首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
由大丽轮枝孢菌侵染引起的向日葵黄萎病是一种重要的土传病害,微菌核是该病害主要的初侵染来源。目前,土壤中大丽轮枝孢菌微菌核的定量检测方法多操作步骤复杂繁琐,如利用PCR方法进行检测,对仪器设备和操作人员的素质都有较高的要求,而常规的土壤梯度稀释湿筛法的实验周期长且检测效率低,因此,建立一种快速定量检测土壤中大丽轮枝孢菌微菌核的方法,对于向日葵黄萎病的预报预测和防控非常重要。为了能够快速的定量检测土壤中微菌核的数量,以期探明不同耕作方式地块中土壤微菌核数量的差异,本实验建立了一套操作相对简单,实验周期较短的微菌核快速分离和定量检测的方法,即采样器—干筛法。该方法将微生物采样器和选择性培养基相结合,基于微生物采样器的撞击法原理,使土壤微生物粒子加速撞击到选择性培养基的培养皿表面,经培养后可见单菌落形成。利用该方法对内蒙古巴彦淖尔市不同的向日葵黄萎病发病地块中采集到的土壤样本中微菌核进行了定量检测,结果表明:两年向日葵连作地(样地1)土壤中微菌核的数量最多,平均每克土样中含有微菌核32.80个;与非寄主作物玉米轮作地块(样地2)土样中微菌核的数量最少,平均每克土样中含有微菌核11.80个,与寄主作物打籽葫芦轮作地块(样地3)微菌核数量介于二者之间。利用该方法能够明显区分不同地块土壤中微菌核的数量。通过和荧光定量PCR检测的结果进行相关性分析发现,该方法能够准确检测土壤中大丽轮枝孢菌微菌核的数量。  相似文献   

2.
在棉花无土育苗基质中植入枯草芽孢杆菌,使其优先占领生态位,而拮抗黄萎病。结果表明:枯草芽孢杆菌CD102菌液稀释后植入灭菌基质,能在短期内增殖和持续繁殖;采用浸种、浇灌、针刺和喷雾的方法处理基质培育的棉苗,CD102均能不同程度定植其中;带CD102的基质培育棉苗,移栽大田后对黄萎病具有较好防治效果。  相似文献   

3.
利用锯末、玉米芯末、膨润土等为木霉菌载体,对棉花进行根区施药防治棉花黄萎病。试验结果表明,以玉米芯末为载体的处理防治效果最佳,药后60天和90天防治效果分别为70.6%和83.2%,以锯末为载体的处理防效较好,药后60天和90天防治效果分别为68.1%和80.6%,两者均可作为木霉菌防治棉花黄萎病的载体,具有广阔的应用前景。  相似文献   

4.
Verticillium wilt (VW), caused by Verticillium dahliae Kleb., is a destructive disease of cotton (Gossypium hirsutum L.). The use of resistant cultivars has long been considered the most practical and effective mean of control. The aim of this work was to study the quantitative genetic basis of Verticillium wilt resistance in Upland cotton by using five genotypes and their possible crosses without reciprocals selecting simultaneously for resistance and desirable agronomic characteristics. Five cotton cultivars and 10 F1s from half-diallel crosses were analyzed for VW resistance. The seed cotton yield, the number of bolls/ plant, and boll weight were measured and Verticillium wilt index (VWI) was estimated during two crop seasons in two different sites each year always on plots with naturally infested soil. Genetic components of variance were analyzed using the Hayman model. Analysis of variance for all characters showed significant differences between genotypes, without genotype-site interaction in most cases. Both, additive genetic variance component (D) and dominance genetic variance components (H1 and H2) were presented in all characters, except for VWI. D was the most important component for boll weight and VWI. Boll weight was the most correlated character with seed cotton yield and VWI. Broad sense heritability was high for boll weight and VWI, moderate for seed cotton yield and low for bolls per plant. Narrow sense heritability was moderate for boll weight, and high for VWI.  相似文献   

5.
Verticillium dahliae is the causal agent of strawberry wilt. A microencapsulated terpene product containing cineole, camphor and borneol, digestate from anaerobic digestion, and BioFence™ derived from a mustard-based defatted seedmeal were tested for their suppressive activity against V. dahliae. First, naturally infested soil was amended with microencapsulated terpene, lavender waste pellet and BioFence™ (pellet) in a laboratory test to assess the efficacy against V. dahliae. Next, mini-field-plot experiments were conducted to evaluate the efficacy of individual and combined use of terpene, BioFence™ (liquid) and digestate against V. dahliae; sterile distilled water treatment and untreated control were also included. In the laboratory test, all treatments significantly reduced V. dahliae densities, with the control efficacy ranging from 27% (BioFence™) to 69% (lavender waste pellet). Although the lowest (1×) rate of terpene treatment resulted in a much lower control efficacy (35%) than the other two higher rates (3× – 55%; 9× – 53%), these differences were not statistically significant. In the field mini-plot trials, all treatments led to significant reductions in the V. dahliae density, with the efficacy ranging from 50% (digestate) to 78% (combined three-product treatment), irrespective of the initial wilt level. There were no significant differences in all comparisons of pairwise treatments except between digestate and combined three-product treatment. For the combined two or three-product treatments, the observed efficacy was significantly less than the expected efficacy on the assumption of Bliss independence. Furthermore, there were no significant differences between the observed efficacy of combined treatments and the best single component product efficacy. Although the observed efficacy for the combined three-product treatment was consistently higher than the best single component across replicate plots, such a difference was not statistically significant. The results indicate the value of these alternative treatments in practice but these are not likely to reduce V. dahliae inoculum sufficiently to eliminate the risk of strawberry wilt and question the value of combined treatments.  相似文献   

6.
Summary Tubers of 17 cultivars were inoculated withErwinia carotovora subsp.atroseptica (ECA) and planted in 1986 and 1987 in the Negev in randomised plots in three blocks where eitherVerticillium dahliae orAlternaria solani were present or where both were absent. ECA reduced the yield in the control block and exacerbated the yield losses in the disease blocks, but the intensity of symptom expression did not always accord with the extent of yield loss. ECA had a greater effect on plants infected withA. solani than on those withV. dahliae. It was possible to categorise the cultivars as resistant, intermediate or susceptible with respect to ECA and early blight, but resistance toV. dahliae could not be differentiated from foliage maturity.  相似文献   

7.
In the context of increased competition for water, growing more rice with less water will be one of the major challenges of the 21st century. This paper examines water savings and issues of scale in water productivity. The main objective is to understand if and how field-scale interventions scale up to subbasin-scale water savings in the Zhanghe Irrigation District (ZID) in Hubei Province, central China. Our results confirmed that on-farm water-saving practices result in higher water productivity per unit of irrigation water at the field scale due to lower irrigation water input. However, the question is, if these field-scale practices have led to real water savings; savings which can be transferred to other agricultural and non-agricultural uses without lowering existing production levels. To investigate this question, we examined water use and productivity at four different scales: field scale, meso scale, main canal command scale, and subbasin scale using the water accounting methodology. The study clearly demonstrates the high dependence on the scale of water use and productivity parameters. Depleted fraction and water productivity per unit of gross inflow and irrigation water varied dramatically across scale. Thus, it is not possible to conclude from field-scale observations that basin level water savings will or will not take place. The major reasons for these scale effects are the lateral flow of water across boundaries, differing land use patterns across scales, and changing water management patterns across scales. In the ZID, going from field and meso scale to even larger scales, water productivity per unit of irrigation increases to even higher levels than at the field scale. Here it becomes clear that the ZID, with its possibilities of reuse of drainage return flows and capturing rainfall and runoff in all the reservoirs within the system, is very effective in capturing and using water productively. Factors that influence water productivity and depleted fraction are on-farm water savings as well as the reuse of drainage water, effective capturing and utilization of rain, and canal water management. The scope for additional real water savings in the Zhanghe Irrigation District is limited. Only 13% of the combined rainfall and Zhanghe reservoir irrigation water releases flow out of the basin. A further reduction in drainage surface outflow from the ZID may have negative downstream effects on other water uses, including environmental uses. The main lessons learned are that (1) employing a combination of factors—on-farm practices, reuse, and canal operations—can be an effective means of conserving water resources within irrigation systems, (2) the scope for savings must be considered by an analysis at larger scales (i.e. irrigation system or basin scale), and may be less than thought because of the interactions of these factors. The results clearly indicate that scale effects are important for understanding and planning for water savings and water productivity.  相似文献   

8.
The present study showed that pretreatment of triadimefon (TDM), a triazole compound, could improve tolerance of soybean seedlings to subsequent water stress. TDM pretreatment resulted in early and late rise in superoxide dismutase (SOD) and catalase (CAT) activities, and upregulation of ascorbate (AsA) content in non-stressed and water-stressed seedlings, leading to late increase in net photosynthetic rate (Pn), late decrease in hydrogen peroxide (H2O2) and electrolyte leakage in stressed ones. These TDM-induced changes were blocked by application of abscisic acid (ABA) biosynthesis inhibitor tungstate, which inhibited early rise of ABA and H2O2 contents in non-stressed and stressed seedlings. However, ABA pretreatment overcomed the effects of this inhibitor. Application of NADPH oxidase inhibitor diphenyleneiodonium (DPI), polyamine oxidase (PAO) inhibitor 2-hydroxyethylhydrazine (2-HEH) and H2O2 scavenger dimethylthiourea (DMTU) prevented early TDM-induced rise of H2O2 content. DPI, 2-HEH and DMTU also decreased SOD, CAT and AsA levels, but did not affect ABA content during early and late phases in both seedlings pretreated with TDM. In addition, these chemicals decreased Pn, and increased H2O2 content and electrolyte leakage during late phase in TDM-pretreated stressed seedlings. Overall, these results indicated that TDM pretreatment alleviated adverse effects of water stress on soybean seedlings, which was at least in part, due to increase of antioxidant capacity and decrease of oxidative damage induced by early ABA-dependent H2O2 generation.  相似文献   

9.
A year-long study on the water quality and hydrology was carried out to investigate the characteristics of the pollutant concentrations and pollutant removal in a constructed irrigation pond. The pond is part of a circular irrigation system for paddy fields within Lake Kasumigaura watershed, Japan. The average concentrations of the total nitrogen (TN), chemical oxygen demand (COD), total phosphorus (TP), and suspended solids (SS) at the pond outlet were 7.4, 8.6, 0.2, and 18.8 mg L−1, respectively. The average removed loads for the same indices were 0.14, 2.47, 0.11, and 24.2 g m−2 day−1, respectively. The percentages of pollutant removals from the inflow loads for the same indices were 3, 26, 42, and 63%, respectively. The pond discharged the TN loads of 128 kg due to sediments stirred by operation of a pump for April and May. The average TN removal was 19% from June to August and was smaller than that reported in published literatures (40–50%). Major reasons were considered to be that the turnover of water in the pond was rapid (86% per day) and that the TN concentration of inflow water was relatively low (5.9 mg L−1). The percentages of pollutants that flowed into the pond to the outflow loads from the study site were 6.6, 4.8, 1.6, and 1.1% for TN, COD, TP, and SS loads, respectively. The pollutant removal will be increased if the design of the circular irrigation system is reconsidered to utilize a pollutant removal function in the irrigation pond.  相似文献   

10.
The Zhanghe irrigation system (ZIS) is located in the Yangtze River Basin approximately 200 km west of Wuhan in Hubei Province. The reservoir was designed for multiple uses—irrigation, flood control, domestic water supply, industrial use, aquaculture, and hydropower. Over a period of more than 30 years a steadily increasing amount of water has been transferred from irrigation to other uses. Activities on the part of government, irrigation system managers, and farmers made this transfer possible with only modest decline in rice production. Most important factor was the steady increase in rice yields. The water pricing system provided an incentive for ZIS to reduce irrigation releases. With the steady decline in releases, farmers were forced to find ways to save water. Farmers improved existing ponds and built new ones to store water (improved infrastructure). Access to pond water on demand facilitated the adoption of alternate wetting and drying (technology) particularly in dry years. The establishment of volumetric pricing (price policy) and water user associations (institutions) may also have provided incentives for adoption of AWD, but more research is needed to establish their impact. These activities taken together can be seen as potentially complementary measures. Farmers received no direct compensation for the transfer of water, but recently farm taxes have been reduced or altogether abolished. Further reduction in water releases from the ZIS reservoir could adversely affect rice production in normal or dry years.  相似文献   

11.
Improving irrigation performance is a crucial issue for agriculture and irrigation development in the Lower Mekong River Basin to secure food production for people’s livelihoods. Irrigation efficiency is the most important indicator to determine the performance of an irrigation scheme. This study looks at water management practices and irrigation efficiency in three pilot sites in the Lower Mekong River Basin: the Numhoum scheme in Laos, the Huay Luang scheme in Thailand, and the Komping Pouy scheme in Cambodia. Irrigation efficiency and water productivity were analyzed using a water balance approach at the irrigation scheme level and results in the pilot areas show efficiencies that are definitely higher using this approach than by using the classical concept. Lower water productivity was observed at pilot schemes in areas of single cropping and higher productivity in areas where multiple agricultural activities were practiced. Strict and active water management is required to control and save water to meet agricultural demand and have sufficient water to expand cultivation areas while avoiding shortages. Promoting multiple uses of water for various agricultural activities in command area will increase water productivity.
Hiroshi OkudairaEmail:
  相似文献   

12.
Water-saving technologies that increase water productivity of rice are urgently needed to help farmers to cope with irrigation water scarcity. This study tested the ability of the ORYZA2000 model to simulate the effects of water management on rice growth, yield, water productivity (WP), components of the water balance, and soil water dynamics in north-west India. The model performed well as indicated by good agreement between simulated and measured values of grain yield, biomass, LAI, water balance components and soil water tension, for irrigation thresholds ranging from continuous flooding (CF) to 70 kPa soil water tension.Using weather data for 40 different rice seasons (1970-2009) at Ludhiana in Punjab, India, the model predicted that there is always some yield penalty when moving from CF to alternate wetting and drying (AWD). With an irrigation threshold of 10 kPa, the average yield penalty was 0.8 t ha−1 (9%) compared with CF, with 65% irrigation water saving, which increased to 79% at 70 kPa with a yield penalty of 25%. The irrigation water saving was primarily due to less drainage beyond the root zone with AWD compared to CF, with only a small reduction in evapotranspiration (ET) (mean 60 mm).There were tradeoffs between yield, irrigation amount and various measures of WP. While yield was maximum with CF, water productivity with respect to ET (WPET) was maximum (1.7 g kg−1) for irrigation thresholds of 0 (CF) to 20 kPa, and irrigation water productivity (WPI) increased to a maximum plateau (1.3 g kg−1) at thresholds ≥30 kPa.Because of the possibility of plant stress at critical stages known to be sensitive to water deficit (panicle initiation (PI) and flowering (FL)), treatments with additional irrigations were superimposed for 2 weeks at one or both of these stages within the 10, 20 and 30 kPa AWD treatments. Ponding for two weeks at FL was more effective in reducing the yield penalty with AWD than ponding at PI, but the biggest improvement was with ponding at both stages. This reduced the average yield loss from 9% (0.8 t ha−1) to 5% (0.5 t ha−1) for AWD with thresholds of 10 and 20 kPa. However, maximum WPI (1.1 g kg−1) was achieved with an irrigation threshold of 20 kPa combined with more frequent irrigation at FL only, but with a greater yield penalty (8%). Thus the optimum irrigation schedule depends on whether the objective is to maximise yield, WPET or WPI, which depends on whether land or water are most limiting. Furthermore, the optimum irrigation schedule to meet the short term needs of individual farmers may differ from that needed for sustainable water resource management.  相似文献   

13.
Problems caused by water shortage in a paddy-field district with a pipeline network system are different from those in a district with an open channel system. Abnormally low rainfall in Japan caused a very serious water shortage in 1994. A survey was carried out in the Hokuriku region, about 300 km in the north of Tokyo, and a typical paddy cultivation area, to determine problems in irrigation practices caused by water shortage and to find countermeasures for the problems. The following results were obtained. A tank model was proposed to estimate water requirements at the field level. The results showed that the amount of rainfall during the irrigation period in 1994 was only 27.1% of an average year and the rate of water sufficiency at the field level was 70.6%. Then, a simulation method was proposed to estimate hydraulic phenomena in a pipeline network system. The result showed that the pipeline network system distributed water to each hydrant unequally during water shortage. Based on simulations, the methods to equalize water supply to each hydrant and to set up reuse system of water were proposed.  相似文献   

14.
Alternate wetting and drying irrigation (AWD) has been reported to save water compared with continuous flooding (CF) in rice cultivation. However, the reported effects on yield varied greatly and detailed agro-hydrological characterization is often lacking so that generalizations are difficult to make. Furthermore, it is not known how AWD modifies nutrient use efficiencies and if it requires different N-fertilizer management compared with CF. This study quantified the agro-hydrological conditions of the commonly practiced AWD and compared the impact of AWD and CF irrigations at different N-fertilizer management regimes on rice growth and yield, water productivity, and fertilizer-use efficiencies in five crop seasons in 1999 and 2000 at two typical lowland rice sites in China (Jinhua, Zheijang Province and Tuanlin, Hubei Province), with shallow groundwater tables.Grain yields varied from 3.2 to 4.5 t ha–1 with 0 kg N ha–1 to 5.3–8.9 t ha–1 with farmers N-rates (150 kg N ha–1 in Jinhua and 180 in Tuanlin). In both sites, no significant water by nitrogen interaction on grain yields, biomass, water productivity, nutrient uptakes and N-use efficiency were observed. Yield and biomass did not significantly differ (P >0.05) between AWD and CF and among N timings. The productivity of irrigation water in AWD was about 5–35% higher than in CF, but differences were significant (P <0.05) only when the rainfall was low and evaporation was high. Increasing the number of splits to 4–6 times increase the total N uptake, but not total P-uptake, and total K-uptake compared with farmers practices of two splits. Apparent Nitrogen recovery (ANR) increased as the number of splits increased, but there was no significant difference in ANR between AWD and CF. During the drying cycles of AWD irrigation, the perched water table depths seldom went deeper than – 20 cm and the soil in the root zone remained moist most of the time. The results suggest that in typical irrigated lowlands in China, AWD can reduce water input without affecting rice yields and does not require N-fertilizer management differently from continuous flooding. The results can be applied to many other irrigated lowland rice areas in Asia which have a shallow groundwater table.  相似文献   

15.
The water content in gluten-free recipes plays an essential role in the resulting product quality. Up to date the water adjustment is conducted mainly by trial-and-error. Brabender GmbH & Co. KG developed an attachment for the Farinograph, which makes the measurement of batter consistencies feasible. The water content was adjusted using this new tool and compared to the water determined based on the water hydration capacity (WHC) of the single bulking ingredients. Furthermore, bread quality characteristics were analysed. Five different hydrocolloids were tested in a gluten-free system based on rice flour. Water levels differed significantly, when guar gum (20% water) or sodium alginate (18% water) were incorporated. The use of Farinograph resulted generally in a higher specific volume (+0.63 ml/g) and a softer crumb (−16 N). On the contrary, the WHC-method only gave an indication about the water addition but did not consider temperature changes during mixing and its effect on the hydration. In conclusion, Farinograph can be considered as a useful tool for the determination of the optimal water content, and additionally provides useful information about batter stability and dough development time.  相似文献   

16.
The objective of this research was to investigate the effect of water stress in regulated deficit irrigation (RDI) on the yield of soybean growing on Ultisol soil. This research was conducted under plastic house on the experimental farm of Lampung Polytechnique from August to November 2004. The water stress treatments in regulated deficit irrigation were ET1 (1.0 × ETc), ET2 (0.8 × ETc), ET3 (0.6 × ETc), ET4 (0.4 × ETc) and ET5 (0.2 × ETc), arranged in a randomized block design with four replications. ETc means crop evapotranspiration under standard condition, which was well watered. For example, the ET2 (0.8 × ETc) treatment means that the amount of supplied water per a day is the same as the crop adjustment evapotranspiration (ETcadj) with the value 0.8 of water stress coefficient (K s). The RDI treatments were carried out just at vegetative phase and its treatments were stopped at the beginning of flowering phase, and afterwards the treatments were watered at 1.0 × ETc. The results showed that since week II, the soybean experienced stress throughout the growth period except ET2 treatment. ET2 treatment started to be stressed at week V and continued to be stressed until the harvest time. At the ET3 treatment, the critical water content (θc) of soybean was reached at week II, and the θc was 0.24 m3/m3 on the average. The RDI at vegetative period significantly affected the yield. The highest yield was ET1 (35.2 g/plant), followed by ET2 (31.0 g/plant), ET3 (18.1 g/plant), ET4 (7.6 g/plant), and ET5 (3.3 g/plant). The optimal water management of soybean with the highest yield efficiency was regulated deficit irrigation with water stress coefficient (K s) of 0.80 for vegetative phase.  相似文献   

17.
For efficient use of water as a limited resource, evaluation on the water value is critical, but there is little information in Asian paddy irrigation. This paper proposes the method for measuring implicit price of paddy irrigation water by using the choice experiment (CE) data with contingent scenarios. Empirical results demonstrated that (a) the estimated implicit price of water showed reasonable value as compared to the production indexes, (b) the random parameter multinomial logit model was more suitable than the conventional multinomial logit model to treat the CE data, and (c) the implicit price is much lower than the full cost price, indicating that full cost pricing probably damages and ruins rice production too seriously in Japan. As seen above, the method proposed here is useful for decision making on water pricing policies and easy to apply to different irrigation systems under limited data of water value.
Yoji KunimitsuEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号