首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
《Plant Production Science》2013,16(2):187-196
Abstract

Weeds are the most serious threat to crop production in organic farming systems. Information on the spatial distribution of weeds is important for effective weed management. The objective of this study was to evaluate the effect of the ground cover of the main crops (soybean and maize) and cover crop on the spatial distribution of weeds for two row sections, ‘within the row (IR)’ and ‘between the rows (BR)’. The cover crop was interseeded in BR 3 – 4 weeks after sowing the main crops in two years, and weed density and vegetation cover ratio (VCR, an index of ground cover) of the main crops and cover crop were measured. There was a significant difference in the spatial distribution of weeds between the two main crops. In IR, weed density was higher in maize than in soybean, while in BR, it was higher in soybean. This means that weed suppression in IR was more important for maize, while the suppression in BR was more important for soybean. The negative relationship between VCR of the main crop plus cover crop and weed density in each row section suggests that the difference in ground cover was one of the reasons for the difference in weed density between the two main crops. The cover crop markedly increased the VCR in BR, but only slightly increased VCR in IR in both main crops. These results suggest that the cover crop was more compatible with soybean than with maize, because the high weed density in IR of maize could not be decreased sufficiently by the slight increase of VCR in BR by the cover crop.  相似文献   

2.
Field studies were conducted in 1991 and 1992 to evaluate the effects of cultivar, row spacing, and within-row spacing on potato yield and quality under weedy and weed-free conditions. Cultivars tested were Russet Burbank, an indeterminate, large-vined cultivar, and Frontier Russet, a determinate, small-vined cultivar. The two cultivars were grown under weedy and weedfree conditions with either 76 or 91 cm row spacings in factorial combination with either 15, 25, or 35 cm within-row spacings. The major competitive weeds were redroot pigweed, common lambsquarter and hairy nightshade. The weedy plots consistently produced less vine and tuber biomass and less total and U.S. No. 1 tuber yield than the weed-free plots. The time of weed emergence strongly affected potato competitiveness with weeds. In 1991, weeds emerged after potatoes, giving the crop some competitive advantage. In 1992, weeds emerged before the potatoes, resulting in heavy competition and large decreases in vine and tuber production for both cultivars. Reductions in U.S. No. 1 tuber yield were proportionally greater than the reductions in total yield. Weedy plots in 1991 and 1992 produced 25% and 68% less total yield and 43% and 92% less U.S. No. 1 yield, respectively, than weed-free plots. Russet Burbank was more competitive with weeds than Frontier Russet. Frontier Russet suffered substantial losses in productivity due to the presence of weeds, even under moderate weed pressure in 1991. Decreasing the row width from 91 to 76 cm did not provide a competitive advantage for potatoes as measured by vine or tuber biomass, or tuber yield. Decreasing within-row spacing under weedy conditions provided some competitive advantage and resulted in higher vine and tuber biomass and greater total tuber yield. The closer within-row spacing resulted in a substantial decrease in U.S. No. 1 yield with Russet Burbank but a slight increase with Frontier Russet. There were several significant interactions involving cultivar, weed level, and within-row spacing. These were due, in part, to each cultivar’s unique response to inter-and intraspecies competition. Cultivar had a greater influence on competitiveness than any plant spatial arrangement.  相似文献   

3.
Narrow row planting has potential to increase crop growth and yield by increasing radiation interception (RI) and minimizing intra-specific competition in the crop. It reduces weed growth and competitiveness, making resources that are normally taken up by weeds available for crop uptake. The objective of this study was to assess the effect of row spacing on weed biomass, bean growth and yield in a semi arid agro-ecology at Nyagatare, Rwanda. The study was set up as a randomized complete block design in October–December 2009 and repeated in 2011. Planting patterns at a constant bean population density of 111 000 plants ha−1 random planting (normal practice), narrow row planting (30 cm × 30 cm), medium row planting (45 cm × 20 cm) and wide row planting (60 cm × 15 cm) were treatments tested in this study. The narrow row square planting pattern significantly (P < 0.01) out-yielded the wide and random planting patterns by 22–31% in the wet 2009 season and by 27–70% in the dry 2011 season. Bean plant dry weight (P < 0.01) and number of pods per plant (P < 0.01) was highest in the narrow row and lowest in the random planting pattern in the dry 2011 season. Bean plant dry weight was not significantly affected (P > 0.05) in the wet 2009 season but number of pods plant−1 (P < 0.001) was highest in the narrow row and lowest in the random planting pattern. Weed biomass was significantly lower (P < 0.05) in the narrow row and the random than in the medium and wide row planting patterns at 3, 6 and 9 weeks after emergence in 2009, but the random planting had the highest weed biomass in 2011. The results suggest that the effects narrow row planting in alleviating the negative impact of inter- and intra-specific competition were more strongly expressed in the dry 2011 season than the wet 2009 season when water was probably not a limiting factor to crop growth and yield. The results also indicate that narrow and equidistant planting has potential to increase bean yield by 30%–70%, when compared to random planting (normal practice) while at the same time suppressing weed growth and is recommended for smallholder farmers in Rwanda and other semi-arid areas in sub-Saharan Africa.  相似文献   

4.
Narrow-row planting patterns directly affect crop yield and competition in intercropping systems. A two-year (2012 and 2013) field experiment was conducted to determine the interactive behavior between intercrops in a maize–soybean relay strip intercropping system. Maize plants were planted in different narrow-wide row planting patterns, whereas soybean was planted in wide rows. The total biomass and grain yield of maize increased with increasing maize narrow-row spacing, but the opposite trend was observed for soybean. The aggressivity, competitive ratio, and partial relative crowding advantage values for maize were greater than those for soybean. Moreover, the competitive interaction of the intercrops was affected by the distance between maize and soybean rows. The highest intercrop land equivalent ratio (LER) 1.61 and 1.59 was found in the 40:160 planting pattern (i.e. 40 cm narrow-row spacing and 160 cm wide-row spacing of maize) during 2012 and 2013, respectively. Combined with actual yield loss and LER, the intense intra-specific competition of maize plants reduced the depression for the associated soybeans when the maize narrow-row spacing was less than 30 cm. When the narrow-row spacing was wider than 50 cm, soybean growth was seriously depressed by maize because of the stronger inter-specific competition between maize and soybean. The maximum yield and economic advantage appeared in the 40:160 narrow-wide row planting pattern. Therefore, intercropping advantage may be achieved by changing the row spacing and distance between intercrop rows to coordinate the inter-specific competition between maize and soybean.  相似文献   

5.
Research was conducted to quantify the effects of potato cultivar, row spacing, and weed control treatments on weed biomass, crop yield, and net crop value. Cultivars evaluated included Russet Burbank, Russet Norkotah, Goldrush, Dark Red Norland, Snowden, and Atlantic. Inter-row spacings of 76 and 91 cm with an intra-row spacing of 30 cm were evaluated in 1996 and 1997. Weed control treatments included a herbicide tank-mix of metribuzin and metolachlor, cultivation, and a hilling-only control. Common lambsquarters and total weed biomass were greater in the 76-cm row spacing than in the 91-cm row spacing across all cultivars in 1996 and 1997. In 1997, chemical control resulted in less weed biomass than both the hilling-only and cultivation treatments. Total marketable yield was greater in the 91-cm row spacing than in the 76-cm row spacing across cultivars in 1996, but was similar across row spacings in 1997. Net crop value was greater across cultivars in the 91-cm row spacing than in the 76-cm row spacing in 1996. Reduced weed biomass in 1996 and 1997, coupled with greater total marketable yield and net return in 1996, indicated that the 91-cm row spacing was the optimal row spacing for Russet Burbank, Goldrush, Russet Norkotah, Snowden, and Atlantic cultivars in 1996 and 1997. Similar yields and net crop value among weed control treatments in 1996 and 1997 indicated that cultivation and possibly even hilling-only areas within fields can be viable alternatives to herbicide use.  相似文献   

6.
Sustainable crop production is necessary to ensure global food security and environmental safety. Conservation agriculture (CA) is gaining popularity around the globe due to its sustainable approaches such as permanent soil cover, minimal soil disturbance, planned crop rotations and integrated weed management. Weed control is the biggest challenge to CA adoption. Weed ecology and management is different in CA than in conventional agriculture. In CA, weeds expression, seed bank status, distribution, dispersal mechanisms, diversification, growing patterns and competition trends are complex and differ from conventional systems. It is due to reduced tillage of the soil and the flora that thrives in CA. Reduced tillage systems affect the efficacy of herbicides and mechanical weed control measures. So, it is an important task to find out the differences and to fabricate new management options. In this review, changing weed dynamics have been framed. A novel aspect of this review is the comprehensive account of sustainable weed management strategies in relation to CA. Modified tillage operations, improved cultural practices, bioherbicides, chemical herbicides, allelopathy, and crop nutrition have been identified as suitable weed management tools. None of these offers complete control but the integration of these tools in suitable combinations works efficiently. Weeds dominating CA and their responses to CA components are highlighted. For example, small seeded and perennial weeds are more abundant in CA. The role of herbicide resistance in weeds and herbicide tolerant (HT) crops in CA is also highlighted. Allelopathy and crop nutrition are discussed as modern weed management tools for CA. A detailed account of weed responses to fertilizer management options is also given. Integrated weed management compatible to cropping patterns and climatic conditions offers the best results in CA. Future efforts must be directed towards the optimization and integration of these weed management practices.  相似文献   

7.
行距对大豆竞争有限资源的影响   总被引:7,自引:3,他引:7  
不同行距引起大豆生长竞争.当某一因子的直接供应不能满足群体生长的需要而成为限制因子时,竞争便开始.本文主要从基因型、光、水、养分和杂草等5方面综述过去40年行距变化对大豆竞争资源的影响.研究表明,不同品种对行距变化的反映不同,其依赖于季节降雨和灌溉.有限结荚习性类型可获得较高产量,抗倒伏的大豆品种适于窄行种植.无限结荚习性大豆在一定的行距条件下也可获得最佳产量.与宽行大豆种植相比,窄行大豆栽培增加光截获(LI),其原因在于LAI、消光系数的增加及分枝类型品种的选择.水分利用效率和蒸发蒸腾作用不受行距影响,但在灌溉条件下产量增加.行距变化对养分吸收影响较大,随着行距的减小,植株产量和N、P、K的吸收均增加,且增加幅度受施肥水平制约.行距不影响N素的固定.行距不影响杂草密度、萌发高峰及持续时期,但在窄行栽培条件下可减少杂草的数量及干重,再配以适量的除草剂可获得良好的除草效果.不同行距条件下的大豆生理反应、养分和水分的吸收及转运,不同冠层的光能利用以及土壤环境的变化仍需进一步深入研究.  相似文献   

8.
王玉娜  米国华 《玉米科学》2021,29(4):155-160
利用吉林省梨树县黑土区氮肥长期定位试验田(施氮水平为0、60、120、180、240、300 kg/hm2),2019~2020两年调查玉米田杂草种类、密度和生物量及其与玉米生物量和产量的关系.结果表明,试验条件下玉米田杂草主要是禾本科杂草,尤其是水稗草Echinochloa oryzoides.与不施肥相比,60 k...  相似文献   

9.
Cover crops have a wide-ranging influence on the agroecosystem and create multiple benefits for farmers. A major benefit of cover crops is the suppression of weeds during fall and winter, which can help to reduce soil tillage and herbicide use. However, only a small number of cover crop species are currently grown in Germany. To enlarge this number, four new cover crop species including tartary buckwheat, forage radish, red oat and grain amaranth were tested in comparison with common cover crop species such as white mustard, oilseed radish and phacelia. Emergence, soil coverage, dry matter production and weed suppression ability was assessed for all cover crop species. White mustard emerged faster than all other cover crops and produced the highest amount of shoot dry matter at both locations in southwest Germany twelve weeks after planting (WAP). Oilseed radish was the only cover crop that reduced the weed dry matter in all experiments eight WAP. Phacelia was able to reduce weed density by 77% at Meiereihof twelve WAP. Tartary buckwheat offered the highest soil coverage four WAP, produced the greatest shoot dry matter eight WAP and reduced weed dry matter by more than 96% at Meiereihof and Ihinger Hof twelve WAP. Forage radish produced the highest root dry matter and reduced spring weed density by more than 81% in all experiments. Red oat and grain amaranth emerged slowly, produced less biomass than other cover crops and did not suppress weed growth. The results show that tartary buckwheat and forage radish are well suited as new cover crops in Germany due to their fast growth and good weed suppression ability.  相似文献   

10.
Weeds are a major constraint for organic crop production. Previous research has found that cover crops in reduced tillage systems can provide weed interference, subsequently reducing inputs and improving crop yield. However, questions remain about effects of cover crop species identity and cover crop biomass on weed suppression and crop yield. This four-year study investigated how winter cover crops grown alone or in mixture influenced weed presence and crop yield in a reduced tillage organic vegetable system. Treatments were barley (Hordeum vulgare L.), crimson clover (Trifolium incarnatum L.), mixed barley + crimson clover, and a no-cover crop control. Plots were flail-mowed and strip-tilled prior to planting main crops (2011 and 2012: broccoli Brassica oleracea L.; 2013 and 2014: crookneck squash Cucurbita pepo L.). We measured density, diversity, and community composition of weeds and viable weed seeds, changes in weed percent cover within growing seasons, and crop yield. We found that the presence of barley, crimson clover, or barley + crimson clover reduced weed density by 50% relative to the control. Cover crop biomass negatively influenced weed density and weed seed diversity, and positively influenced squash yield. Weed percent cover within growing seasons did not respond differentially to cover crop treatment. Cover crop treatment and cover crop biomass had no influence on weed or weed seed community composition. These results suggest that reduced tillage winter cover crops in mixture or monoculture can similarly suppress weeds and improve yield, primarily due to biomass effects.  相似文献   

11.
Weed management under conservation agriculture (CA), especially when manually controlled is one of the major setbacks for the widespread adoption of CA in southern Africa. This study was conducted at three on-station and three on-farm sites: CIMMYT-Harare, Domboshawa Training Centre and Henderson Research Station (on-station sites), Hereford farm, Madziva communal area and Shamva communal area (on-farm sites). The evaluation focused on the effect of initial herbicide application and succeeding manual weeding whenever weeds were 10 cm tall or 10 cm in length for grasses with stoloniferous–rhizomatous growth habit. Weeds counts, weeding time and grain yields were collected at all on-station sites. At the on-farm sites, weed counts were done before weeding and a number of farmers were timed during weeding. The results showed that herbicides use reduced the weed density and time taken on weeding at all sites. Combining herbicides e.g. atrazine, glyphosate and metalachlor had the lowest weed density and weeding time at all sites. However, the treatments had no effect on maize grain yields suggesting that appropriate and timely manual weeding reduced crop/weed competition. Herbicides treatments had higher input costs than manual weeding due to the additional cost of herbicide but the treatment with manual weeding only had more overall labour days compared to the mixture of three herbicides. In order to achieve economic benefits, smallholder farmers may use the time for value addition e.g. expand cropped land area, use time for value addition, or sell new products on the market. Herbicides use reduces the manual labour needed to control weeds and minimise total crop failure due to untimely weeding hence, herbicides are an important but not the only weed control option under CA systems in Zimbabwe.  相似文献   

12.
Abstract

Increasing the ability of crops to compete against weeds, through either enhancing crop tolerance or crop interference to weeds, provides an attractive addition to current weed control practices and could be an integral component of weed management systems. Research has shown that considerable variability exists among crop culti-vars with respect to their ability to compete with weeds. Despite this evidence, directed research on competitive crops has been minimal. Reasons for this lack of emphasis in plant breeding programs include the effectiveness of current weed management with tillage and herbicides, and the lack of easily identifiable crop characteristics that are indicative of weed competitiveness. Expanded knowledge of specific crop-weed interactions would facilitate crop competitiveness to weeds through either crop management practices or plant breeding. Plant breeders need basic and applied information to identify favorable crop-weed competitive traits in order to enhance or incorporate those traits into crop cultivars. Accelerated research on weed competitive crops should lead to more economical, effective, and feasible integrated weed management programs for all crops.  相似文献   

13.
Weed control thresholds have been used to reduce costs and avoid unacceptable yield loss. Estimation of weed infestation has often been based on counts of weed plants per unit area or measurement of their relative leaf area index. Various linear, hyperbolic, and sigmoidal regression models have been proposed to predict yield loss, relative to yield in weed free environment from early measurements of weed infestation. The models are integrated in some weed management advisory systems. Generally, the recommendations from the advisory systems are applied to the whole field, but weed control thresholds are more relevant for site-specific weed management, because weeds are unevenly distributed in fields. Precision of prediction of yield loss is influenced by various factors such as locations, yield potential at the site, variation in competitive ability of mix stands of weed species and emergence time of weeds relative to crop. The aim of the review is to analyze various approaches to estimate infestation of weeds and the literature about yield loss prediction for multispecies. We discuss limitations of regression models and possible modifications to include the influential factors related to locations and species composition in context of their implementation in real time patch spraying.  相似文献   

14.
Aerobic rice systems can substitute the conventional rice cultivation system in the wake of water shortage and energy crises. The major constraint in the success of aerobic rice is high weed infestation. Hence, we have discussed the weed flora, yield losses, herbicide-resistant weeds, need for integrated weed management, and approaches to manage weeds in aerobic rice systems. A review of several studies indicated that 90 weed species were competing with rice under aerobic systems, causing 23–100% reductions in grain yield. Weed control in aerobic rice gets difficult due to shifts in weed flora and herbicide resistance development in weeds. A wide increase in grain yield (15–307%) by implementing different weed control practices elaborates the scope of weed management in aerobic rice. Practices, such as soil solarization, sowing of competitive crop cultivars, stale seedbed preparation, mulch application, correct fertilization, and intercropping, were found to have particular significance for managing weeds in aerobic rice systems. Moreover, hand weeding and mechanical control were more effective when combined with other weed control methods. Herbicides, such as pendimethalin, 2,4-D, penoxsulam, ethoxysulfuron, bispyribac-sodium, triclopyr, imazosulfuron, bensulfuron, pretilachlor, and metsulfuron, were found most effective in aerobic rice systems. Keeping in view the severity of weed infestation in these systems and the evolution of herbicide resistance, reliance on a single control method is out of question. Hence, the approach of integrated weed management is the most appropriate for proper weed management and the subsequent success of rice cultivation using aerobic systems.  相似文献   

15.
Developing more competitive rice cultivars could help improve weed management and reduce dependency on herbicides. To achieve this goal, an understanding of key traits related to competitiveness is critical. Experiments were conducted at Gelemen and Bafra districts of Samsun province in Turkey between 2008 and 2009 to measure the competitiveness of rice cultivars against Echinochloa crus-galli, a problematic weed in rice fields. Five rice cultivars (Osmancık, Kızılırmak, Karadeniz, Koral and Neğiş) and five E. crus-galli densities (0, 5, 10, 20, and 30 plants m−2) were used. Koral produced significantly more tillers than the other cultivars irrespective of E. crus-galli densities and reduced E. crus-galli tiller production by about 29.5% at Gelemen and 15.8% at Bafra at the highest weed density. E. crus-galli interference reduced rice height and there was a density dependent relationship. Koral was the most competitive cultivar; it maintained high biomass accumulation in early growth stages and suffered smaller reductions in plant height in the presence of E. crus-galli, compared to the other cultivars. In the absence of weed competition, Koral and Neğiş produced the highest yields at both locations. Stepwise regression analyses of the combined data from both years showed tillering capacity, early growth crop biomass, and plant height were critical traits related to competitiveness. These traits should be considered by plant breeders in their efforts to develop rice cultivars with enhanced competitiveness against weeds. Development of such cultivars could substantially reduce herbicide and labor inputs for rice production.  相似文献   

16.
Weed control in smallholder farming systems of sub-Saharan Africa is labour intensive or costly. Many researchers have therefore advocated for the use of cover crops in weed management as an affordable alternative for smallholders. Cover crops may be grown in rotations to suppress weeds and reduce the reliance on herbicides. The use of cover crops creates microenvironments that are either conducive or inhibitive to the emergence of certain weed species. A study, initiated in 2008 in contrasting soils at four different locations of Zimbabwe, investigated the effect of maize (Zea mays L.)-cover crop rotations on the emergence of weeds that showed dominance in those soils. Weed assessments were however, carried out from 2011 to 2014. The weed species Galinsoga parviflora Cav., Commelina benghalensis L., and Richardia scabra L. showed dominance in all four locations with weed densities as high as 500 plants m−2 being recorded for R. scabra L. in a sandy soil. Maize-cover crop rotations resulted in higher densities of Bidens pilosa compared with maize monocropping (control treatment) due to its high nitrogen (N) requirement to produce more seeds. On the other hand, the integration of cover crops such as pigeon pea [Cajanus cajan (L.) Millsp.] that had poor shading qualities, due to large gaps or spaces and slower initial growth, had limited effects on competitive weeds such as Cyperus esculentus L. which tend to dominate exhausted soils. The density of C. esculentus was 38% greater in maize–pigeon pea rotations compared with the control treatment. Variability between seasons and sites affected emergence of all weeds in the present study, which masked long-term trends. The results suggest that there is need to identify the germination and emergence requirements of specific weeds and select cover crops best suitable for their control. The study provides useful information for farmers and advisors on the best cover crops for control of certain problematic weeds in different soil types of Zimbabwe.  相似文献   

17.
Performance consistency of reduced atrazine use in sweet corn   总被引:1,自引:0,他引:1  
Atrazine is the most widely used herbicide in North American corn production; however, additional restrictions on its use in the near future are conceivable. Currently, a majority of commercial sweet corn fields suffer losses due to weeds, despite widespread use of atrazine. Field experiments were conducted in the primary North American production areas of sweet corn grown for processing to determine the implications of further reductions in atrazine use on weed control and crop yield. A range of atrazine doses (0-1120 g ha−1) applied postemergence with tembotrione (31 g ha−1) were tested in two hybrids differing in canopy architecture and competitive ability with weeds. Atrazine applied postemergence reduced risk (i.e. more variable outcomes) of poor herbicide performance. Atrazine doses up to 1120 g ha−1 with tembotrione improved grass control and broadleaf weed control in five of eight and seven of eight environments, respectively. Of the three environments which had particularly low broadleaf weed control (<50%) with tembotrione alone, sweet corn yield was improved with atrazine. Hybrid ‘Code128’ produced a taller, denser canopy which was more efficient at capturing light and competing with weeds than ‘Quickie’. As a result, greater crop competitiveness decreased risk of incomplete weed control as atrazine dose was reduced. Atrazine's contribution to weed control and yield protection was greatest when other aspects of weed management resulted in poor weed control. Should atrazine use be further restricted or banned altogether, this research demonstrates the importance of improving other aspects of weed management systems such as herbicidal and non-chemical tactics.  相似文献   

18.
Fennel has been widely used in traditional medicine for their antimicrobial effects. Since fennel is long duration crop and have slow initial growth, it protection from weed is essential. Experiments were conducted for two consecutive seasons to evaluate the efficacy of soil-applied herbicides at the reduced rates in combination with physical control for weed management and optimizing the yield of fennel. Treatments were type of herbicide (trifluralin and pendimethalin), application dose (recommend dose (R), 75% R, 50% R, and 0% R) and physical weed control (none, one hand-weeding at 50 day after planting (DAP), wheat straw mulch). Weed-free control treatment was also included in each year. The results showed that the use of soil-applied herbicides resulted in reduced weed biomass but did not provide season long weed control without an additional physical control. In both seasons, pendimethalin provided better weeds control than trifluralin. Reduced herbicide rates were found to be more effective when herbicides application followed by hand-weeding than when were used alone or combined with mulch. Experimental results also showed that one time increasing in herbicide rates increased seed yield by 17.5 and 7.5% in 2012 and 16.5 and 6.3% in 2013, when one hand-weeding and mulching were used as supplemental control, respectively. Overall, the 75% of the labeled recommended rate of herbicides followed by one hand-weeding at 50 DAP produced consistently high yields and less weed biomass, reflecting both superior weed control and crop safety.  相似文献   

19.
玉米行距对大豆/玉米间作作物生长及种间竞争力的影响   总被引:1,自引:0,他引:1  
为探明大豆玉米间作系统中玉米种植行距对间作作物生长及种间资源竞争的影响。在固定带宽的大豆/玉米间作系统中,设置10,20,45,60和70 cm 5个间作玉米种植行距,分析间作系统的间作优势、作物生长情况以及大豆相对于玉米的资源竞争力变化。结果表明:随间作玉米行距增加,间作优势增加,70 cm行距间作优势最大,达4 271.4 kg·hm-2。Logistic生长拟合曲线表明:随玉米行距增加,大豆生物累积量减小,达到最大日生长速率峰值的天数缩短,玉米生物累积量最大值出现在D45处理下,达43 471.1 kg·hm-2,D45处理达到最大日生长速率峰值的天数最长,达130 d,且生长后期日生长速率持续高于其它处理;共生期内,伴随作物生长,大豆相对于玉米的资源竞争力Asm逐渐降低,共生后期,表现为随间作玉米种植行距增加,大豆相对于玉米的竞争力Asm逐渐减小。综合分析表明:河西灌区大豆/玉米间作系统中,玉米是强竞争力作物,玉米种植行距为45 cm,有利于大豆和玉米的生长及产量形成,大豆和玉米种间竞争力较弱,可作为河西灌区大豆/玉米间作系统中间作玉米的最佳行距配置。  相似文献   

20.
In India, dry-seeded rice (DSR) production systems are rapidly replacing conventional rice production systems due to various advantages. DSR systems can be managed under zero-till (ZT) conditions or after a preparatory tillage, often referred to as conventional tillage systems (CONT). Although previous reports indicate the contribution of tillage to weed suppression, the effect of one-time preparatory tillage in a DSR system could vary depending on the dominant weeds in the system, vertical seed distribution and the weed seed dynamics. A study was conducted to test the efficacy of ZT and CONT and their interaction with herbicide treatments on the weed population dynamics and rice grain yield in 2010 and 2011. Tillage systems did not affect weed emergence, weed biomass, tiller production and crop yield. However, herbicide treatments varied in their efficacy on individual weeds. Hand-weeding treatments and pendimethalin combined with hand weeding did not effectively control Cyperus rotundus L. and Panicum maximum Jacq. (a perennial grass weed with underground parts). The herbicide combination of metsulfuron and chlorimuron was effective in controlling C. rotundus but not grass weeds. This indicates the need for sequential applications of herbicides for grass weed control or integration of hand weeding to achieve broad-spectrum weed control. Apart from hand weeding (three times), treatment with penoxsulam–cyhalofop and pendimethalin followed by (fb) hand weeding resulted in low weed density, high tiller production and grain yield. The study clearly indicates that tillage does not always lead to weed suppression compared with ZT, and herbicides must be chosen based on the dominant weeds in a system. The results of this study are pertinent as herbicide-resistant weeds are rapidly evolving under continuous herbicide selection pressure, which warrants studies on enhancing productivity through low-input, environmentally friendly and sustainable production technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号