共查询到20条相似文献,搜索用时 46 毫秒
1.
Field experiments were carried out in 2004 and repeated in 2005 and 2006 in central Italy to determine the effect of competition from a natural weed flora on growth and yield of French bean (Phaseolus vulgaris L.). Two treatments were applied; weeds were either allowed to infest the crop or plots were kept weed free for an increasing duration of time (0, 7, 21, 28, 35, 45 days) after crop emergence. To assess the critical period of weed competition (CPWC) and the influence of weed infestation on yield, the Gompertz and logistic equations were fitted to data which represented the increasing duration of weed-free and weed-infested periods, respectively. During the three years of the experiment weeds, allowed to interfere for the whole growing season, reduced fresh pods yields up to 60%, 65% and 59% of the weed-free bean plots. Based upon an arbitrary yield loss (AYL) of 5%, the CPWC was from 50 Growing Degree Days (GDD) to 284 GDD, i.e. from 11 days after emergence (DAE) to 28 DAE. These values correspond to the lowest and highest values observed in the three experiments respectively for the weed-infested and weed-free period. 相似文献
2.
Knowledge of the crop-weed competition period is vital for designing effective weed management strategies in crop production systems. Field studies were conducted at the Agricultural Research Institute, Kahramanmaras, Turkey in 2013 and 2014 to determine the critical period for weed control (CPWC) in three corn (Zea mays L.) types (field corn, popcorn, and sweet corn). A four parameter log-logistic model described the relationship between relative crop yield to both increasing duration of weed interference and length of weed-free periods. The relative yield of corn was influenced by duration of weed-infested or weed-free period, regardless of corn types. Increasing periods of weed interference significantly reduced corn yields in both years. In field corn, the CPWC ranged from 175 to 788 growing degree days (GDD) in 2013 which corresponded to V2–V12 growth stages, and 165–655 GDD (V1–V10 growth stages) in 2014 based on the 5% acceptable yield loss (AYL) level. In popcorn, the CPWC ranged from 92 to 615 GDD (VE–V10 growth stages) in 2013 and 110–678 GDD (V1–V10 growth stages) in 2014. In sweet corn, the CPWC ranged from 203 to 611 GDD in 2013 (V2–V10 growth stages) and 182–632 GDD (V2–V10 growth stages) in 2014. The practical implication of this study is that weed management should be initiated around V1 stage and maintained weed-free up to V12 stage in all corn types to prevent yield losses greater than 5%. These findings could help corn producers improve the cost effectiveness and efficacy of their weed management programs. 相似文献
3.
Critical precipitation period for dryland maize production 总被引:1,自引:0,他引:1
Grain yields for dryland maize (Zea mays L.) production in the semi-arid Great Plains of the United States can be unpredictable because of the erratic nature of growing season precipitation. Because of the high input costs for maize production, farmers need to have a tool that will help them assess the risk associated with dryland maize production. The objectives of this work were to determine the critical period for precipitation during the maize growing season and to develop a relationship between critical period precipitation and maize yield to use as a tool to quantify expected yield variability associated with dryland maize production in this region. Maize yield data were collected at Akron, CO from two dryland cropping systems experiments (1984–2009) in which maize was grown in a 3-year winter wheat (Triticum aestivum L.)–maize–fallow rotation. Yields were correlated with weekly precipitation amounts from planting to harvest in search of the period of time in which yield was most influenced by precipitation. Soil water contents at planting were measured either by gravimetric sampling or by neutron attenuation. Yields were found to be most closely correlated with precipitation occurring during the 6-week period between 16 July and 26 August. The data separated into two linear relationships defined by whether the sum of available soil water at planting and May precipitation was less than or greater than 250 mm. These two linear relationships between precipitation during this critical period and yield were used with long-term precipitation records to determine the probability of obtaining a maize yield of at least 2500 kg ha−1 (generally considered to be a break-even yield) at three locations across the central Great Plains precipitation gradient. This analysis quantified the production risk associated with the highly variable corn yields that result from erratic summer precipitation in this region. 相似文献
4.
The bioconversion into ethanol of insect (Sitophilus zeamais), mold (Aspergillus flavus) and sprout-damaged maize and sorghum was investigated. Kernel test weight losses due to insect damage in maize were almost twice compared to sorghum (18.6 vs. 10.7%). All damaged kernels lost some of the starch and increased soluble sugars, ash and crude fiber. The mold-damaged sorghum contained approximately five times more FAN compared to the control. The sprout-damaged kernels contained the highest amounts of reducing sugars prior (11 g/L) to and at the end (146.5 g/L) of liquefaction with α-amylase. Ethanol yields based on the already damaged grain indicated that sprout-damaged kernels yielded similar amounts compared to sound kernels (381.1 vs. 382.6 L/ton and 376.6 vs. 374.8 L/ton of sorghum or maize respectively). The insect-damaged maize and sorghum have reduced ethanol yields compared with the controls (29 and 23% respectively), and this negative result was mainly due to dry matter losses during the inadequate storage. Despite differences in ethanol yield, all treatments have similar conversion efficiencies (76.1–89.9%) indicating the robustness of yeast facing biotic-damaged feedstocks. This research demonstrates that the use of already damaged insect, mold or sprouted kernels is feasible and a good alternative for biorefineries. 相似文献
5.
In order to determine the critical period of weed control in winter canola (Brassica napus L. cv. Okapi) an experiment was carried out at research field of Tarbiat Modarres University, Tehran, Iran on 2004-2005 growing season. Fourteen experimental treatments which divided into two sets were arranged in Randomized complete blocks design with four replications. In the first set, the crop was kept weed-free from emergence time to two-leaf stage (V2), four-leaf stage (V4), six-leaf stage (V6), eight-leaf stage (V8), early flowering (IF), 50% of silique set (50% SS) and final harvest (H). In the second set, weeds where permitted to grow with the crop until above mentioned stages. In this study critical period of weed control was determined according to evaluate seed bank emerged weed biomass effect on canola grain yield loss using Gompertz and logistic equations. Result showed a critical time of weed control about 25 days after emergence (between four to six-leaf stages) with 5% accepted yield loss. Therefore, weed control in this time could provide the best result and avoid yield loss and damage to agroecosystem. 相似文献
6.
Eight field experiments with maize (Zea mays L.), sunflower (Helianthus annuus L.) and soyabean (Glycine max (L.) Merr.) were carried out in central Italy in order to evaluate the effects of mechanical and chemical methods (spring-tine harrowing, hoeing, hoeing-ridging, split-hoeing, finger-weeding, herbicides in the row + inter-row hoeing, herbicides broadcast) on weed control, weed seed rain and crop yield. The choice of chemical and mechanical treatments in maize and soyabean compared to sunflower, required to be managed more carefully in order to maximize the weed control reducing yield losses. A global rating of weed control methods, based on their weed control efficacy, was obtained as useful means to assist farmers and technicians to choose the more appropriate weed control method. The combination of herbicides intra-row and hoeing inter-row gave best efficacy (on average 99% of weed control), with a 50% reduction in the chemical load in the environment. Hoeing-ridging gave good results, both inter- and intra-row (on average 93% of weed control); this method was also effective in reducing competitive ability and seed production of uncontrolled weeds. Split-hoeing or finger-weeding showed some limitations giving satisfactory results only when combined. Harrowing gave lowest weed control, although when combined to other mechanical methods, can help achieve a better efficacy. 相似文献
7.
Weeds limit hazelnut productivity through competition and interference. Field experiments were conducted from spring 2010 through 2013 to evaluate string trimming alone or combined with herbicides in hazelnut orchards to control mugwort (Artemisia vulgaris L.), purple nutsedge (Cyperus rotundus L.), and burning nettle (Urtica urens L.). Treatments were mowing with a string trimmer (ST) alone, or ST followed by glyphosate, glyphosate + diflufenican, and glyphosate + carfentrazone-ethyl. These combinations also were applied with pendimethalin and oxyfluorfen as pre-emergence applications. The experiments were conducted in Fatsa-Ordu, Turkey, on a sandy clay soil with multi-stemmed trees (ocak). The combination treatments improved weed control compared to ST alone. Glyphosate plus carfentrazone-ethyl application 15 days after ST was the most effective treatment for control of these weeds. This combination was more effective in reducing seed bank reserves of A. vulgaris, C. rotundus and U. urens than herbicides applied alone or in mixtures throughout all seasons. Hazelnut yield was not significantly affected by herbicide treatments in 2010 or 2011. Hazelnut yield increased during the latter half of the experimental period, in 2012 and 2013. In a mixed population of A. vulgaris, C. rotundus and U. urens, 89 plants per m2 caused 12.1% yield loss. When the density increased to 256 plants per m2, yield losses increased to 29.7%. Hazelnut treated with ST followed by glyphosate plus carfentrazone-ethyl had the highest financial return. Post-emergence weed management systems in hazelnut should include ST followed by glyphosate plus carfentrazone-ethyl applications for maximum returns. 相似文献
8.
The effect of weed control treatments for long season control of weeds in maize under zero and minimum tillage was evaluated at Samara in northern Nigeria. Among the weed control treatments evaluated, soil ridging plus application of either 2,4-D or atrazine at 1.5 kg a.i/ha performed well as they effectively controlled weeds and resulted in better growth and a grain yield that was comparable to the hand weed control. Maize production under minimum tillage was better than under zero tillage. 相似文献
9.
The study was carried out to evaluate the impact of tillage system in combination with different herbicides on weed density, diversity, crop growth and yields on 18 farms in Kadoma, Zimbabwe. Experiments were set up as a split plot design with three replications on each farm. Tillage was the main plot (Conservation Tillage (CT), Conventional Tillage (CONV)) and weeding option (hand weeding, cyanazine, atrazine, glyphosate only and mixture of cyanazine + alachlor and atrazine + alachlor) as the sub-plots. Due to the heterogeneous nature of farmers' resource base, the farms were grouped into three farm types: high (Type 1), medium (Type 2) and poorly resourced farmers (Type 3). The hand hoe weeded treatments had 49 percent higher total weed densities in CT relative to CONV, and was statistically similar to the glyphosate treatment. The mixed pre-emergence herbicides reduced the diversity indices by 69 and 70 percent when compared to the hand hoe weeded treatment under CT in cotton and maize, respectively. The effectiveness of all pre-emergence herbicides were not influenced by tillage but were affected by farmers resource endowments with pronounced effect in Farm Type 1. Maximum plant heights of 85 and 238 cm were recorded for mixed pre-emergence herbicides under CT for cotton and maize, respectively. Minimum plant heights of 75 and 217 cm were recorded for the respective hand hoe weeded treatments. The hand hoe weeded treatments resulted in average cotton lint yield of 1497 and 2018 kg ha−1 for maize. The mixed pre-emergence herbicides treatments gave yields of 2138 and 2356 kg ha−1 of cotton and maize, respectively. The higher weed densities in CT under hand weeded treatments underscored the need for other weeding options. Similarly, a mixture of cyanazine + alachlor in cotton and atrazine + alachlor in maize is recommended for suppressing broad and grass weed populations and enhancing yields in CT systems. 相似文献
10.
Ekundayo E.O. Emede T.O. Osayande D.I. 《Plant foods for human nutrition (Dordrecht, Netherlands)》2001,56(4):313-324
The effect of crude oil spillage on growth, productivity and nutrient uptake of maize (Zea mays L.) was assessed in a pot experiment using an Evwreni manifold sample of a petroleum development company, which had aspecific gravity of 0.8778. The Suwan 1 variety of maize was used in the experiment. In crude oil polluted soils, germination was delayed and the germination percentage was significantly affected by oil pollution. Growth was poor in polluted soils using parameters such as plant height, stem girth,ear height, leaf area at four weeks after planting, leaf area at maturity and average length of primary roots as growth indicators. Grain yield was significantly reduced at 95% level of probability with yield (when compared with the control) reduced by as much as 98.6%, 96.5% and 58.3% for preplant,five weeks after planting (5 WAP) and seven weeks after planting (7 WAP) treatments, respectively. Leaf analysis of the maize plants grown in soilscontaminated with crude oil a week before planting (preplant treatment) revealed mean levels of heavy metals (6.18 ppm Zn2+, 0.62 ppm Cu2+,26.24 ppm Fe2+, 10.84 ppm Mn2+, 2.96 ppm Pb2+ and 3.88 ppm Co2+) which are higher than the maximum permissible levels (MPL) for maize in tropical soils. Maize plants that were polluted at other time intervals showed no significant (p>0.05) variation in heavy metal concentrations when compared with the control, and were considered potentiallysafe for human consumption. 相似文献
11.
During the period from 2011 to 2013, several plant diseases repeatedly occurred in vegetable crops grown in Yuanmou County, Yunnan Province, China. Affected plants included cowpea, sword bean, string bean, tomato, lettuce, and water spinach. The diseased plants exhibited symptoms of witches'-broom growth and floral deformations, linking each disease to phytoplasmal infection. Phylogenetic and virtual RFLP analyses of the phytoplasmal 16S rRNA gene sequences amplified from DNA of diseased plants revealed that all of the individual strains present in the diverse vegetable plants were affiliated with a single ‘Candidatus Phytoplasma’ species (‘Ca. Phytoplasma aurantifolia’) and a single ribosomal subgroup (16SrII-A). While presence of subgroup 16SrII-A phytoplasma in this geographic region was reported previously, such widespread infections in diverse plant hosts are unveiled for the first time in this study. In pursuing the source of the infections, we found that areas surrounding the affected vegetable fields were extensively invaded by parthenium weeds (Parthenium hysterophorus); and many of the weed plants exhibited abnormal morphologies that were suspicious of, and later diagnosed with, phytoplasmal infections. Results from genotyping of 16S rRNA and lineage-specific immunodominant membrane protein genes revealed that the vegetable-infecting phytoplasmas and the parthenium weed phytoplasma belong to the same genetic lineage. The findings indicate that parthenium weed poses a substantial risk as a reservoir of phytoplasmal infection of nearby agricultural crops in the geographic region since the ecosystems of Yuanmou are insect-rich, and parthenium weed is known to attract diverse leafhoppers. Further studies are warranted to assess the impact of farmland invasions by the noxious weed and to devise practical measures for improved weed control. 相似文献
12.
Keramati S Pirdashti H Esmaili MA Abbasian A Habibi M 《Pakistan journal of biological sciences: PJBS》2008,11(3):463-467
A field study was conducted in 2006 at Sari Agricultural and Natural Resources University, in order to determine the best time for weed control in soybean promising line, 033. Experiment was arranged in randomized complete block design with 4 replications and two series of treatments. In the first series, weeds were kept in place until crop reached V2 (second trifoliolate), V4 (fourth trifoliolate), V6 (sixth trifoliolate), R1 (beginning bloom, first flower), R3 (beginning pod), R5 (beginning seed) and were then removed and the crop kept weed-free for the rest of the season. In the second series, crops were kept weed-free until the above growth stages after which weeds were allowed to grow in the plots for the rest of the season. Whole season weedy and weed-free plots were included in the experiment for yield comparison. The results showed that among studied traits, grain yield, pod numbers per plant and weed biomass were affected significantly by control and interference treatments. The highest number of pods per plant was obtained from plots which kept weed-free for whole season control. Results showed that weed control should be carried out between V2 (26 day after planting) to R1 (63 day after planting) stages of soybean to provide maximum grain yield. Thus, it is possible to optimize the timing of weed control, which can serve to reduce the costs and side effects of intensive chemical weed control. 相似文献
13.
Dry pea (Pisum sativum L.) yielding and weed infestation response,under different tillage conditions
Legume-crops are considered important components of conservation farming and also of the conventional system in recent years. However, a lack of studies reflect a priority need for primary research into food legumes and their impact on farming systems, which is currently at secondary level to cereals in terms of investigation. The present field study was undertaken to compare the effects of different tillage systems on yielding and weed infestation of pea. Tillage treatments employed included conservation (minimum-tillage and zero-tillage) and conventional system (conventional-tillage) under semi-arid conditions. The weather had a marked influence on yielding and weed diversity of pea crop over the study period. Tillage system had no effect on pea grain yield and the yield components of pea. We observed, with scarcer annual rainfall, lower values of grain yield, straw biomass, harvest index and yield components in minimum-tillage plots. This could be attributable to an increase of the weed community favoured by rooting conditions. Weed density and diversity indices (Shannon and Evenness) presented the highest values in minimum tillage system. Particularly, we observed that decreasing tillage favoured the increase of one annual grass weed (Lolium rigidum Gaudin). Our results highlight the research on weed species associated with low-input systems. 相似文献
14.
R. A. Bustomi Rosadi Afandi Masateru Senge Kengo Ito John T. Adomako 《Paddy and Water Environment》2005,3(4):219-223
The objective of this research was to investigate the critical water content (θ
c) and water stress coefficient (K
s) of soybean plant under deficit irrigation. This research was conducted in a plastic house at the University of Lampung,
Sumatra in Indonesia from June to September 2000. The water deficit levels were 0–20%, 20–40%, 40–60%, 60–80%, and 80–100%
of available water (AW) deficit, arranged in Randomized Completely Block (RCB) design with four replications. The results
showed that the soybean plant started to experience stress from week IV within 40–60% of AW deficit. The fraction of total
available water (TAW) that the crop can extract from the root zone without suffering water stress (p) was 0.5 and θc was 0.305 m3 m−3. The values of K
s at p=0.5 were 0.78, 0.86, 0.78, and 0.71 from week IV to week VII, respectively. The optimum yield of soybean plant with the highest
yield efficiency was reached at 40–60% of AW deficit with an average K
s value of 0.78; this level of deficit irrigation could conserve about 10% of the irrigation. The optimum yield of soybean
plant was 7.9 g/pot and crop water requirement was 372 mm. 相似文献
15.
A field trial in 2003 and 2004 assessed the efficacy of a new formulation of glyphosate, Touchdown Forte HiTech (glyphosate-TF) and two older versions, Roundup (glyphosate-RP) and Touchdown (glyphosate-TD) for weed control in Nigeria. Treatments were glyphosate-TF at 0.25–1.25 kg a.i./ha, glyphosate-RP at 1.8 kg a.i./ha, and glyphosate-TD at 1.0 kg a.i./ha. Weeded and unweeded treatments were controls. Visual evaluations of weed control at 4 and 8 weeks after treatment (WAT) in both years indicated that glyphosate-TF at all doses gave moderate to complete control of all major weeds (50–100%). At 4 WAT, control of Ageratum conyzoides L., Commelina benghalensis L., Ipomoea involucrata P. Beauv., Brachiaria comota [Hochst ex A. Rich] stapf, and Acalypha ciliata Forssk was at a level similar to that in the weeded control. In 2003, all herbicide formulations and the weeded control reduced Imperata cylindrica (L.) Beauv. shoot dry biomass to the same level at 8 WAT (91–100%) and at maize harvest (83–88%). In 2004, 0.50–1.25 kg a.i./ha of glyphosate-TF and 1.8 kg a.i./ha of glyphosate-RP gave 95% reduction at 8 WAT and 97% at harvest, similar to the weeded control. Maize grain yield in the weeded control and herbicide treatments was 2.8 times higher than that in the unweeded control in both years. These results indicate that glyphosate-TF is effective for weed control in maize at herbicide doses lower than the older formulations. 相似文献
16.
Greg C. Wilson Nader SoltaniFrancois J. Tardif Clarence J. SwantonPeter H. Sikkema 《Crop Protection》2010
Volunteer winter cereals are found sporadically in maize (Zea mays L.) fields across southern Ontario. Seven field trials were conducted over a two-year period (2006 and 2007) at four locations to determine the efficacy of five acetolactate synthase (ALS)-inhibiting herbicides for the control of volunteer cereals applied at two post-emergence application timings (2–4 and 4–7 maize leaf tips). The volunteer cereals were a hard red winter wheat (Triticum aestivum L.) (‘Hyland AC Morley’), soft red winter wheat (‘Pioneer 25R47’), soft white winter wheat (‘Pioneer 25W41’), and a autumn rye (Secale cereale L.) (‘FR’) cultivar. Volunteer cereal competition in maize resulted in a yield reduction of up to 44%. Foramsulfuron, nicosulfuron, nicosulfuron/rimsulfuron provided greater than 70% control of the volunteer cereals at 56 days after treatment (DAT), while primisulfuron and rimsulfuron provided greater than 60% control. Volunteer cereal control with early and late application was greater than 82 and 61%, respectively. Hard red winter wheat was the most sensitive to the ALS-inhibiting herbicides with control of 84–93%. Soft red and soft white winter wheat cultivars were intermediate in sensitivity with control of 76–87%, while autumn rye was the least sensitive with control of at 56–71% control at 56 DAT. Maize yields were improved when volunteer cereals were controlled with the use of herbicides compared to the weedy control, but were lower than the weed-free control. Early herbicide application resulted in improved control of volunteer cereals and higher maize yield. 相似文献
17.
Pyroxasulfone is a new herbicide being considered for registration in sweet maize in Canada; however, there is still little information on the doses required to provide 90% control of annual grass and broadleaved weeds found in southwestern Ontario. The objective of this study was to determine pyroxasulfone doses that would provide at least 90% control of several economically important weeds, without impacting final sweet maize yield by more than 5% in comparison to a weed-free control. Six field trials were conducted over a two-year period (2007 and 2008) at three Ontario locations to evaluate the effectiveness of pyroxasulfone at doses ranging from 31.25 to 1000 g a.i. ha−1. The doses required to reduce weed biomass by at least 90% (I90) varied by weed species. Doses of 93, 499, and 111 g a.i. ha−1 were required to reduce the biomass by 90% of redroot pigweed, common lambsquarters and green foxtail, respectively. There was greater than 95% control of velvetleaf, large crabgrass and barnyardgrass with 31.25 g a.i. ha−1, the lowest dose tested. Sweet maize yield could not be consistently maintained within 5% of the weed-free control. There are several factors that may have contributed to the reduced yield, including soil texture effects, competition as a result of poor common lambsquarters control, and hybrid sensitivity. These results show that biologically effective weed control with pyroxasulfone may be achieved at lower than proposed doses for several weed species; it remains unclear if this is economically sustainable due to the potential impacts on yield. 相似文献
18.
Relationships between kernel vitreousness and proteins and starch partitioning to the floury and vitreous regions of the endosperm were monitored in a set of 13 maize inbred lines. Decrease of protein contents from the vitreous to the floury endosperms were mainly assigned to α-zeins. Using Raman microspectroscopy, we observed a protein gradient from the periphery to the center of endosperms that well fitted with the inverse relationships between vitreousness and protein content of the vitreous and floury regions. In addition, Raman microspectroscopy highlighted an increase of starch crystallinity from the periphery to the center of the maize endosperms. This agrees with the higher amylose and associated lipid contents within starches of vitreous than in those of floury endosperms. Finally, starch granules from vitreous regions displayed more channels than the floury ones. These channels contain proteins that might favor adhesion of proteins to starch granules or granule–granule contacts to form the close packing of the vitreous endosperm. Therefore transition from vitreous to floury endosperm is at least the result of both protein and starch gradients. These gradients are probably associated with metabolic gradients that have been observed during endosperm development. 相似文献
19.
Organic wheat producers are interested in testing propane flaming as part of an integrated weed management program for organic wheat production. Therefore, the objective of this study was to collect baseline information on winter wheat tolerance to broadcast flaming as influenced by its growth stage at the time of flaming and dose of propane. Field experiments were conducted at the Haskell Agricultural Laboratory of the University of Nebraska, Concord, Nebraska in 2007–2008 and 2008–2009 utilizing six doses of propane applied at four growth stages including: four leaves-4L, three tillers-3 T, shoot elongation-SE and boot stage-BS. The propane doses were 0, 12, 31, 50, 68 and 87 kg ha−1 and were applied using a custom built flamer driven at a constant speed of around 6 km h−1. Crop response to propane doses was described by log-logistic models based on visual estimates of crop injury, various yield components (spikes m−2, kernels spike−1 and 1000-kernel weight) and grain yield. Overall response to flaming was influenced by the growth stage of wheat and propane dose. In general, wheat at 3 T was the most tolerant and at BS was the most susceptible stage to broadcast flaming. Flaming negatively affected all yield components of wheat. Reduction of grain yield increased with increase in propane dose at each growth stage. The maximum yield losses of about 21%, 32%, 63% and 74% were obtained with the highest propane dose of 87 kg ha−1 applied at 3 T, SE, 4L and BS growth stages, respectively. Due to unacceptable yield loss, the use of broadcast flaming in winter wheat at the tested growth stages is not recommended. 相似文献
20.
Weed control in smallholder farming systems of sub-Saharan Africa is labour intensive or costly. Many researchers have therefore advocated for the use of cover crops in weed management as an affordable alternative for smallholders. Cover crops may be grown in rotations to suppress weeds and reduce the reliance on herbicides. The use of cover crops creates microenvironments that are either conducive or inhibitive to the emergence of certain weed species. A study, initiated in 2008 in contrasting soils at four different locations of Zimbabwe, investigated the effect of maize (Zea mays L.)-cover crop rotations on the emergence of weeds that showed dominance in those soils. Weed assessments were however, carried out from 2011 to 2014. The weed species Galinsoga parviflora Cav., Commelina benghalensis L., and Richardia scabra L. showed dominance in all four locations with weed densities as high as 500 plants m−2 being recorded for R. scabra L. in a sandy soil. Maize-cover crop rotations resulted in higher densities of Bidens pilosa compared with maize monocropping (control treatment) due to its high nitrogen (N) requirement to produce more seeds. On the other hand, the integration of cover crops such as pigeon pea [Cajanus cajan (L.) Millsp.] that had poor shading qualities, due to large gaps or spaces and slower initial growth, had limited effects on competitive weeds such as Cyperus esculentus L. which tend to dominate exhausted soils. The density of C. esculentus was 38% greater in maize–pigeon pea rotations compared with the control treatment. Variability between seasons and sites affected emergence of all weeds in the present study, which masked long-term trends. The results suggest that there is need to identify the germination and emergence requirements of specific weeds and select cover crops best suitable for their control. The study provides useful information for farmers and advisors on the best cover crops for control of certain problematic weeds in different soil types of Zimbabwe. 相似文献