首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Cry1A.105 is a Cry protein expressed in some transgenic Bacillus thuringiensis (Bt) maize products. In this study, performance of five populations of fall armyworm, Spodoptera frugiperda (J.E. Smith), were evaluated on four non-Bt and eight commercial and experimental Bt maize hybrids/lines (hereafter referred as maize products). The five insect populations included one Cry1A.105-susceptible strain, two Cry1A.105-resistant strains, and two F1 heterozygous genotypes. The eight Bt maize hybrids/lines consisted of five single-gene Bt maize products containing Cry1A.105, Cry2Ab2, Cry1F, or Cry1Ab protein, and three pyramided Bt maize products expressing Cry1A.105/Cry2Ab2, Cry1A.105/Cry2Ab2/Cry1F, or Cry1Ab/Vip3A for targeting aboveground lepidopteran maize pests. In the study, neonates of each population were tested on leaf tissues in the laboratory and whole plants in the greenhouse. Cry1A.105 and Cry1F maize killed 92.2–100% susceptible larvae in both test methods, while resistant larvae survived well on these two maize products. Performance of the two F1 populations on Cry1A.105 and Cry1F maize varied between the two test methods. In leaf tissue bioassay, Cry1Ab maize was marginally effective against the susceptible population. In contrast, few live larvae and little leaf injury from any of the five populations were observed on Cry2Ab2 and the three pyramided Bt maize products. The results of this study showed evidence of cross resistance of the Cry1A.105-resistant S. frugiperda to Cry1F and Cry1Ab maize, but not to the Bt maize products containing Cry2Ab2 or Vip3A. Data generated from this study will be useful in developing resistance management strategies for the sustainable use of Bt maize technology.  相似文献   

2.
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target of transgenic corn, Zea mays L., expressing Bacillus thuringiensis (Bt) proteins in both North and South America. A highly Cry1F-resistant strain of S. frugiperda was established from a field collection in Puerto Rico in 2011. In this study, three greenhouse trials were conducted to evaluate larval survival and leaf injury of Cry1F-susceptible, -resistant, and -heterozygous genotypes of S. frugiperda on whole plants of five non-Bt and eight Bt corn hybrids. The Bt corn products included two single-gene Bt corn hybrids containing Herculex®I (Cry1F) and YieldGard® (Cry1Ab) traits and six pyramided Bt corn hybrids representing four traits: Genuity® VT Double Pro™, Genuity®VT Triple Pro™, Genuity® SmartStax™, and Agrisure® Viptera™ 3111. In each trial, neonates of S. frugiperda were placed into the plant whorls at vegetative plant stages (V6–V10). Larvae of the three insect genotypes on non-Bt corn hybrids survived well and caused serious plant injury. Cry1Ab corn was ineffective against all three insect genotypes. On Cry1F corn plants, resistant larvae survived on 72.9% plants after 12–15 d and caused a leaf injury rating (Davis' 1 to 9 scales) of 5.7 after 7 d and 7.6 after 12–15 d. Both the larval survivorship and leaf injury rates of the resistant larvae on Cry1F corn plants were not significantly different from those observed on non-Bt corn hybrids. In contrast, no live larvae and little or no leaf injury were observed on the Cry1F corn plants that were infested with susceptible or heterozygous genotypes, or on the pyramided Bt plants. The results demonstrated that the Cry1F-resistant S. frugiperda was highly resistant to whole plants of Cry1F corn and the resistance was recessive. Hybrids that contained one of the four pyramided Bt traits were effective for managing the Cry1F resistance in S. frugiperda.  相似文献   

3.
将融合基因mCry1AbWp3A构建原核表达载体pET30A-mCry1AbVip3A,转入大肠杆菌BL21(DE3),通过优化诱导条件获得mCry1AbVip3A蛋白.室内生测mCry1AbVip3A蛋白对亚洲玉米螟和草地贪夜蛾的杀虫效果,发现饲喂终浓度为128.44 ng/mL的mCry1AbVip3A蛋白的亚洲玉...  相似文献   

4.
Large-scale adoption of transgenic crops expressing genes from Bacillus thuringiensis (Bt) imposes high selection pressure for evolution of field-relevant resistance that can reduce pest control efficacy, such as reported for Cry1F maize (Zea mays L.) in populations of fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), of Puerto Rico, Brazil, and the United States. As part of our effort to improve fall armyworm resistance management to Bt crops, here we determined the genetic basis of Cry1F resistance in two S. frugiperda strains originated from field collections in different regions of Brazil and further selected in the laboratory for high levels of resistance to Cry1F maize. Continuous exposure to the TC1507 event for 11 generations resulted in more than 183-fold resistance to Cry1F in the two strains studied, and such a high resistance level enabled the insects to complete larval development on the Bt maize plants. Genetic analyses using concentration-response bioassays with progenies from reciprocal crosses between resistant and susceptible insects indicated that the inheritance of the resistance is autosomal, recessive and without maternal effects. Backcross of the F1 progeny with the parental resistant strains revealed that the resistance in the two selected strains is conferred by a single locus or set of tightly linked loci. These results support some of the assumptions of the strategy in use for fall armyworm resistance management to Bt Cry1F maize, but survival rates of heterozygotes on the Bt plants were higher than 5%, showing that the Cry1F maize does not produce a high dose of the insecticidal protein for S. frugiperda. Additionally, we detected a delay in larval development time that may favor assortative mating of individuals carrying resistance alleles. These findings are consistent with the rapid evolution of Cry1F resistance in certain field populations of fall armyworm. Implications for resistance management of S. frugiperda to Bt maize are discussed.  相似文献   

5.
The Cry1F protein from Bacillus thuringiensis Berliner expressed in event TC1507 maize (Zea mays L.) was one of the most effective ways to control Spodoptera frugiperda (J. E. Smith) in Brazil. After reports of reduced effectiveness of this Bt maize event in some areas of Brazil, research was undertaken to investigate if damage to Cry1F maize was caused by resistant S. frugiperda. Additional investigations were conducted to evaluate the genetic basis of the resistance and to test if Cry1F resistant S. frugiperda selected from populations of different regions of Brazil share the same resistance locus by using complementation tests. Neonate larvae of S. frugiperda collected from TC1507 maize fields with damage in Western Bahia region in 2011 were able to survive on Cry1F maize plants under laboratory conditions and subsequently produced normal adults. Survival of Cry1F-susceptible S. frugiperda on non-Bt maize was significantly higher in leaf than plant bioassays. Resistance ratio in diet overlay bioassays was >5000-fold. A discriminating concentration of 2000 ng cm−2 of Cry1F protein was defined for monitoring the frequency of resistance of S. frugiperda to Cry1F. Cry1F resistant S. frugiperda showed a recessive autosomal inheritance for alleles involved in resistance to Cry1F protein. In complementation tests, the resistant population from Western Bahia was crossed with the other seven resistant populations collected from different States of Brazil. F1 larvae from each cross had the same survival at discriminating concentration of 2000 ng cm−2 of Cry1F protein, indicating that the resistance alleles in each population were likely at the same locus. Therefore, implementation of resistance management strategies is urgent to prolong the lifetime of Cry1F for controlling S. frugiperda in Brazil.  相似文献   

6.
A concern regarding planting of Bt crops is that their widespread cultivation could lead to evolution of insect resistance to Bt toxins. In South Africa, the noctuid maize stem borer (Busseola fusca [Fuller]), is resistant to Bt maize (Zea mays L.; MON810) which produces Cry1Ab protein. The presence of fitness costs in resistant populations could be a valuable component of resistance management since the non-Bt maize refuge may select against resistance. The aim of the study was to determine if there are fitness costs associated with Bt resistance of B. fusca. Life history parameters were compared between individuals of a Bt maize resistant B. fusca population when feeding on Bt or non-Bt maize. Similar comparisons were done using a control population. Field collected larvae as well as their F1-generation were used in the study. The following parameters were compared: pupal mass, moth longevity, fecundity, fertility, larval mass and survival, and sex ratio. Except for LT50-values, no fitness costs were associated with the resistance trait in the highly resistant B. fusca population. The absence of fitness costs and presence of resistant populations may promote the use of a multi-gene strategy which would be expected to impact negatively on fitness.  相似文献   

7.
The southern United States has a long growing period between corn, Zea mays L., harvest and first winter frost, so volunteer corn which germinates after harvest has a growing period sufficient for corn earworm, Helicoverpa zea (Boddie) and fall armyworm, Spodoptera frugiperda (J. E. Smith) to feed on these plants. However, lower air temperatures can limit larval development on late season volunteer corn and thereby successful pupation. Here we explore the suitability of late season volunteer corn for larval development and the potential contribution of H. zea larvae to the overwintering population. Our survey revealed the occurrence of volunteer corn in high densities, with monthly mean densities ranging from 56,000 to 143,000 plants ha−1. H. zea larvae were found feeding on both vegetative and reproductive stage plants while S. frugiperda were only found on vegetative stage plants. An analysis of H. zea growing degree day (GDD) accumulations based on Mississippi weather data from 1980 to 2010 revealed that sufficient GDD to reach prepupation would always be accumulated before first frost if oviposition occurred by 9 September, with the probability of successful pupation decreasing rapidly thereafter. However, most of the H. zea larvae were oviposited after this, and could not reach pupation. Because S. frugiperda cannot overwinter in Mississippi, their ability to pupate was not examined. Low suitability of whorl stage corn for H. zea development coupled with low larval densities during this stage effectively diminish the number of larvae that complete development on late season volunteer transgenic corn expressing genes from the soil bacterium, Bacillus thuringiensis (Bt). This limits the Bt resistance risk posed by larvae developing on late season volunteer corn in all but the most southern locations in the US.  相似文献   

8.
Fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major pest of many crops and a cross-crop target of transgenic maize, cotton, and soybean containing Bacillus thuringiensis (Bt) genes. Some of the current Bt maize products for controlling lepidopteran species contain the Bt event MON 89034. The objective of this study was to determine the frequency of resistance alleles in field populations of S. frugiperda collected from Louisiana and Florida, U.S. to Cry1A.105, one of the two Bt genes in MON 89034. A total of 150 F2 two-parent families of S. frugiperda were established using single-pair mating of field-collected individuals in 2011, which included 79 families from two locations in Louisiana and 71 families from one location in Florida. F2 screen was conducted to detect resistance alleles in these families to Cry1A.105 protein in maize plants. Four out of the 79 Louisiana and 14 out of the 71 Florida families were identified to possess resistance alleles to the Cry1A.105 maize plants. Thus, the corresponding frequency of resistance alleles to Cry1A.105 maize was estimated to be 0.0158 with a 95% credibility interval (CI) of 0.0052–0.0323 for the Louisiana populations and 0.0559 with a 95% CI of 0.0319–0.0868 for the Florida populations. The resistant families survived on whole Cry1A.105 maize plants and demonstrated a significant level (>116-fold) of resistance to the Cry1A.105 protein in a diet-incorporated bioassay. These findings suggest that resistance allele frequency in S. frugiperda to single-gene Cry1A.105 maize in the U.S. southeast region apparently is not rare, most likely due to the selection of Cry1F resistance and its cross-resistance to Cry1A.105.  相似文献   

9.
Spodoptera cosmioides (Walker), Spodoptera eridania (Stoll) and Spodoptera frugiperda (J. E. Smith) have caused significant damage on soybean Glycine max (L.) Merrill in Brazil. Genetically-modified MON 87701 × MON 89788 soybean that expresses the Cry1Ac protein is potentially an alternative tool for the management of these species. Purified protein bioassays were done to evaluate the susceptibility of S. cosmioides, S. eridania and S. frugiperda to Cry1Ac protein. The level of efficacy of the Bt soybean plants in controlling these species was measured through laboratory and greenhouse trials under high artificial insect infestations. The biology of these insects was evaluated over their development cycles to understand their life history when fed on Bt soybean. Purified Cry1Ac protein at the maximum concentration tested (100 μg Cry1Ac mL−1 diet) resulted in low mortality of S. cosmioides and S. eridania (<13%) and intermediate mortality of S. frugiperda (50%). No significant effects of the Bt soybean plants were observed in the life table parameters of S. cosmioides and S. eridania. However, S. frugiperda fed on Bt soybean plants had a prolonged larval stage (by 5 days), reduced larvae viability, increased mean generation time (by 8 days) and reduced intrinsic rate of increase. In general, the Bt soybean plants showed poor control of Spodoptera species when evaluated by leaf-disc bioassay and greenhouse trials. Consequently, other control tactics must be used in combination with MON 87701 × MON 89788 soybean in the field for the efficient management of S. cosmioides, S. eridania and S. frugiperda.  相似文献   

10.
Temperature-dependent development of Ascotis selenaria (Denis et Schiffermüller) was studied in the laboratory. Time to egg eclosion decreased with increasing temperature and ranged from 17.4 d at 16 °C to 5.0 d at 30 and 32 °C. Total development times of larvae decreased from 54.7 d at 16 °C to 17.3 d at 32 °C. The development time of pupae ranged from 29.7 days at 16 °C to 10.2 days at 30 and 32 °C. Eggs, larvae and pupae did not develop successfully to the next stage at 12 and 35 °C. The estimated lower temperature thresholds were 10.4, 9.3, and 9.8 °C for eggs, larvae, and pupae, respectively. Thermal constants of egg, larvae, and pupae were 88.5, 370.4, and 188.7 DD, respectively. Stage emergence models for eggs, larvae, and pupae of A. selenaria were constructed by using the development rate model (Lactin 2 function) and development distribution model (three-parameter Weibull function), which simulate the proportion of individuals shifted from one stage to the next. Pearson's correlation coefficients between actual observations in the field and model outputs were statistically significant with 0.99, 0.68 to 0.87 and 0.96 to 0.98 for egg, larval and pupal stage emergence model, respectively. The egg stage emergence model could be used to facilitate spraying time as it successfully predicted the first instar larval population. Predictability of the pupal stage emergence model was greatly improved when the physiological age of overwintering pupae was assumed to be in various state. The stage emergence models developed here should be useful to construct an A. selenaria population model.  相似文献   

11.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a serious pest of cotton and many other crops in northern China. To evaluate the contribution of alternative hosts as an effective refuge for transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin, the susceptibility to this toxin was measured in progeny derived from field-collected H. armigera larvae and pupae from different hosts in the Xiajin’s region of the Shandong Province in northern China. During 2008-2010, progeny from a total of 258,56,184 and 160 single-pair crosses derived from wheat (first-generation), Bt cotton (second-generation), Bt cotton (third-generation), and corn (third-generation) were screened on Cry1Ac diets, respectively. Based on relative average development rates (RADR) of H. armigera larvae in these F1 tests, the second and third-generation moths emerging from Bt cotton fields were more tolerant to the Bt toxin than the first and third-generation moths emerging from wheat and corn each year. These results suggest that there is significant variation in susceptibility to Bt toxins among H. armigera populations derived from different host crops. Alternate crops, such as corn, that maintain Bt susceptible populations of H. armigera could be used as refugia to minimize the evolution of resistance to Bt cotton.  相似文献   

12.
In the United States, fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a target species of transgenic corn (Zea mays L.) expressing pyramided Bacillus thuringiensis proteins. In 2011, a total of 150 F2 two-parent families of S. frugiperda were established using single-pair matings of feral individuals collected from three locations in Louisiana and Florida. The objective of this study was to determine the susceptibility of these field derived families of S. frugiperda to a pyramided Bt corn hybrid containing Agrisure®Viptera™ 3111 traits. For each F2 family, 96 neonates were assayed on leaf tissue of Agrisure®Viptera™ 3111 corn in the laboratory. None of the 150 families survived for 7 days on leaf tissue of the Bt corn plants. The results demonstrate that the field populations of S. frugiperda collected from Louisiana and Florida were susceptible to the pyramided Bt corn product containing Agrisure®Viptera™ 3111 traits. The data generated in this study can be used as baseline data for resistance monitoring.  相似文献   

13.
Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) is a pest of great economic importance which can feed on more than 300 plant species. As it is polyphagous, its host plants may have variable physical and chemical constitutions. This may influence larval development, as protein and carbohydrate levels are important factors for adequate biological development. The aim of this study was to evaluate insect developmental parameters as well as to compare the food consumption of S. frugiperda larvae reared using diets with different protein levels under laboratory conditions. Three artificial diet formulations were used: one typically used for routine laboratory rearing, based on bean, wheat germ and brewer’s yeast (D1); one containing half the original amount of protein (D2), and the other with twice the original amount of protein (D3). The relative consumption rate (RCR), relative growth rate (RGR), and efficiency of conversion of ingested food (ECI) for S. frugiperda fourth instar larvae varied among diets. The protein present in the diet influenced the duration of larval and pupal periods and pupal weight, but did not affect larval survival, fecundity and longevity of adults. The different protein levels in the diets did not negatively influence population growth, so these three diet variations can be used for mass rearing in the laboratory. However, the influence of these diets on successive generations of the insect remains untested.  相似文献   

14.
The diamondback moth, Plutella xylostella (L.), is an important international pest of cruciferous vegetables. The effects of the new diamide insecticide chlorantraniliprole, at a lethal concentration inducing only 25% mortality (LC25), were assessed on the development and reproductive parameters of P. xylostella under laboratory conditions. In addition, effects on development time, pupation rate, larval and pupae weight, fertility, and survival in the parent and F1 generations were assessed. When 4th instar P. xylostella larvae were exposed to LC25 of chlorantraniliprole on a cabbage (Brassica oleracea var. capitata L.) leaf for 96 h, we observed increased developmental time for 4th instar larval to pupa period (4.27 days vs. 3.34 days in the control), lower pupal weight (3.58 mg vs. 4.17 mg in the control) and decreased adult fecundity (by 42%). F1 generation underwent transgenerational effects, i.e. higher developmental time from egg to pre-pupae and lower egg hatching rate occurred. Demographic growth parameters, such as the net reproductive rate (R0), the intrinsic rate of increase (rm), and finite rate of increase (λ) were significantly lower for the LC25 chlorantraniliprole treated group than for the untreated control. Our results suggest that exposure to LC25 of chlorantraniliprole may have negative effects both on exposed individuals and on subsequent generations in P. xylostella.  相似文献   

15.
The main insect pest in Brazilian corn is fall armyworm, Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae). Entomopathogenic nematodes (EPNs) can be used to control this pest, and can be applied together with various insecticides. Thus, the objective of this work was to evaluate the efficacy of mixtures of EPNs and insecticides to control S. frugiperda in corn crops. In laboratory bioassays three species of EPNs were tested (Heterorhabditis indica, Steinernema carpocapsae and Steinernema glaseri) together with 18 registered insecticides to control S. frugiperda in corn. Efficacy of association between insecticides and EPNs on S. frugiperda larvae was evaluated against the insect's third instar, 2 and 4 days after applications in laboratory. Experiments in the field were performed in two consecutive years, with located application of H. indica and S. carpocapsae (250 IJs/cm2) mixed with chlorpyrifos (0.3 L/ha) and lufenuron (0.15 L/ha) on the corn husk. In laboratory, after two days exposure the interaction between chlorpyrifos and H. indica was synergistic, while interaction with cypermethrin, spinosad, methoxyfenozide and deltamethrin + triazofos was additive, as was interaction between lufenuron, chlorpyrifos and cypermethrin with S. carpocapsae. In contrast, the interaction between chlorpyrifos (Vexter™ and Lorsban™) and lufenuron with S. glaseri was synergistic. In the field, the best treatment was the mixture of H. indica with lufenuron (0.15 L/ha), with 62.5% and 57.5% larval mortality in the two evaluation years in the field, respectively.  相似文献   

16.
Larval survival and oviposition behavior of three genotypes of diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), (homozygous Cry1Ac-susceptibile, Cry1Ac-resistant, and their F1 hybrids), on transgenic Bacillus thuringiensis (Bt) broccoli expressing different levels of Cry1Ac protein were evaluated in laboratory. These Bt broccoli lines were designated as relative low, medium, and high, respectively, according to the Cry1Ac content. Untransformed brocccoli plants were used as control. Larval survival of diamondback moth on non-Bt leaves was not significantly different among the three genotypes. The Cry1Ac-resistant larvae could survive on the low level of Bt broccoli plants, while Cry1Ac-susceptible and F1 larvae could not survive on them. The three genotypes of P. xylostella larvae could not survive on medium and high levels of Bt broccoli. In oviposition choice tests, there was no significant difference in the number of eggs laid by the three P. xylostella genotypes among different Bt broccoli plants. The development of Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella on intact Bt plants was also tested in greenhouse. All susceptible P. xylostella larvae died on all Bt plants, while resistant larvae could survive on broccoli, which expresses low Cry1Ac protein under greenhouse conditions. The results of the greenhouse trials were similar to that of laboratory tests. This study indicated that high dose of Bt toxins in broccoli cultivars or germplasm lines is required for effective resistance management.  相似文献   

17.
Protein contamination on refuge kernels due to cross-pollination from Bt corn to non-Bt corn ears is a major concern in the use of a seed mixture refuge strategy (“RIB”) for resistance management of ear-feeding pests. In this study, occurrence, distribution, and ear damage of the corn earworm, Helicoverpa zea (Boddie), were evaluated in three planting patterns of non-Bt and Bt corn plants containing Genuity® SmartStax™ traits. The three planting patterns were 1) pure stands of 27 Bt plants; 2) pure stands of 27 non-Bt plants; and 3) one non-Bt plant in the center surrounded by 26 Bt plants. A total of six trials were conducted in open field conditions with natural infestations in 2011 and 2012. Egg populations of H. zea were distributed randomly or uniformly, and the number of eggs laid was similar between Bt and non-Bt corn ears regardless of the planting patterns, suggesting that females of H. zea have no egg-laying preference between Bt and non-Bt plants. Bt corn plants containing Genuity® SmartStax™ traits were equally effective in the control of H. zea in pure stands of Bt corn and “RIB” plantings. Occurrence of larvae and ear damage on Bt corn were significantly lower than on non-Bt plants and there were no significant differences between pure stands of Bt and “RIB” plantings across all trials. However, the limited numbers of live larvae in the pure stands of Bt plants were distributed non-randomly, suggesting a possibility of uneven expression of Bt proteins or elevated larval movement in the pure stands of Bt plants. Larval occurrence (3rd–5th instars) and ear damage on the refuge ears in “RIB” plantings were similar to or greater than found on ears of pure stands of non-Bt plants. However, more studies are needed to understand the effect of pollen movement on the full life cycle of H. zea before a final conclusion on the refuge function of RIB planting can be made.  相似文献   

18.
Fenthion (organophosphate) was used in Australia to target adults, eggs and larvae of Mediterranean fruit fly (Medfly), Ceratitis capitata Wiedmann (Diptera: Tephritidae) in deciduous fruits. With its removal from use in 2015, clothianidin and thiacloprid (neonicotinoids) were evaluated for any adulticide, ovicide or larvicide (eggs, larvae) activity against Medfly in a series of laboratory and field-cage experiments in peach and nectarine. We included fenthion in all experiments as a positive control. As an adulticide, fenthion had the greatest residual toxicity on fruit, with 7 d old residues killing 44% of adults within 48 h compared to thiacloprid (17%) and clothianidin (30%). When applied as a larvicide to naturally infested peaches, none of the insecticides was 100% effective, though fewest pupae (1.18 ± 0.19 pupae/fruit) (indirect measurement of larval survival) were produced when treated with fenthion, followed by clothianidin (3.40 ± 0.33 pupae/fruit) and thiacloprid (6.88 ± 0.34 pupae/fruit); with 11.35 ± 0.30 pupae/fruit in control (water). In peaches treated 48 h post-infestation, fenthion was most effective in reducing numbers of pupae and adult emergence and with higher percentage of deformed adults, with thiacloprid=clothianidin. In nectarines treated 48 h post-infestation, fenthion was most effective in reducing numbers of pupae and adult emergence as well as with higher percentage of deformed adults, followed by clothianidin. Insecticides were least effective when applied as a preventative 24 h or 7 d prior to infestation, with fenthion more effective than clothianidin. Whilst our study shows that neither clothianidin nor thiacloprid are equivalent to fenthion, they are acceptable substitutes to growers for use for Medfly in deciduous fruits given that fenthion is no longer available to growers in Australia. We recommend that growers incorporate other controls to target the adult stage rather than rely only on new insecticides.  相似文献   

19.
The rice leaffolder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae), is a leaf-feeding pest and the physical and chemical nature of the rice leaf affects its feeding, survival and fecundity. We examined changes in the survival rates of larvae and pupae, pupal weight and the number of eggs laid by adult females developed from a resistant variety (Huaidao 9) and a susceptible variety (Yangjing 9538) in hydroponic solutions containing different concentrations of magnesium (Mg). The concentration of Mg in the hydroponic solution significantly affected the survival rates of the larvae and pupae, the pupal weights and the numbers of eggs laid. Larval survival rates on the resistant variety were significantly higher for fourth instars exposed to 60 and 80 ppm Mg and pupae exposed to 20, 40, 60 and 80 ppm Mg than those for the control treatment (without Mg). For the susceptible variety, survival rates of first, second and third instars were significantly higher at high concentrations of Mg than those under control conditions. In addition, the number of eggs laid by adult females increased with increasing Mg concentrations, though there was a slight decrease at 80 ppm compared to 60 ppm. These results indicate that Mg is beneficial to the development, survival and fecundity of C. medinalis. They further suggest that high levels of nitrogen fertilizer in rice fields favour outbreaks of this pest because application of nitrogen elevates the chlorophyll content and Mg levels in the rice leaf.  相似文献   

20.
Spotted stemborer, Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae), is the most important pest of sorghum in Asia and south and eastern Africa. Host plant resistance is an important control tactic for controlling this pest. Two breeding lines 27B × PB 15881-3 and 463B × PB 15881-3 with their parents, resistant and susceptible genotypes were evaluated in the field, glasshouse and laboratory for different resistance parameters. Breeding lines and genotypes varied significantly in foliar damage ratings, percentage of stem length tunneled, percentage of plants with deadhearts, larval survival, larval and pupal weights, larval and pupal duration, and percentage pupation and adult emergence in diets amended with leaf powder of different sorghum genotypes. The breeding lines 27B × PB 15881-3 and 463B × PB 15881-3 showed antixenosis and antibiosis to C. partellus in terms of reduced eggs per plant, larval survival and development. The levels of antixenosis and antibiosis of both breeding lines were similar to their resistant parents. Results indicate that transmission of characteristics responsible for resistance to the progeny from the resistant parent occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号