首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Body size can be an important factor controlling consumer stoichiometry. In holometabolous insects, body size is typically associated with nutrient storage. Consumer stoichiometry is known to vary within species across a range of body sizes; however, the contribution of nutrient storage to this variation is not well understood. We used the fifth-instar larvae of the oak weevil (Coleoptera: Curculio davidi Fairmaire), which is characterized by a high capacity for nutrient storage, to investigate the effect of shifts in nutrient storage with body mass on variations in larva stoichiometry. Our results showed that weevil larvae with larger body mass had a lower carbon (C) content, reflecting decreases in the sequestration rate of C-rich lipids. Larger larvae had elevated concentrations of nitrogen (N), sulfur (S), and protein. The similar patterns of variation in elemental composition and macromolecule storage with body weight indicate that the shift in nutrient storage is the main factor causing the variation in larval stoichiometry with body weight. This finding was further supported by the low variation in residual larval biomass C, N, and S concentrations after lipid extraction. These results help decipher the physiological mechanism of stoichiometric regulation in growing organisms.  相似文献   

2.
Protein immunomarking can be used to track the dispersal of insects in the field or identify plant–insect interactions. By marking insects with known proteins and recapturing them, their movement or host use can be quantified with Enzyme Linked Immunosorbent Assay (ELISA). Before using this technique, retention and behavioral effects of these markers should be evaluated to ensure that the insect’s natural behaviors are conserved. Here, we tested the effects of protein markers on the plum curculio, Conotrachelus nenuphar (Coleoptera: Curculionidae) using two different application methods. This weevil is native to North American and a pest of tree fruit and blueberry in the United States and causes damage resulting in near complete crop loss if left untreated. We tested the effects of marking adult C. nenuphar with two inexpensive food-based immunoprotein markers, bovine casein (cow’s milk) and chicken albumin (egg whites) on climbing distance (total cm), lateral movement (total cm), and lateral movement speed (cm/s), as well as retention time of protein immunomarkers. Neither protein immunomarker affected C. nenuphar movement or climbing, although females climbed significantly greater distances than males. ELISA assays detected 37.5–56.2% of milk protein and 56.2–59.3% of egg on the insect 7 d after application depending on application method. Our findings indicate that food-based protein immunomarkers can be used in future studies to test C. nenuphar movement within host plants without impacting behavior. The use of protein immunomarking will allow studies that will lead to behaviorally based management tactics.  相似文献   

3.
Parasites sometimes manipulate their host’s behavior to increase their own fitness by enhancing the likelihood that their offspring will reach their hosts. Bees are often parasitized by immobile adult female strepsipterans which seem to modify bees’ behavior to facilitate the release of mobile first-instar larvae onto flowers. To better understand how the parasite may modify the host’s behavior, we compared the foraging behavior of the sweat bee Lasioglossum apristum (Vachal, 1903) (Hymenoptera: Halictidae) between bees parasitized and unparasitized by the strepsipteran Halictoxenos borealis Kifune, 1982 (Strepsiptera: Stylopidae). Both parasitized and unparasitized bees frequently visited Hydrangea serrata (Thunb.) (Cornales: Hydrangeaceae) inflorescences, which are polleniferous but nectarless. On H. serrata inflorescences, unparasitized bees collected pollen from the anthers, but parasitized bees did not collect or eat pollen. Instead, they displayed a peculiar behavior, bending their abdomens downward and pressing them against the flower. This peculiar behavior, which was observed only in bees parasitized by a female strepsipteran in the larvae-releasing stage, may promote the release of mobile first-instar larvae onto flowers. Our observations suggest that the altered flower-visiting behavior of parasitized bees may benefit the parasite. Moreover, it suggests that strepsipteran parasites may modify their host’s behavior only when the larvae reach a certain life stage.  相似文献   

4.
Honey bees are eusocial animals that exhibit both individual and social immune responses, which influence colony health. This is especially well-studied regarding the mite Varroa destructor Anderson and Trueman (Parasitiformes: Varroidae), a parasite of honey bee brood and disease vector. Varroa was introduced relatively recently to Apis mellifera L. (Hymenoptera: Apidae) and is a major driver of the catastrophic die-off of honey bee colonies in the last decade. In contrast, the original host species, Apis cerana Fabricius (Hymenoptera: Apidae) is able to survive mite infestations with little effect on colony health and survival. This resilience is due in part to a newly identified social immune response expressed by developing worker brood. Varroa infested female A. cerana brood experience delayed development and eventually die in a process called ‘social apoptosis’. Here, an individual’s susceptibility to Varroa results in colony level resistance. We tested for the presence of the social apoptosis trait in two Varroa resistant stocks of A. mellifera (Pol-line and Russian) with different selection histories and compared them to a known Varroa-susceptible stock (Italian). We assessed the survival and development of worker brood reared in either highly or lightly infested host colonies, then receiving one of three treatments: uninfested, experimentally inoculated with a Varroa mite, or wounded to simulate Varroa damage. We found that response to treatment was only differentiated in brood reared in lightly infested host colonies, where experimentally infested Russian honey bees had decreased survival relative to the mite-susceptible Italian stock. This is the first evidence that social apoptosis can exist in Western honey bee populations.  相似文献   

5.
Varroa destructor (Mesostigmata: Varroidae) is arguably the most damaging parasitic mite that attacks honey bees worldwide. Since its initial host switch from the Asian honey bee (Apis cerana) (Hymenoptera: Apidae) to the Western honey bee (Apis mellifera) (Hymenoptera: Apidae), Varroa has become a widely successful invasive species, attacking honey bees on almost every continent where apiculture is practiced. Two haplotypes of V. destructor (Japanese and Korean) parasitize A. mellifera, both of which vector various honey bee-associated viruses. As the population of Varroa grows within a colony in the spring and summer, so do the levels of viral infections. Not surprisingly, high Varroa parasitization impacts bees at the individual level, causing bees to exhibit lower weight, decreased learning capacity, and shorter lifespan. High levels of Varroa infestation can lead to colony-wide varroosis and eventually colony death, especially when no control measures are taken against the mites. Varroa has become a successful parasite of A. mellifera because of its ability to reproduce within both drone cells and worker cells, which allows populations to expand rapidly. Varroa uses several chemical cues to complete its life cycle, many of which remain understudied and should be further explored. Given the growing reports of pesticide resistance by Varroa in several countries, a better understanding of the mite’s basic biology is needed to find alternative pest management strategies. This review focuses on the genetics, behavior, and chemical ecology of V. destructor within A. mellifera colonies, and points to areas of research that should be exploited to better control this pervasive honey bee enemy.  相似文献   

6.
The Asiatic oak weevil, Cyrtepistomus castaneus Roelofs (Coleoptera: Curculionidae), is a nonnative defoliator of trees in the Fagaceae family in the United States but has not been studied on Castanea species in the southern Appalachian Mountains. Planted trees of Castanea dentata (Marsh.) Borkh. (Fagales: Fagaceae), Castanea mollissima Blume (Fagales: Fagaceae), and four hybrid breeding generations were evaluated in 2012 for insect defoliation and C. castaneus abundance and frequency. Defoliation was visually assessed throughout the growing season at two sites in the southern Appalachian Mountains (western North Carolina and eastern Tennessee). C. castaneus abundance and frequency were monitored on trees using beat sheets and emergence was recorded from ground traps. Asiatic oak weevils were more abundant and more frequently collected on American chestnut (Ca. dentata) and its most closely related BC3F3 hybrid generation than on the Asian species Ca. mollissima. In most months, C. castaneus colonization of hybrid generations was not significantly different than colonization of parental species. Frequency data for C. castaneus suggested that adults were distributed relatively evenly throughout the study sites rather than in dense clusters. Emergence of C. castaneus was significantly higher under a canopy dominated by Quercus species than under non-Quercus species or open sky. C. castaneus emergence began in May and peaked in late June and early July. These results may be useful for resource managers trying to restore blight-resistant chestnut to the Southern Appalachians while minimizing herbivory by insect pests.  相似文献   

7.
The pepper weevil Anthonomus eugenii Cano (Coleoptera: Curculionidae) is a pest of economic importance for Capsicum species pepper in North America that attacks the reproductive structures of the plant. The insect is distributed across Mexico, the United States, and the Caribbean, and is occasionally found during the pepper growing season in southern Ontario, Canada. Continuous spread of the insect to new areas is partially the result of global pepper trade. Here, we describe the genetic diversity of the pepper weevil using the mitochondrial COI barcoding region across most of its geographic range. In this study, 44 (H1–H44) highly similar haplotypes were identified, the greatest number of haplotypes and haplotype diversity were observed among specimens from its native Mexico, followed by specimens from the United States. Unlike Mexico, a low haplotype diversity was found among specimens from Canada, the Dominican Republic, Italy, and the Netherlands. Out of these 44 haplotypes, 29 are reported for the first time. Haplotype diversity in the Canadian population suggests either multiple and continuous introductions of the pepper weevil into this area or a single introduction of genetically diverse individuals. We discuss the importance of such population genetic data in tailoring pepper weevil management programs, using Canada as an example.  相似文献   

8.
The current tuberculosis treatment regimen is long and complex, and its failure leads to relapse and emergence of drug resistance. One of the major reasons underlying the extended chemotherapeutic regimen is the ability of Mycobacterium tuberculosis to attain a dormant state. Therefore, the identification of new lead compounds with chemical structures different from those of conventional anti-tuberculosis drugs is essential. The compound 3-(phenethylamino)demethyl(oxy)aaptamine (PDOA, 1), isolated from marine sponge of Aaptos sp., is known as an anti-dormant mycobacterial substance, and has been reported to be effective against the drug resistant strains of M. tuberculosis. However, its target protein still remains unclear. This study aims to clarify the structure–activity relationship of 1 using 15 synthetic analogues, in order to prepare a probe molecule for detecting the target protein of 1. We succeeded in creating the compound 15 with a photoaffinity group that retained antimicrobial activity, which proved to be a suitable probe molecule for identifying the target protein of 1.  相似文献   

9.
Tomicus brevipilosus (Eggers) (Coleoptera: Curculionidae, Scolytinae) was recently discovered as a new pest of Yunnan pine (Pinus yunnanensis Franchet) in Yunnan Province in southwestern China. However, little was known on its reproductive biology and pattern of trunk attack on Yunnan pine. The objectives of this study were to better understand the reproductive biology of T. brevipilosus by investigating the seasonality of trunk attacks by parent adults for the purpose of reproduction (i.e., breeding attacks) and the within-tree pattern of these attacks. Our results showed that T. brevipilosus breeding attacks in P. yunnanensis generally started in early March and ended in early June in Anning County, Yunnan. T. brevipilosus exhibited two general patterns of infestation. From early March to mid-April, T. brevipilosus bred preferentially in the trunks of Yunnan pine trees that were already infested by Tomicus yunnanensis Kirkendall and Faccoli and Tomicus minor (Hartig), colonizing spaces along the trunk (mostly in the mid- and lower trunk) that were not already occupied by the other two Tomicus species. Later, from about mid-April to early June, when there were no Yunnan pine trees newly infested by T. yunnanensis and T. minor, T. brevipilosus attacked Yunnan pine by itself, infesting the lower parts of the trunk first and then infesting progressively upward along the trunk into the crown. Infestation by T. brevipilosus extends the total period that P. yunnanensis trees are under attack by Tomicus beetles in southwestern China, which helps explain why Yunnan pine has suffered high levels of tree mortality in recent decades.  相似文献   

10.
11.
Heilipus lauri Boheman (Coleoptera: Curculionidae) is a specialist pest of avocado fruit and is considered an incursion risk for U.S. avocado producers. At the time work reported here was undertaken the flight capabilities of H. lauri were unknown. Consequently, proactive studies were undertaken to quantify aspects of this pest’s flight capabilities to inform potential future control efforts. Flight mill studies were conducted in a quarantine laboratory to measure the dispersal capacity of H. lauri with respect to gender, mating status, and size on the single and repeat flight capabilities of weevils. Gender, mating status, and size did not significantly affect measured flight parameters. Average total distances flown and flight velocity, and mean maximum flight bout distances and durations significantly declined as weevil age increased and when weevils engaged in repeat flights. Survivorship rates were significantly reduced as the number of successive flights undertaken increased. The distribution of total average flight distances flown and total cumulative flight distances flown was platykurtic. The implications of these findings are discussed in terms of developing incursion management plans.  相似文献   

12.
13.
The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is an important pest of maize. The diet of the D. virgifera imago is rich in starch and other polysaccharides present in cereals such as maize. Therefore, knowledge about enzymes involved in digestion of such specific food of this pest seems to be important. The paper shows, for the first time, the activities of main glycolytic enzymes in the midgut of D. virgifera imago: endoglycosidases (α-amylase, cellulase, chitinase, licheninase, laminarinase); exoglycosidases (α- and β-glucosidases, α- and β-galactosidases) and disaccharidases (maltase, isomaltase, sucrase, trehalase, lactase, and cellobiase). Activities of α-amylase, α-glucosidase, and maltase were the highest among assayed endoglycosidases, exoglycosidases, and disaccharidases, respectively. This indicates that in the midgut of D. virgifera imago α-amylase, α-glucosidase and maltase are important enzymes in starch hydrolysis and products of its digestion. These results lead to conclusion that inhibition of most active glycolytic enzymes of D. virgifera imago may be another promising method for chemical control of this pest of maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号