首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urbanization is one of the most important driving forces for land use and land cover change. Quantifying urban landscape pattern and its change is fundamental for monitoring and assessing ecological and socioeconomic consequences of urbanization. As the largest city in the country, Shanghai is now the fastest growing city in China. Using land use data set of 2002 and combining gradient analysis with landscape metrics, we analyzed landscape pattern of Shanghai with increasing grain size to study the impacts of road corridors on urban landscape pattern. Landscape metrics were computed along a 51×9 km2 transect cutting across Shanghai with a moving window. The results showed that the urban landscape pattern of Shanghai was greatly changed when road corridors were merged with urban patches and the variation of patch density would alter when grain size changed. As a linear land use type, road corridors exhibited a different spatial signature comparing with other land use types and distinctive behavior with increasing grain size. Merging road and urban patches resulted in a sharp reduction in patch density, mainly caused by segmentation of roads corridors. The results suggested that grain size around 7.5 m might be optimal for urban landscape analysis. Landscape patch density is significantly correlated with road percent coverage and the most important effect of road corridors in urban landscape is increased habitat fragmentation.  相似文献   

2.
3.
A combination of rapid population growth and an accelerating demographic shift from rural to urbanized habitats has resulted in urbanization becoming an increasingly global phenomenon. Two alternate hypotheses describing urban landscape trajectories suggest urbanization is either leading to more homogeneous global patterns or urbanization has dichotomous trajectories of increasing dispersal or coalescence. To better understand the global variation in urban land-cover patterns and trajectories we described the variation in urban landscape structure for 120 cities distributed throughout the world assessed at circa 1990 and 2000. We coupled these data to a low-dimensional neighborhood based model of urban growth using a data-model fusion approach. Trajectories of urban growth were assessed using both the original data and model projections to 2030. The patterns of landscape change were related to both the rate of growth and income. The historical patterns of change showed a trend of increasing landscape complexity and this trend was projected to continue. Urban rate of growth was closely related to the change in several landscape metrics. Income was associated with landscape dynamics and this effect interacted with city size. Large cities were less sensitive to the income effect than small cities. Along with changes to the magnitude of each metric, the overall variation in metrics between years generally exhibited a decrease in variability and this variability was projected to continue decreasing. These findings supported the hypothesis that urban landscapes are becoming more homogeneous and that the dispersal-coalescing dichotomy represent endpoints rather than alternate states of urban growth.  相似文献   

4.
Urbanization transforms landscape structure and profoundly affects biodiversity and ecological processes. To understand and solve these ecological problems, at least three aspects of spatiotemporal patterns of urbanization need to be quantified: the speed, urban growth modes, and resultant changes in landscape pattern. In this study, we quantified these spatiotemporal patterns of urbanization in the central Yangtze River Delta region, China from 1979 to 2008, based on a hierarchical patch dynamics framework that guided the research design and the analysis with landscape metrics. Our results show that the urbanized area in the study region increased exponentially during the 30 years at the county, prefectural, and regional levels, with increasing speed down the urban hierarchy. Three growth modes—infilling, edge-expanding, and leapfrogging—operated concurrently and their relative dominance shifted over time. As urbanization progressed, patch density and edge density generally increased, and the connectivity of urban patches in terms of the average nearest neighbor distance also increased. While landscape-level structural complexity also tended to increase, the shape of individual patches became increasingly regular. Our results suggest that whether urban landscapes are becoming more homogenous or heterogeneous may be dependent on scale in time and space as well as landscape metrics used. The speed, growth modes, and landscape pattern are related to each other in complicated fashions. This complex relationship can be better understood by conceptualizing urbanization not simply as a dichotomous diffusion-coalescence switching process, but as a spiraling process of shifting dominance among multiple growth modes: the wax and wane of infilling, edge-expansion, and leapfrog across the landscape.  相似文献   

5.
6.
This paper provides a dynamic inter- and intra-city analysis of spatial and temporal patterns of urban land-use change. It is the first comparative analysis of a system of rapidly developing cities with landscape pattern metrics. Using ten classified Landsat Thematic Mapper images acquired from 1988 to 1999, we quantify the annual rate of urban land-use change for four cities in southern China. The classified images were used to generate annual maps of urban extent, and landscape metrics were calculated and analyzed spatiotemporally across three buffer zones for each city for each year. The study shows that for comprehensive understanding of the shapes and trajectories of urban expansion, a spatiotemporal landscape metrics analysis across buffer zones is an improvement over using only urban growth rates. This type of analysis can also be used to infer underlying social, economic, and political processes that drive the observed urban forms. The results indicate that urban form can be quite malleable over relatively short periods of time. Despite different economic development and policy histories, the four cities exhibit common patterns in their shape, size, and growth rates, suggesting a convergence toward a standard urban form.  相似文献   

7.
Urbanization has induced profound landscape changes. While the spatiotemporal patterns of urban landscapes have been extensively studied, the manner by which the internal structures of already urbanized areas change remains little understood. Characteristic scales are an important measure of landscape structure, and they represent the typical spatial extents of landscape elements in hierarchies. In this study, we quantified temporal variations of the characteristic scales in the central urban landscapes of Beijing and Shanghai over an 18?year period. Using transect data from Landsat images, characteristic scales were identified through wavelet analysis and then classified into several discrete domains using the k-means clustering method. These characteristic scale domains appeared to correspond with the typical extents of the blocks and block clusters in the study areas. Results showed that the number of the characteristic scale domains changed within a small range of 3?C5 while the mean values of the characteristic scales within the domains showed substantial temporal variation. Larger characteristic scales were more variable than smaller ones in both cities. Distinguishing relative change rates of building forms, land use and street layout of urban landscapes allowed us to interpret these differences. The street layout of urban landscapes usually reacts slowly to the force of change, acting as the skeleton of the urban landscape. As a result, block sizes can remain relatively stable and corresponding characteristic scales present inheritance features. Land use and building forms are more susceptible to changes. Block clusters with flexible extents could result in significant variation of characteristic scales.  相似文献   

8.
Widespread and increasing urbanization has resulted in the need to assess, monitor, and understand its effects on stream water quality. Identifying relations between stream ecological condition and urban intensity indicators such as impervious surface provides important, but insufficient information to effectively address planning and management needs in such areas. In this study we investigate those specific landscape metrics which are functionally linked to indicators of stream ecological condition, and in particular, identify those characteristics that exacerbate or mitigate changes in ecological condition over and above impervious surface. The approach used addresses challenges associated with redundancy of landscape metrics, and links landscape pattern and composition to an indicator of stream ecological condition across a broad area of the eastern United States. Macroinvertebrate samples were collected during 2000–2001 from forty-two sites in the Delaware River Basin, and landscape data of high spatial and thematic resolution were obtained from photointerpretation of 1999 imagery. An ordination-derived ‘biotic score’ was positively correlated with assemblage tolerance, and with urban-related chemical characteristics such as chloride concentration and an index of potential pesticide toxicity. Impervious surface explained 56% of the variation in biotic score, but the variation explained increased to as high as 83% with the incorporation of a second land use, cover, or configuration metric at catchment or riparian scales. These include land use class-specific cover metrics such as percent of urban land with tree cover, forest fragmentation metrics such as aggregation index, riparian metrics such as percent tree cover, and metrics related to urban aggregation. Study results indicate that these metrics will be important to monitor in urbanizing areas in addition to impervious surface.  相似文献   

9.
The effect of urbanization on species distribution has been extensively documented, but a main challenge in urban ecology is to better understand the factors causing different distributions among species in response to urbanization. Hence, this paper aims to compare the effects of urbanization on woodland plant assemblages in two cities and to describe species responses by using several indicators. The study was carried out in the cities of Angers and Rennes (North-Western France) where 11 isolated woodlands were surveyed along an urban–rural gradient in each city. Abundance data of spontaneous species were collected from 220 quadrats. The effect of land cover (within a 500 m buffer around each woodland) on species assemblages was investigated by Canonical Correspondence Analysis. Buildings and pavement areas were the most significant predictors of species composition, and the effect of location in Angers or Rennes appeared on the second axis. More than 60% of the most frequent plant species were indicator of urban or rural location and their preferences were similar in the two cities. These lists of urban and rural indicator species were compared with Ellenberg’s indicator values and two other indicators specific to forest environment. The species which grow preferentially in urban woodlands are species which are already known to be associated with recent forests rather than ancient forests; with hedgerows rather than woodlands. The opposite pattern was observed concerning rural species. Moreover, urban indicator species have higher optima for soil pH and soil nitrogen content than rural indicator species. Different characteristics and history of forest habitat—continuity of the forest land cover, linearity of the habitat, change in adjacent land cover and land use—could select the same species, and the responses of the latter might involve different preferences concerning soil alkalinity and nutrient status.  相似文献   

10.
To better understand the spatio-temporal dynamics of the urban landscape of the Nanjing metropolitan region, China, we conducted a series of spatial analyses using remotely sensed data of 1979, 1988, 1998, 2000 and 2003. The results showed that the urban area as well as the growth rate increased significantly. Three urban growth types were distinguished: infilling, edge-expansion and spontaneous growth. The pattern of urban growth can be described as a ‘diffusion–coalescence’ phase transition. Although edge-expansion was the most common growth type, the spontaneous growth took a greater proportion in area and patch number than the infilling growth at the early stage, but its dominance decreased as urbanization proceeded from the diffusion phase to the coalescence phase. Hot-zones of urban growth and the distribution pattern of newly urbanized areas in different periods were studied with a buffering analysis. More than 80% of the growth area occurred within a zone of 1.4 km wide outwards from the pre-growth urban fringes. The spatial distribution of newly urbanized areas in each period showed a uniform negative exponential decline relative to the distance from the edge of the urban patches. There existed an outward wave-like shifting of urban growth hot-zones, but the distance-growth area curves varied at different stages of urban growth. While a double-peaked pattern usually occurred in the diffusion phase, a single-peaked pattern was common in the coalescence phase.  相似文献   

11.
Historical records provide information to land managers and landscape ecologists attempting to understand current trajectories in altered landscapes. In this study, we synthesized a heterogeneous array of historical sources to reconstruct historical land cover in California’s Santa Clara Valley (a.k.a. “Silicon Valley”). To increase and assess accuracy, we used the triangulation of overlapping, independent data sources and the application of certainty level standards. The region has been subject to extensive urbanization, so we also evaluated the applicability of historical landscape reconstructions to the altered landscape. We found evidence for five major land cover types prior to significant Euro–American modification. Valley freshwater marsh, wet meadow, alkali meadow, willow grove, and valley oak savanna have all experienced extreme decline (85–100%) since Euro–American settlement. However, comparison of historical land cover patterns to contemporary land use suggested several new strategies for environmental recovery, despite the limitations of surrounding urbanization. We also observed a temporal shift in riparian habitat along the mainstem of Coyote Creek, from a relatively open mixture of riparian scrub, sycamore woodland, and unvegetated gravel bars to dense riparian forest, likely resulting from stream flow regulation. By identifying former land cover patterns we provide a basis for evaluating local landscape change and setting restoration targets, including the identification of residual features and under-recognized land cover types. These findings suggest that reliable historical landscape reconstructions can be developed in the absence of standardized historical data sources and can be of value even in highly modified regions.  相似文献   

12.
13.

Context

To prevent the area of arable land from crossing the limit of 120 million ha arable land red line, China’s government proposed a linked urban–rural construction land policy. This policy helps to protect the arable land but will impact the rural landscape.

Objective

The objective is to evaluate the effect of the linked urban–rural construction land policy on rural landscape in the future.

Methods

We performed a simulation method to predict the rural landscape pattern changes in Tianjin during 2005–2020 using a cellular automata and multi-agent system model under the scenarios with or without implementing this policy. The landscape metrics were calculated for both scenarios to find the effects caused by this policy.

Results

Following this policy, the Total Area and Large Patch Index of arable land decreased slowly. 65.50% of the occupied arable land can be compensated. For rural settlements, the Mean Patch Area increased to 2.87 times that in 2005. Number of Patches reduced greatly, and 1053 of the total rural settlements distributed along the periphery of Tianjin were reclaimed for arable land during 2005–2020. Aggregation Index increased greatly.

Conclusions

According to the simulation model, the policy is effective on slowing down the loss of total arable land and the process of large arable land fragmentation. The increasing degree of aggregation of rural settlements is beneficial to the optimal allocation of resources and rural centralized management. However, as the rural settlements gather to urban construction land, they are more vulnerable to urban issues.
  相似文献   

14.
Freshwater research and management efforts could be greatly enhanced by a better understanding of the relationship between landscape-scale factors and water quality indicators. This is particularly true in urban areas, where land transformation impacts stream systems at a variety of scales. Despite advances in landscape quantification methods, several studies attempting to elucidate the relationship between land use/land cover (LULC) and water quality have resulted in mixed conclusions. However, these studies have largely relied on compositional landscape metrics. For urban and urbanizing watersheds in particular, the use of metrics that capture spatial pattern may further aid in distinguishing the effects of various urban growth patterns, as well as exploring the interplay between environmental and socioeconomic variables. However, to be truly useful for freshwater applications, pattern metrics must be optimized based on characteristic watershed properties and common water quality point sampling methods. Using a freely available LULC data set for the Santa Clara Basin, California, USA, we quantified landscape composition and configuration for subwatershed areas upstream of individual sampling sites, reducing the number of metrics based on: (1) sensitivity to changes in extent and (2) redundancy, as determined by a multivariate factor analysis. The first two factors, interpreted as (1) patch density and distribution and (2) patch shape and landscape subdivision, explained approximately 85% of the variation in the data set, and are highly reflective of the heterogeneous urban development pattern found in the study area. Although offering slightly less explanatory power, compositional metrics can provide important contextual information.  相似文献   

15.
We investigated the effects of urban environments on the chemical properties of forest soils in the metropolitan areas of Baltimore, New York, and Budapest. We hypothesized that soils in forest patches in each city will exhibit changes in chemistry corresponding to urbanization gradients, but more strongly with various urban metrics than distance to the urban core. Moreover, differences in parent material and development patterns would differentially affect the soil chemical response in each metropolitan area. Results showed that soil chemical properties varied with measures of urban land use in all three cities, including distance to the urban core, which was an unexpected result. Moreover, the results showed that the spatial extent and amount of change was greater in New York than in Baltimore and Budapest for those elements that showed a relationship to the urbanization gradient (Pb, Cu, and to a lesser extent Ca). The spatial relationship of the soil chemical properties to distance varied from city to city. In New York, concentrations of Pb, Cu, and Ca decreased to approximately background concentrations at 75 km from the urban core. By contrast, concentrations of these elements decreased closer to the urban core in Baltimore and Budapest. Moreover, a threshold was reached at about 75% urban land use above which concentrations of Pb and Cu increased by more than twofold relative to concentrations below this threshold. Results of this study suggest that forest soils are responding to urbanization gradients in all three cities, though characteristics of each city (spatial pattern of development, parent material, and pollution sources) influenced the soil chemical response.  相似文献   

16.
To understand how urbanization has transformed the desert landscape in the central Arizona – Phoenix region of the United States, we conducted a series of spatial analyses of the land-use pattern from 1912–1995. The results of the spatial analysis show that the extent of urban area has increased exponentially for the past 83 years, and this urban expansion is correlated with the increase in population size for the same period of time. The accelerating urbanization process has increased the degree of fragmentation and structural complexity of the desert landscape. To simulate land-use change we developed a Markov-cellular automata model. Model parameters and neighborhood rules were obtained both empirically and with a modified genetic algorithm. Land-use maps for 1975 and 1995 were used to implement the model at two distinct spatial scales with a time step of one year. Model performance was evaluated using Monte-Carlo confidence interval estimation for selected landscape pattern indices. The coarse-scale model simulated the statistical patterns of the landscape at a higher accuracy than the fine-scale model. The empirically derived parameter set poorly simulated land-use change as compared to the optimized parameter set. In summary, our results showed that landscape pattern metrics (patch density, edge density, fractal dimension, contagion) together were able to effectively capture the trend in land-use associated with urbanization for this region. The Markov-cellular automata parameterized by a modified genetic algorithm reasonably replicated the change in land-use pattern.  相似文献   

17.
Changing patterns in the urbanized countryside of Western Europe   总被引:24,自引:0,他引:24  
Antrop  Marc 《Landscape Ecology》2000,15(3):257-270
Urbanization refers to the complex interaction of different processes which transform landscapes formed by rural life styles into urban like ones. Urbanization causes profound changes in the ecological functioning of the landscape and gradually results in a changing spatial structure, i.e. forms new landscape patterns. The existing cities and urban network form the framework for this change, which is affecting increasingly larger areas in the countryside. Urbanization is mainly studied from social and economical viewpoints. Urban planners think about optimization of the land use and about aesthetics when reshaping the environment. Landscape ecology is lacking in urban planning because of different goals and concepts, but mostly because of missing significant information about these highly dynamical landscapes.  相似文献   

18.
In the last few years, landscape researchers have sought to understand temporal and spatial patterns of landscape changes in order to develop comprehensive models of land cover dynamics. To do so, most studies have used similar methods to quantify structural patterns, usually by comparing various landscape structural indices through time. Whereas the necessity for complementary approaches which might provide insights into landscape dynamics at some finer scale relevant to local managers has been expressed, few studies have proposed alternative methodologies. Moreover, the important relationship between the physical constraints of the landscape and land use dynamics has been seldom emphasized. Here we propose a methodological outline which was applied to the study of a rural landscape of Southern Quebec, Canada, to detect spatial and temporal (1958 to 1993) patterns of land cover changes at field, patch and landscape level. We then relate these patterns to the underlying physical structure of landscape elements using GIS and canonical correspondence analyses. We use the different geomorphological deposit types as stable discriminant factors which may constrain land use.Canonical correspondence analyses showed relations of land use and land use changes to the physical attributes of the landscape elements, whereas spatial analyses revealed very dynamic patterns at finer spatial and temporal scales. They highlighted the fact that not only the physical attributes of the landscape elements but also their spatial configuration were important determinants of land use dynamics in this area. Thus more land use changes occurred at the boundary between geomorphological deposit types than in any other locations. This trend is apparent for specific small-size changes (e.g. forest to crop), but not for the large-size ones (e.g. abandoned land to forest). Although land use changes are triggered by socioeconomic forces in this area, these changes are nevertheless constrained by the underlying physical landscape structure. A thorough comprehension of historical changes will enhance our capability to predict future landscape dynamics and devise more effective landscape management strategies.  相似文献   

19.

Context

Walkability is an important element for assessing the sustainability of urban landscapes. There are increased concerns that as the world becomes more urbanized, cities become less walkable.

Objectives

We aim to develop a composite walkability index to evaluate the spatio-temporal pattern of the walkability of cities. By using the index to evaluate four major cities China, we also aim to provide policy implications.

Methods

A comprehensive walkability index is developed to integrate five aspects of the urban built environment: dwelling density, street connectivity, land-use mix, access to public transit, and flatness. Shanghai, Hangzhou, Chongqing, and Lanzhou are chosen as case studies to evaluate the spatio-temporal patterns and changes of walkability in the context of rapid urban expansion.

Results

Great variations exist among the four cities in terms of speed, scale, and locations of changes of walkability. During 2000–2010, the inner cities of Hangzhou, Chongqing, and Lanzhou and the entire cities of Shanghai and Chongqing increased their walkability index, whereas the inner city of Shanghai had decreased walkability. Furthermore, while inner cities of Shanghai and Hangzhou experienced decreased or stable walkability, the inner cities of Lanzhou and Chongqing enjoyed moderate to high increases in walkability. For inner cities, Shanghai had the highest average walkability index, whereas Lanzhou held the lowest in 2010.

Conclusions

The spatiotemporal changes in walkability seem to be closely associated with governmental policies and planning. The walkability index method can be widely implemented for any urban landscape because of its comprehensiveness, simplicity, and flexibility.
  相似文献   

20.
Cultural services of the landscape contribute to a higher quality of life. The provision of these services differs along the urban–rural gradient, as does their appreciation by local residents. This paper investigates residents’ preferences for cultural services along the urban–rural gradient through a map-based survey in and around the Dutch city of Maastricht. We focus on the importance of location in explaining these preferences, distinguishing the location of residents (relative to the preferred landscape units) and the location of landscape units (relative to their positions on the urban–rural gradient). The study shows that residents prefer nearby locations for all distinguished cultural services. Locations’ valuation along the urban–rural gradient, however, differs by service type: for cultural heritage locations near the city centre are preferred, while outdoor recreation and sports and passive enjoyment of green landscapes are enjoyed more in rural areas. When considering the spatial distribution of the land-use types that provide these services, we further find that people prefer green areas closer to the city for outdoor recreation and sports and passive enjoyment of green landscapes. The results illustrate the heterogeneity of people’s preferences for cultural services along the urban–rural gradient beyond the distance from their residences. We recommend policy makers to take the urban–rural gradient into account when valuating landscape units, and in particularly the importance of green landscape units close to the city for different cultural services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号