首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Insecticide lethal and sub-lethal effects on non-target species are a focus in pest management programs. However, such studies are usually centered in relatively few groups of natural enemies of insect pests. Earwigs, although insect pest predators of key importance in Neotropical maize fields, have received very little attention. The earwig Doru luteipes (Sccuder) (Dermaptera: Forficulidae) is one of the main predators of the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Both species were subjected to toxicity and selectivity studies with the insecticides chlorantraniliprole, chlorfenapyr, chlorpyrifos, λ-cyhalothrin, deltamethrin, etofenprox, methomyl and spinosad. The behavioral locomotory response of D. luteipes to these compounds was also assessed. Concentration-response bioassays indicated very low potency of chlorantraniliprole (>550,000× less toxic), followed by spinosad (>3,500× less toxic) and etofenprox (>1,100× less toxic) as compared to chlorpyrifos, the most toxic insecticide studied against this earwig species. These same three compounds exhibited the highest selectivity when comparing the earwig with its prey, the fall armyworm. Time-response bioassays using the insecticide label rates recommended against the fall armyworm confirmed the high selectivity of chlorantraniliprole and etofenprox, in addition to deltamethrin and methomyl. Again chlorpyrifos exhibited the lowest levels of selectivity. Exposure of the earwig to insecticide-treated surfaces indicated that spinosad reduced the locomotory activity of the adults probably increasing their insecticide exposure, while they avoided chlorfenapyr-, etofenprox-, and chlorpyrifos-treated surfaces. Chlorantraniliprole and etofenprox seem the most promising compounds for use against S. frugiperda whilst preserving populations of D. luteipes.  相似文献   

2.
草地贪夜蛾是2019年1月新入侵我国云南的重大农业害虫,4月首次在海口玉米田中剥查发现该虫。草地贪夜蛾严重威胁到海南本地的鲜玉米生产,筛选出具有较高毒力水平的化学药剂防治该虫迫在眉睫。本文采用浸叶法测定了15种杀虫剂对草地贪夜蛾幼虫的毒力。实验结果表明,采用较低浓度的甲维盐(5 mg/L,24 h)和多杀菌素(5 mg/L,24 h),以及较高浓度氯虫苯甲酰胺(50 mg/L,72 h)和辛硫磷(100 mg/L,72 h)时,对草地贪夜蛾幼虫的致死率达100%,这4种杀虫剂在24 h的LC50分别为0.28、0.31、9.77和11.7 mg/L;其他种类杀虫剂如灭多威、吡丙醚、氟虫腈、啶虫脒、阿维菌素、高效氯氰菊酯和虱螨脲,在100 mg/L浓度水平下,72 h对草地贪夜蛾幼虫的校正死亡率分别为100%、96.67%、88.33%、86.11%、81.67%、80.83%和80.09%。表明了可选用甲维盐、多杀菌素、氯虫苯甲酰胺和辛硫磷作为主要成分的杀虫剂,并组合其他种类杀虫剂,作为当前防治草地贪夜蛾幼虫主要防治药剂。  相似文献   

3.
The cotton leaf worm, Alabama argillacea, is a key cotton pest in Brazil and is managed with repeated insecticide applications. Reports of insecticide control failures have recently increased, particularly with pyrethroids. The present work assessed the resistance status of A. argillacea to a number of different insecticides currently used in cotton crops. Bioassays were conducted to estimate the response of 2nd-instar A. argillacea populations to deltamethrin, chlorpyrifos, endosulfan, abamectin and spinosad. A leaf dip bioassay with diluted insecticide formulations was performed in the laboratory with five to nine populations depending on the insecticide. LC50 values were estimated by probit analysis after correction for control mortality data and used to calculate the resistance ratios (RR). All assessed populations exhibited varied and significant levels of resistance to all insecticides tested, but only moderate levels of resistance to deltamethrin were observed (RR = 52.3). The LC50 values for deltamethrin were higher than 30 mg/l for most populations, and above the field rate (12.5 mg/l). This suggests that the frequency of resistant individuals in these populations was likely above the critical frequency. There was low to moderate resistance to abamectin, chlorpyrifos, endosulfan and spinosad formulations (the highest RRs observed were 4.2, 8.4, 11.1 and 23.5, respectively). Despite the moderate levels of resistance to pyrethroids in A. argillacea, overall results indicate the presence of low to moderate resistance of A. argillacea to insecticides currently used against cotton pests in Brazil.  相似文献   

4.
Studies were carried out to evaluate the resistance of Pakistani populations of the beet armyworm, Spodoptera litura (F) to several commonly used insecticides. Different field populations of S. litura from four districts of the Punjab were monitored from 2009 to 2011 for resistance to insecticides using a standard leaf dip bioassay method. For organophosphates and pyrethroids, resistance ratios compared with a susceptible Lab-Pk population were in the range of 8–109 fold for deltamethrin, 11–139 fold for cypermethrin, 19–143 fold for chlorpyrifos and 39–162 fold for profenofos. For new chemistry insecticides, resistance levels were 2–74 fold for spinosad, 4–216 fold for abamectin, 7–87 fold for indoxacarb, 2–77 fold for emamectin benzoate, 1.9–58 fold for lufenuron and 4–43 fold for methoxyfenozide. Pairwise correlation coefficients of LC50 values showed a positive correlation with cross-resistance among deltamethrin, cypermethrin and chlorpyrifos, while resistance to profenofos showed correlations with resistances to other insecticides except chlorpyrifos. New chemistry insecticides showed no correlations between any of the tested insecticides. There were high to very high levels of resistance to organophosphates in most of the population, which suggested that the use of these should be avoided against this pest. Selective use of pyrethroids in several areas, including Bahawalpur and Lodhran, where the pest showed a low level of resistance, would appear to be acceptable, the new chemistry insecticides, lufenuron, methoxyfenozide, emamectin and indoxacarb had no, very low, low and moderate resistance levels against populations, respectively. These are considered to be safe to the environment and safer to natural enemies.  相似文献   

5.
Frankliniella occidentalis (Pergande) is a serious pest of a wide range of horticultural and ornamental crops. Populations resistant to most conventional insecticides, including–spinosad, have been detected. To control spinosad-resistant thrips, growers could use a ‘high-rate’/biological control strategy. The proposed strategy is based on a single application of spinosad at double the recommended application rate followed by releasing predatory mites (Acari), which are used as biological control agents of F. occidentalis. This study compared two resistance management strategies on a spinosad-resistant F. occidentalis strain: applying spinosad at twice the recommended rate, and spraying at twice the rate then releasing predatory mites, Typhlodromips montdorensis (Schicha), Neoseiulus cucumeris (Oudemans) and Hypoaspis miles (Berlese). Direct exposure to twice the recommended rate of spinosad killed 100% of all adults of all species of predatory mites. Spinosad residues aged 2–48 h were also highly toxic to adults of all three mite species, causing 96–100% mortality. Spinosad residues aged 48–168 h were less toxic to N. cucumeris than to T. montdorensis and H. miles. LT25 of double the recommended rate of spinosad for T. montdorensis, N. cucumeris and H. miles were calculated as 6.02, 5.3, and 7.08 days, respectively. When released after applying spinosad, T. montdorensis was the most successful species in reducing thrips numbers, followed by N. cucumeris and H. miles. By releasing mites 6–7 days after a spinosad application, our results suggest that F. occidentalis can be effectively controlled. The practical implications of implementing a ’high-dose/biological control’ strategy are discussed.  相似文献   

6.
A 3-yr study (2009–2011) was conducted to examine the spatial and temporal dynamics of stink bugs in three commercial farmscapes. Study locations were replicated in South Carolina and Georgia, in an agriculturally diverse region known as the southeastern coastal plain. Crops included wheat, Triticum aestivum (L.), corn, Zea mays (L.), soybean, Glycine max (L.), cotton, Gossypium hirsutum (L.), and peanut, Arachis hypogaea (L.). Farmscapes were sampled weekly using whole-plant examinations for corn, with all other crops sampled using sweep nets. The predominant pest species of phytophagous stink bugs were the brown stink bug, Euschistus servus (Say), the green stink bug, Chinavia hilaris (Say), and the southern green stink bug, Nezara viridula (L.). Chi-square tests indicated a departure from a normal distribution in 77% of analyses of the variance to mean ratio, with 37% of slopes of Taylor’s power law and 30% of coefficient β of Iwao’s patchiness regression significantly greater than one, indicating aggregated distributions. Spatial Analyses by Distance IndicEs (SADIE) indicated aggregated patterns of stink bugs in 18% of year-end totals and 42% of weekly counts, with 80% of adults and nymphs positively associated using the SADIE association tool. Maximum stink bug densities in each crop occurred when the plants were producing fruit. Stink bugs exhibited greater densities in crops adjacent to soybean in Barnwell and Lee Counties compared with crops adjacent to corn or fallow areas. The diversity of crops and relatively small size of fields in the Southeast leads to colonization of patches within a farmscape. The ecological and management implications of the spatial and temporal distribution of stink bugs within farmscapes are discussed.  相似文献   

7.
【目的】香根草能有效诱集水稻螟虫产卵,且孵化的幼虫取食香根草一定时间后死亡,可用于水稻螟虫的田间防控。但田间防治往往是多种防治措施相结合。为了研究取食香根草后的幼虫对常用杀虫剂的敏感度,【方法】利用稻苗浸渍法测定了茚虫威、氯虫苯甲酰胺、多杀菌素、甲氨基阿维菌素、氟虫胺、氰氟虫腙、阿维菌素、毒死蜱8种常用杀虫剂对水稻大螟和二化螟的毒力作用,以及取食香根草后螟虫对这些药剂的敏感度变化。【结果】8种杀虫剂(氰氟虫腙,甲氨基阿维菌素,氯虫苯甲酰胺,氟虫胺,多杀菌素,阿维菌素,茚虫威,毒死蜱)对大螟的LC50依次为1.04,1.40,2.67,3.48,7.59,13.03,16.57,23.28 mg/L;对二化螟的LC50依次为1.94,2.07,4.20,8.93,9.72,17.63,9.51,64.68mg/L。与取食水稻的螟虫比较,香根草饲喂3d后,大螟幼虫对8种药剂的敏感性均有所提高,致死率提高13.3~22.2个百分点,其中,对氯虫苯甲酰胺、多杀菌素、氟虫胺、氰氟虫腙、毒死蜱的敏感度显著提高;而香根草饲喂后的二化螟幼虫对所有测定药剂敏感度均显著提高,致死率提高26.7~33.3个百分点。二化螟幼虫对所有测定药剂敏感度升高更为明显。【结论】初步明确了水稻螟虫取食香根草后对杀虫剂的敏感度有不同程度提高。  相似文献   

8.
Spodoptera exigua (Hübner) has a worldwide distribution with a high capacity for damaging a wide range of food, forage and fiber crops. It has been reported extensively from all over the world that populations of this pest species have developed field resistance against many insecticides. The objectives of this study were to determine whether an emamectin benzoate resistant field population of S. exigua re-selected with emamectin benzoate in the laboratory (Ema-SEL) showed cross-resistance to other insecticides, whether resistance was stable under laboratory conditions, and whether there were fitness costs associated with emamectin benzoate resistance. Bioassays at G1 for the field population, gave resistance ratios (RRs) of 220, 149 and 38-fold for emamectin benzoate, spinosad and lufenuron, respectively, compared with a susceptible laboratory population (Lab-PK). Resistance ratios were increased by 526-fold and 6-fold compared with Lab-PK and the unselected field population (Ema-UNSEL, G6), respectively after selection with emamectin benzoate (Ema-SEL) for five generations (G6). Selection with emamectin benzoate had no apparent effect on susceptibility of Ema-SEL to spinosad and lufenuron, instead toxicity to the latter insecticides reduced, suggesting there was no cross-resistance between these compounds. Analysis of various life history traits suggested that the Ema-SEL population had a lower overall fitness (0.38) compared with the Lab-PK (1.0). Lack of cross-resistance and the apparent instability of resistance to emamectin benzoate suggest that spinosad and lufenuron are suitable alternatives for use with emamectin benzoate in resistance management. In addition, the high relative fitness costs observed suggests that emamectin benzoate-resistant insects are at a considerable disadvantage to susceptible populations in the absence of selection pressure although this remains to be tested under field conditions.  相似文献   

9.
The fall armyworm, Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) is considered the main key pest of corn crops in Brazil. Entomopathogenic nematodes (EPNs) may be used to control this pest, applied together with other different entomopathogen agents or phytosanity products in the spraying mixture. Thus, the objective of work was to evaluate the compatibility of EPNs with different insecticides used of S. frugiperda control in laboratory conditions. Three species of EPNs (Heterorhabditis indica, Steinernema carpocapsae and Steinernema glaseri) and 18 insecticides registered to control of S. frugiperda in corn crops were tested. Compatibility of the insecticides with EPNs was evaluated by observing mortality and infectivity of infecting juveniles (IJs) 48 h after immersion in solution of the insecticide formulations. Among all insecticides tested, Lorsban™ (chlorpyrifos), Decis™ (deltamethrin), Match™ (lufenuron), Deltaphos™ (deltramethrin + triazophos), Dimilin™ (diflubenzuron), Stallion™ (gamacyhalothrin), Karate Zeon™ (lambdacyhalothrin) Tracer™ (spinosad), Vexter™ (chlorpyrifos), Galgotrin™ (cypermethrin), Certero™ (triflumuron), and Talcord™ (permethrin) were compatible (class 1) with the three nematode species tested under laboratory conditions.  相似文献   

10.
The widespread and intensive use of conventional pesticides, particularly insecticides, presents a major risk to natural enemies of target pests, as well as to the environment in general. The aim of this study was to investigate the differential intrinsic toxicity of insecticides to two key pests of crucifers, Plutella xylostella and Myzus persicae and their respective hymenopteran parasitoids, Cotesia vestalis and Aphidius colemani. Such knowledge can help inform effective integration of insecticides and biological control in IPM systems. Three insecticides generally regarded as being compatible with natural enemies (abamectin, spinosad and indoxacarb) and one compound regarded as harmful to natural enemies (lambda-cyhalothrin) were examined. A comparative measure of the intrinsic toxicity of fresh deposits of insecticides on Chinese cabbage leaf discs was determined for both pest and parasitoids species after exposure to insecticide for 24 h and 120 h, and after 24 h exposure to insecticide plus 96 h on untreated leaf discs. Differences in the susceptibility of pests and parasitoids to different insecticides were marked for P. xylostella and C. vestalis, LC50 values being significantly lower for the pest species. Such differences were not observed for M. persicae and A. colemani. There was a direct relationship between dose, exposure time and toxicity for all insecticides tested. All insecticides tested showed lower toxicity to both parasitoids compared with P. xylostella, which suggests that for this pest species side-effects on parasitoids can be minimised through IPM practices that reduce exposure time to such non-target organisms.  相似文献   

11.
12.
Stink bugs, primarily southern green stink bug, Nezara viridula (Hemiptera: Pentatomidae), are a major pest complex of soybeans (Glycine max) throughout the southern United States. Densities sometimes peak during late R6 and R7 soybean growth stages when soybeans are approaching physiology maturity and the rate of injury from stink bugs is reduced. Field cage trials were conducted from 2005 to 2008 to examine the type and extent of soybean damage caused by southern green stink bugs during the R7 growth stage. The yield response was variable, but overall was not significant. The impact of southern green stink bugs on quality was more consistent. Test weight decreased, and heat damage and total damage increased as stink bug density increased. Based on these data, three economic injury models were developed using different assumptions. The model that assumes no yield loss, does not predict economic injury within the range of stink bug densities tested. However, if the statistically non-significant yield losses are accepted as real, then the models suggest that the southern green stink bug economic injury level and action threshold for soybeans during R7 stage is generally between nine and 15 stink bugs per row m.  相似文献   

13.
14.
《Crop Protection》1986,5(4):254-258
The relative toxicity of 20 rice insecticides to the brown planthopper Nilaparvata lugens (Stål), whitebacked planthopper Sogatella furcifera (Horváth), green leafhopper Nephotettix virescens (Distant) and their predators, the wolf spider Lycosa pseudoannulata (Boes et Str.) and the mirid bug Cyrtorhinus lividipennis (Reuter) was determined by the topical application method. Relative toxicity was based on the LD50 value for each chemical, using the predator divided by the LD50 value obtained using the hoppers. Relative toxicity ratios of the insecticides varied greatly, depending upon the predator:pest combination. Deltamethrin was highly toxic to L. pseudoannulata and C. lividipennis whereas ethylan was 65 and 21 times more toxic to N. lugens than to the two predators, respectively. Overall, ethylan had the highest relative toxicity ratio of the 20 insecticides, being safest to the two natural enemy species.  相似文献   

15.
Nezara viridula (L.) (Hemiptera: Pentatomidae), commonly known in the U.S. as the southern green stink bug (SGSB), is a cosmopolitan, highly polyphagous feeder that causes severe damage to a wide range of agronomically important crops such as fruit, vegetable, grain, tobacco, and cotton, throughout much of the United States, and is a global pest of considerable ecological, agricultural, and economical interest. During dissection of female Nz. viridula, conspicuous black and brown spots or lesions were observed on various internal organs. To determine the cause of these spots or lesions, tissues of fat body, spermatheca, ovaries, and ovulated eggs were collected from healthy and infected individuals. The gross morphology of the spots was characterized, and the microorganisms associated with the infection were identified by amplicon sequencing of the V4 region of the small subunit rRNA gene. The presence of a microsporidian pathogen Nosema maddoxi, Becnel, Solter, Hajek, Huang, Sanscrainte, & Estep (Microsporidia: Nosematidae) which has been observed on other species of stink bug, was evidenced for the first time. The characterization of the gross morphology of this associated microsporidian may enable more rapid determination of microsporidia infection in stink bug colonies and field populations.  相似文献   

16.
The tobacco whitefly, Bemisia tabaci (Gennadius), is an important pest because of its potential to threaten agricultural crops worldwide. Currently, this pest is controlled by the application of chemical insecticides. In our pursuit to identify better insecticides for an effective control of this insect pest, we investigated the lethal effects of five neonicotinoid insecticides including four commercial neonicotinoids and a novel neonicotinoid (cycloxaprid) on B. tabaci MED and MEAM1 cryptic species. In addition, we assessed the sublethal effects of cycloxaprid on B. tabaci MED. Lethal effects of the insecticides were determined using the leaf-dip bioassay, and the results showed that among the tested insecticides cycloxaprid was more toxic to B. tabaci MED and MEAM1 than others, with LC50 values of 0.70 mg/L and 0.59 mg/L, respectively. Cycloxaprid at LC25 (0.16 mg/L) induced sublethal effects in adult MED by prolonging the developmental periods and decreasing the survival rates of all larval instars, pseudopupal and adult stages. Moreover, it significantly shortened the oviposition period of females and decreased their fecundity. Hatching rate of eggs laid by females exposed to LC25 was also markedly reduced. These results indicate that cycloxaprid is a novel alternate insecticide that may effectively control B. tabaci populations.  相似文献   

17.
The cotton bollworm Helicoverpa armigera (Hubner) is one of the most destructive pest insects in Iran and many other countries. In this study, lethal and sublethal effects of methoxyfenozide, and thiodicarb were evaluated against H. armigera larvae that fed on insecticide-treated artificial diet. The effects of methoxyfenozide and thiodicarb were assessed in 3rd instars. Methoxyfenozide and thiodicarb showed LC50 values of 4 and 639 mg a.i./ml, respectively, in H. armigera larvae. Sublethal effects on development, adult longevity, and reproduction were observed in H. armigera larvae that survived exposure to an LC30 of the insecticides. Larvae that were exposed to an LC30 concentration of methoxyfenozide exhibited lower pupal weight and increased larval and pupal developmental times compared with thiodicarb treated larvae or control larvae. Adults that were exposed as larvae to an LC30 concentration of methoxyfenozide or thiodicarb showed reduced fecundity (35% and 30%, respectively) compared to control adults. The tested insecticides significantly reduced adult longevity. The longevity of adult females that as larvae were treated with an LC30 concentration of methoxyfenozide or thiodicarb was reduced by 28% and 23%, respectively, in comparison to control females. We predict that the combination of lethal and sublethal effects of the insecticides, especially methoxyfenozide, will induce significant effects on field population dynamics of H. armigera.  相似文献   

18.
Brown stink bugs, Euschistus servus, are an important early-season pest of field corn in the southeastern United States. Feeding in the early stages of corn development can lead to a number of growth deformities and deficiencies and, ultimately, a reduction in yield. An observational and two experimentally manipulated trials were conducted in 2017 and 2018 to 1) determine optimal timing for assessing brown stink bug damage, 2) assess the level of damage from which yield compensation can occur, and 3) examine the relationship between brown stink bug density and early-season damage and yield. Fields were identified with infestations of brown stink bugs and a damage rating system for early stages of corn was established. Varying rates of brown stink bug densities were introduced using field cages and damage was assessed throughout the season. The density and duration of stink bug infestations were critical factors for damage potential, with each day of active feeding per plant resulting in a loss of ~14 kg/ha in yield. The level of damage in early stages of corn was categorized into easily identifiable groups, with only the most severe damage leading to a reduction in yield. Moderate and minimal feeding damage did not result in yield loss. This study emphasizes the need for early and frequent scouting of corn to determine the risk of damage and yield loss from brown stink bugs. Results from this study can be used to help develop management programs for brown stink bugs in the early vegetative stages of field corn.  相似文献   

19.
Lepidopteran insect pest management has relied heavily on synthetic chemical pesticides, but their efficiency is declining as a result of emerging insecticide resistance. Recently biopesticides have become the most promising products employed in pest management strategies. We investigated the sublethal effects of two bioinsecticides, spinosad and emamectin benzoate, on larval and pupal development, and reproductive activity including calling behaviour, pheromone production, fecundity and fertility of the cabbage moth, Mamestra brassicae. To assess sublethal effects, second instar larvae were fed with 0.005, 0.05, or 0.5 μg a.i. spinosad/g diet or 0.00005, 0.0005, or 0.005 μg a.i. emamectin benzoate/g diet. Both bioinsecticides significantly increased larval and pupal development time and negatively affected reproductive activity of M. brassicae. The calling activity of females decreased very significantly in the highest sublethal concentration of spinosad and in all treatments by emamectin benzoate. The results suggest that, both spinosad and emamectin benzoate are promising alternatives to conventional insecticides for the control of M. brassicae if successfully introduced into Integrated Pest Management (IPM) programs.  相似文献   

20.
The mealybug Phenacoccus solenopsis is a destructive pest of cotton with the potential to develop resistance to most chemical classes of insecticides. Six populations of P. solenopsis from cotton crops at six different locations in Pakistan were evaluated for resistance to selected organophosphate and pyrethroid insecticides. Resistance ratios (RRs) at LC50 were in the range of 2.7–13.3 fold for chlorpyrifos, 11.6–30.2 fold for profenofos and for the three pyrethroids tested were 10.6–46.4 for bifenthrin, 5.8–25.2 for deltamethrin and 4.1–25.0 for lambda-cyhalothrin. This is the first report of resistance to organophosphate and pyrethroid insecticides in Pakistani populations of P. solenopsis. Regular insecticide resistance monitoring programs are needed to prevent field control failures. Moreover, integrated approaches including the judicious use of insecticides and rotation of insecticides with different modes of action are needed to delay the development of insecticide resistance in P. solenopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号