellow mosaic virus (ZYMV) is one of the most economically important viruses of cucurbit crops, causing severe mosaic, necrosis, and malformation. Three ZYMV isolates were obtained from pumpkins at Andong (ZYMV-PA), Euiryung (ZYMV-PE), and Suwon (ZYMV-PS), and their biological variability was determined on different hosts, including cucurbit crops as well as other indicator plants. ZYMV-PA caused the most severe symptoms, including severe mosaic, size reduction, and deformation, in oriental melon (Cucumis melo) and cucumber (Cucumis sativus) leaves. In contrast, ZYMV-PE and ZYMV-PS caused mild mosaic symptoms on oriental melon and cucumber. The nucleotide sequences of the genomic RNAs were determined and compared to the sequences of other potyviruses, including ZYMV isolates Reunion Island and TW-TN3. Each ZYMV Isolate had a genome of 9593 nucleotides, excluding the poly(A) tail, and contained 139 and 214 nucleotides in the 5- and 3-untranslated regions, respectively. Each had one large open reading frame encoding a protein of about 351kDa. The nucleotide sequences of ZYMV-PA, ZYMV-PE, and ZYMV-PS were more than 96.0% and the deduced amino acid sequences were more than 98.1% identical. When compared with other ZYMV isolates in a phylogenetic analysis, these three viruses formed a distinct virus clade and were more distantly related to other potyviruses (43.5%–62.8% identity).The nucleotide sequence data reported are available in the GenBank database under the accession numbers AY278998 to AY279000 for ZYMV-PA, ZYMV-PE and ZYMV-PS  相似文献   

16.
合肥地区发生的西瓜花叶病的病原鉴定   总被引:1,自引:1,他引:0  
 从合肥市郊区的西瓜病叶上分离出一病毒分离物,该分离物的热钝化温度为60~65℃,稀释终点为10-4~10-5,寄主体外存活期为20~23 d,电镜观察病毒粒子约750 nm×13 nm。参考已发表的小西葫芦黄化花叶病毒(Zucchini yellow mosaic virus,ZYMV) CP基因序列设计引物,RT-PCR扩增得到CP基因片段。将该CP片段克隆到pGEM-3Zf (+)中,测序结果表明,该CP基因全长840 nt,共编码279个氨基酸,与国内报道的ZYMV CP基因的核苷酸序列同源性为83.0%~97.3%,氨基酸序列的同源性为91.8%~99.8%,证明该分离物为ZYMV。  相似文献   

17.
ABSTRACT Zucchini yellow mosaic virus (ZYMV, Potyvirus) is a very damaging cucurbit virus worldwide. Interspecific crosses with resistant Cucurbita moschata have led to the release of "resistant" zucchini squash (C. pepo) F(1) hybrids. However, although the resistance is almost complete in C. moschata, the commercial C. pepo hybrids are only tolerant. ZYMV evolution toward increased aggressiveness on tolerant hybrids was observed in the field and was obtained experimentally. Sequence comparisons and recombination experiments revealed that a point mutation in the P3 protein of ZYMV was enough to induce tolerance breaking. Competition experiments were performed between quasi-isogenic wild-type, and aggressive variants of ZYMV distinguished by monoclonal antibodies. The aggressive mutants were more fit than wild-type strains in mixed infections of tolerant zucchini, but they presented a drastic fitness loss in mixed infections of susceptible zucchini or melon. Thus, the ability to induce severe symptoms in tolerant zucchini is related to a genetic load in susceptible zucchini, but also on other susceptible hosts. This represents the first quantitative study of the fitness cost associated with tolerance breaking for a plant virus. Thus, although easily broken, the tolerance might prove durable in some conditions if the aggressive variants are counterselected in susceptible crops.  相似文献   

18.
两种葫芦科病毒的分子检测和致病性研究   总被引:16,自引:2,他引:14  
 小西葫芦黄化花叶病毒(ZYMV)和黄瓜花叶病毒(CMV)是浙江及其周边地区侵染葫芦科植物最主要的病毒种类。本文通过RT-PCR和基因克隆,获得了侵染南瓜的CMV杭州分离物(HZ01S10)的3'端序列,通过CP氨基酸序列同源性分析,确定其属于CMV亚组I;分别以32P标记的ZYMV和CMV基因组cDNA作为探针,用RNA点杂交方法定点检测了浙江地区自然感病的葫芦科作物中以上2种病毒的发生情况。ZYMV和CMV在葫芦科作物上的发生表现出显著的季节性差异:夏季CMV发生普遍,只有部分南瓜和甜瓜感染ZYMV;ZYMV则主要发生在秋季,同一时期未检测到CMV。此外,幼苗期接种试验显示:以上2种病毒对西葫芦(早青一代)、丝瓜(中长)、黄瓜(津绿4号)的致病性存在明显差异,供试西葫芦对ZYMV比较敏感,供试丝瓜对CMV更敏感,而供试黄瓜品种对以上2种病毒均表现抗病。复合侵染在丝瓜和西葫芦上加重病害发生程度。  相似文献   

19.
黄瓜绿斑驳花叶病毒(Cucumber green mottle mosaic virus,CGMMV)主要危害葫芦科作物,已被世界上许多国家和地区列为检疫性有害生物。CGMMV目前在我国23个省、市、区已有报道发生和危害,严重影响葫芦科作物的生产;近年来该病害在国内外呈现迅猛扩展的趋势并对生产造成危害。本文综述了防治该病害的种子处理、化学及生物防治、嫁接以及转基因等分子生物学方法;分析了CGMMV与寄主黄瓜互作研究的最新进展,对小分子RNA参与调控寄主对CGMMV病毒的防控策略提出了展望,并概述了下一代测序技术、基因编辑技术在植物新病毒的检测、鉴定以及培育抗病新品种等方面的应用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号