首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
氯虫苯甲酰胺在大豆和土壤中的残留及降解行为   总被引:3,自引:0,他引:3  
建立了毛豆、植株和土壤中的氯虫苯甲酰胺的残留分析方法,并采用田间试验方法研究了氯虫苯甲酰胺在大豆植株和土壤中的消解动态及其在毛豆和土壤中的残留规律。样品用乙腈水溶液匀浆提取,经氨基固相萃取小柱净化,液相色谱-串联质谱测定,结果表明:氯虫苯甲酰胺在毛豆、大豆植株和土壤中的平均回收率为99.8%~107.6%,变异系数在1.7%~7.2%之间;最低检测浓度为0.05 mg·kg~(-1),最小检出量为2.5×10~(-10)g。田间残留试验表明,氯虫苯甲酰胺在大豆植株和土壤中的残留消解动态规律均符合一级动力学反应模型,半衰期分别为4.3~10.1 d和3.1~10.2 d;以195.7 g·hm~(-2)和293.6 g·hm~(-2)剂量,最多施药3次,距最后一次施药3d,氯虫苯甲酰胺在毛豆和土壤中的最高残留量分别为0.923、0.757 mg·kg~(-1),低于日本和澳大利亚规定氯虫苯甲酰胺在毛豆中最大残留限量1 mg·kg~(-1)。综上建议200 g·L~(-1)氯虫苯甲酰胺悬浮剂用于大豆防治豆荚螟时,最多施用3次,用量为195.7~293.6 g·hm~(-2)(36~54 g ai·hm~(-2)),安全间隔期为3 d。  相似文献   

2.
为建立大白菜和土壤中虫螨腈残留的气相色谱测定方法,采用乙腈提取、弗罗里硅土柱固相萃取净化、气相色谱-电子捕获检测器(GC-ECD)测定等方法,研究了虫螨腈在大白菜和土壤中的残留消解动态及最终残留量。结果表明:在0.01、0.1和1.0 mg/kg 3个添加水平下,虫螨腈的平均回收率为86.6%~108.0%,相对标准偏差(RSD)为0.4%~3.2%,最小检出量为1.0×10-12 g,最低检测浓度为0.01 mg/kg。采用20%虫螨腈悬浮剂按450 g/667m2的剂量施药,虫螨腈在大白菜中的半衰期为6.0 d,在土壤中的半衰期为7.03 d,药后7 d大白菜中的最终残留量≤1.572 mg/kg,低于我国的最大残留限量值2.0 mg/kg。建议在大白菜上使用20%虫螨腈悬浮剂时,施药制剂量为20~30 g/667m2(折合有效剂量60~90 g/hm2),施药2~3次,安全间隔期为7 d。  相似文献   

3.
[目的]为评价嘧菌酯使用后在稻田环境中的消解动态及环境安全性。[方法]建立了气相色谱~质谱(GC~MS)检测水稻水、土壤和植株中嘧菌酯残留的方法;并通过田间试验研究了嘧菌酯在水稻水、土壤、植株中的消解动态。[结果]结果表明,3种基质中嘧菌酯添加浓度在0.05~5 mg·kg~(-1)范围内线性良好,平均回收率为75.96~114.73%;相对标准偏差(RSD)为2.3%~11.8%;水、土壤和植株中定量限(LOQ)均为0.05mg·kg~(-1),检出限(LOD)分别为0.010 5mg·kg~(-1)和0.012 3、0.015 2mg·kg~(-1)符合农药分析要求;田间试验结果表明:169.2g·hm~(-2)施药一次,嘧菌酯在水稻水、土壤和植株中的残留消解动态符合一级动力学方程,水中半衰期为2.99~7.97d,土壤中半衰期为2.00~8.44d,植株中半衰期为2.01~7.27d。[结论]嘧菌酯为易降解农药。  相似文献   

4.
采用乙腈提取,弗罗里硅土固相萃取柱净化,气相色谱测定,外标法定量的方法,建立了苯醚甲环唑在芒果基质土壤中的残留分析方法,并对其在芒果基质土壤中的消解动态和最终残留进行了研究。在0.02~0.20 mg·kg~(-1)内,苯醚甲环唑在芒果土壤中的平均回收率为103%~106%,变异系数为0.9%~6.5%;方法检出限为0.02 mg·kg~(-1),准确度高,灵敏度高,线性良好。苯醚甲环唑在云南和海南两地芒果土壤中的消解半衰期分别为15.3 d和12.8 d。施药后21、28、35 d收获的芒果土壤中苯醚甲环唑残留量为0.069~0.520 mg·kg~(-1)。  相似文献   

5.
【目的】明确氯噻啉在青菜上的残留特性,为制定氯噻啉在青菜上的安全使用标准提供科学依据。【方法】于上海市松江区进行10%氯噻啉可湿性粉剂在冬季与夏季不同生长季节及露地与大棚不同种植环境下的青菜上的残留试验,其中残留消解动态试验以90 g(a.i.)·hm~(-2)(最高推荐剂量的1.5倍)的剂量施用1次,施药后0(2 h)、1、2、3、4、5、7、10、14、21和30 d连续采集青菜样品检测氯噻啉残留量;最终残留试验以60 g(a.i.)·hm~(-2)(最高推荐剂量)和高剂量90 g(a.i.)·hm~(-2)(最高推荐剂量的1.5倍)两个施药浓度,间隔7 d,施药2—3次,分别于最后一次施药后3、5和7 d采集青菜样品检测氯噻啉残留量。利用QuEChERS前处理方法对青菜中的氯噻啉残留进行提取净化,通过超高效液相色谱-串联质谱法检测氯噻啉在青菜上的残留量。基于最终残留试验结果及青菜的膳食消费量,应用风险商对青菜中氯噻啉残留量进行风险描述,以氯噻啉每日允许摄入量为标准对不同人群的膳食摄入风险进行评估,涵盖未成年男女(3—6岁幼儿及7—19岁儿童青少年)和成年男女(20—59成年人及60—69岁老年人)8类人群。【结果】在0.01—1.0 mg·kg~(-1)的添加浓度范围内,氯噻啉在青菜中的添加回收率为77.2%—87.9%,相对标准偏差为2.5%—3.0%,检出限为0.0002 mg·kg~(-1),定量限为0.01 mg·kg~(-1),可满足检测需求。残留试验结果显示:10%氯噻啉可湿性粉剂以90 g(a.i.)·hm~(-2)的施药剂量在青菜上的降解趋势符合一级动力学方程,在冬季大棚、夏季大棚及夏季露地青菜上的消解动态方程分别为C=0.8476e~(-0.158t)、C=1.6558e~(-0.212t)、C=4.3069e~(-1.197t),半衰期分别为4.39、3.27和0.58 d,消解时间及种植条件均对氯噻啉在青菜上的消解效率有显著影响(P0.05);以60 g(a.i.)·hm~(-2)和90 g(a.i.)·hm~(-2)的施药剂量在青菜上间隔7 d喷雾2—3次,最后一次施药7 d后冬季大棚内青菜上氯噻啉最终残留量低于0.5 mg·kg~(-1),最后一次施药3 d后夏季露地及大棚青菜上氯噻啉最终残留量均低于0.5 mg·kg~(-1),最终残留量与施药浓度基本成正相关,与施药次数无显著相关性(P0.05)。膳食摄入风险评估结果显示:各类人群通过青菜摄入氯噻啉的风险商最大值为0.2196,远低于1。【结论】氯噻啉属易降解农药,夏季青菜中氯噻啉消解速率高于冬季,露地高于大棚。中国普通居民由青菜摄入氯噻啉的风险较低,慢性摄入风险均可接受。因此,在推荐使用浓度下(45—60 g(a.i.)·hm~(-2))间隔7 d施用,最多施用3次,安全间隔期夏季3 d、冬季7 d,氯噻啉可安全有效地用于青菜虫害防治。  相似文献   

6.
为探讨25%异丙威·毒死蜱乳油中毒死蜱在水稻及稻田中的残留消解动态,采用气相色谱-氮磷检测器(GC-NPD)法对水稻及稻田中的毒死蜱残留量进行测定,旨在为该药在水稻上的合理使用提供科学依据。结果表明:毒死蜱在稻田水、土壤和植株中的残留消解动态规律均符合一级动力学方程,消解半衰期分别为1.45~3.48 d、3.16~6.36 d和2.05~2.98 d。毒死蜱在稻田土壤、糙米、谷壳和植株中的最终残留量随施药剂量、次数的增加而增加,随采样时间延长而降低。按推荐剂量1 800 g/hm~2和1.5倍推荐剂量2 700 g/hm~2各施25%异丙威·毒死蜱乳油3~4次,距末次施药33 d,土壤中毒死蜱的最大残留量分别为0.044 7 mg/kg和0.081 2 mg/kg,植株中毒死蜱的最大残留量分别为0.047 9 mg/kg和0.063 2 mg/kg,收获的糙米中毒死蜱的最大残留量分别为0.045 4 mg/kg和0.076 5 mg/kg,谷壳中毒死蜱的最大残留量分别为0.084 3 mg/kg和0.093 6 mg/kg,均低于我国规定的毒死蜱在稻谷中的最大残留限量(0.5 mg/kg),此时收获的稻谷食用安全。  相似文献   

7.
联苯菊酯在甘蓝及土壤中的消解动态   总被引:1,自引:0,他引:1  
【目的】建立残留联苯菊酯的检测方法,研究质量分数1%联苯菊酯·噻虫咹颗粒剂中联苯菊酯在甘蓝Brassica oleracea和土壤中的残留及消解动态。【方法】在广东广州市、广西南宁市和湖北潜江市进行田间试验,联苯菊酯在0.01~1.00 mg·kg~(-1)水平范围内取0.01、0.10、0.50 mg·kg~(-1)添加,样品中的联苯菊酯经乙腈超声波辅助提取,弗罗里硅土固相萃取柱净化,气相色谱(GC-ECD)检测,外标法定量,得到联苯菊酯在甘蓝和土壤中的残留及消解动态。【结果】联苯菊酯在甘蓝中的平均回收率为83.64%~96.44%,相对标准偏差为3.26%~7.24%;在土壤中平均回收率为86.76%~90.09%,相对标准偏差为2.17%~4.94%。联苯菊酯在土壤中的残留半衰期为6.77~13.51 d,在甘蓝中未检出。【结论】联苯菊酯属易降解农药;该施药方法安全,值得借鉴。  相似文献   

8.
运用超高效/压液相色谱-串联质谱联用仪(UPLC-MS/MS)建立了异草酮在大豆、大豆植株和土壤中的残留分析方法。研究大豆地环境中异草酮的消解动态和最终残留,大豆、大豆植株和土壤样品经乙腈提取,硅镁型吸附剂柱层析净化后,用UPLC-MS/MS检测。方法最小检出量为1.0×10-11g;最低检出浓度大豆为0.002 mg·kg-1,大豆植株为0.004 mg·kg-1,土壤为0.001 mg·kg-1;平均添加回收率为87.9%~105.1%,变异系数在3.4%~10.1%。进行室外田间试验,研究异草酮在大豆、大豆植株和土壤中的残留消解动态,试验结果表明,在大豆植株和土壤中的消解半衰期分别为5.5 d和3.9 d;按推荐剂量(2 250mL·hm-2)喷雾,施药1次,最后1次施药距采收间隔期为90 d时,异草酮在土壤和大豆中的最终残留量均低于0.05 mg·kg-1。  相似文献   

9.
土壤和番茄中氯虫苯甲酰胺的残留检测与消解动态研究   总被引:8,自引:1,他引:7  
研究和建立了氯虫苯甲酰胺在土壤和番茄中的液相色谱检测方法,并采用田间试验方法研究了氯虫苯甲酰胺在土壤和番茄中的残留消解动态规律.结果表明,采用甲醇溶液浸泡提取,减压浓缩后用二氯甲烷萃取,浓缩后用二氯甲烷定容,液相色谱仪带二极管阵列检测器(DAD)测定,外标法定量.在0.05~0.5 mg·kg-1添加水平范围内,土壤和番茄中氯虫苯甲酰胺的添加平均回收率为91.43%~100.91%,变异系数为3.53%~9.71%;土壤和番茄中氯虫苯甲酰胺的最小检出最均为1.0×10-7g,最低检出质量分数为0.005 mg·kg-1.田间残留试验表明,氯虫苯甲酰胺在土壤和番茄中残留消解动态规律符合方程G=C0e-k1;150 g-L-1高效氯氟氰菊酯·氯虫苯甲酰胺微囊悬浮-悬浮剂在土壤和番茄中的消解半衰期分别为6.55~11.49d和3.82~10.70d.最终残留试验研究表明,在番茄上手动喷雾施药150g·L-1高效氯氟氰菊酯·氯虫苯甲酰胺微囊悬浮-悬浮剂,按推荐剂量和1.5倍推荐剂量施药,兑水喷雾处理2~3次,施药间隔为7d,最后一次施药距采收间隔7d时,氯虫苯甲酰胺在番茄中最高残留量均小于0.3mg·kg-1.参照欧盟等规定的氯虫苯甲酰胺在番茄中最大残留限量标准,按照推荐剂量和1.5倍推荐剂量施药2~3次,距最后一次施药7d时,氯虫苯甲酰胺在番茄上残留是安全的.  相似文献   

10.
《天津农业科学》2015,(12):43-47
采用气相色谱法对18.7%丙环唑·嘧菌酯悬乳剂在玉米田中的消解动态和最终残留情况进行了研究。样品采用乙腈提取,弗罗里硅土柱净化,气相色谱-电子捕获检测器检测。结果表明,按照1.5倍推荐剂量(a.i)294 g·hm~(-2)施药,丙环唑和嘧菌酯在玉米植株中的消解半衰期分别为3.3~4.7 d和4.2~7.4 d,在土壤中的消解半衰期分别为6.1~9.0 d和5.5~10.2 d。在玉米收获期时,丙环唑和嘧菌酯在玉米中的最终残留量均低于国际食品法典委员会、欧盟、美国及日本《肯定列表》所规定的最大残留限量标准。  相似文献   

11.
施翠娥  陈枫  王军  蒋闳 《安徽农业科学》2008,36(16):6850-6852
研究了腈菌唑在梨和土壤中的残留分析方法及其残留动态。样品用甲醇提取,中性氧化铝柱净化,气相色谱(ECD)测定。腈菌唑的最低检出量:2.5×10-11g;最低检出浓度:梨和土壤分别为0.005和0.003 mg/kg。添加回收率为80.80%~93.81%,相对标准偏差为1.87%~4.96%,符合农药残留分析要求。试验结果表明,腈菌唑在梨中消解较快,土壤中相对缓慢,半衰期分别为2.86~4.75和15.79~24.17 d;末次施药距收获间隔7 d,梨中腈菌唑残留量均低于0.500 mg/kg,该药按推荐剂量使用是安全的。  相似文献   

12.
拟建立一种高效液相色谱检测黄瓜和土壤中鱼藤酮和印楝素残留的方法,并比较分析鱼藤酮和印楝素在露地和大棚黄瓜和土壤中的残留及消解动态。按照农药登记残留田间试验施药标准操作规程,设计了2.5%鱼藤酮乳油84.375 g/hm~2(推荐高剂量的1.5倍)和0.3%印楝素乳油40.50 g/hm~2(推荐高剂量的10倍)在露地和大棚各施药1次,施药后1、6 h和1、2、3、5、7、10、14 d分别采样检测,再将二者按推荐剂量56.25、4.05 g/hm~2和1.5倍推荐剂量84.375、6.075 g/hm~2分别施药2、3次,施药间隔6 d,距离末次施药3、5、7 d采样测定。结果表明,鱼藤酮和印楝素的消解动态均符合一级动力学方程,鱼藤酮在黄瓜和土壤中的半衰期分别为1.45、2.36 d (露地)和1.74、2.62 d(大棚),印楝素在黄瓜和土壤中的半衰期分别为1.11、1.86 d(露地)和1.36、2.18 d(大棚);采收期距最后一次施药3~7 d时,露地和大棚采收的黄瓜样品中未检出印楝素,鱼藤酮的最高残留量分别为0.136 8、0.203 1 mg/kg,均低于我国规定的鱼藤酮在甘蓝中的最大残留限量(MRL)0.5 mg/kg,此时收获的黄瓜食用安全。鱼藤酮和印楝素于大棚条件下使用时在黄瓜和土壤中的原始沉积量均明显大于露地条件的相应值,与露地条件下相比更难降解,降解半衰期更长。  相似文献   

13.
为了确定22.4%螺虫乙酯悬浮剂在土壤及大豆中的消解动态和最终残留。采用液相色谱-紫外法测定不同样品中螺虫乙酯残留量,大豆植株和大豆样品采用乙腈提取,NH2固相萃取柱净化;土壤样品用乙腈和水混合溶液提取,经液液萃取净化后,进行测定。当添加浓度为0.05,0.1,0.5mg/kg时,螺虫乙酯的回收率为80.4%~89.8%,相对标准偏差(RSD)为4.7%~8.3%;在土壤、大豆植株及大豆中定量限(LOQ)均为0.02mg/kg;螺虫乙酯在土壤和大豆植株中的半衰期分别为3.20d和1.58d。按推荐高剂量(有效成分)107.52g(a.i.)/hm~2及其1.5倍剂量(161.28g(a.i.)/hm~2)施药,于大豆蚜虫盛发初期先后施药2次,在青豆期和成熟期时,大豆中螺虫乙酯的最终残留量均低于定量限及最大残留限量临时值(4.0mg/kg)。本研究表明按规定在大豆田使用22.4%螺虫乙酯悬浮剂是安全的。  相似文献   

14.
扑海因悬浮剂在番茄和土壤中的残留动态研究   总被引:4,自引:0,他引:4  
为评价扑海因悬浮剂在番茄上使用后的残留动态及环境安全性,在北京和杭州市郊区对其在番茄上的残留进行了动态和最终残留进行了试验,用带ECD检测器的气相色谱测定了其有效成分异菌脲的残留量。异菌脲的最低检出量为1.8×10-11g;在番茄中的最低检出浓度为0.007 mg.kg-1,在土壤中的最低检出浓度为0.018 mg.kg-1。在番茄和土壤中的平均回收率为94.1%~99.4%,变异系数为0.9%~5.5%,符合农药残留分析的要求。研究结果表明:异菌脲在番茄和土壤中的降解均较快,在番茄上的半衰期为3.2~4.2 d,在土壤中的半衰期为5.4~6.6 d;在推荐剂量和1.5倍推荐剂量下,异菌脲在番茄中的最终残留量都低于最大残留限量,保证了番茄食用的安全性。  相似文献   

15.
二甲戊灵在大葱中的残留分析与消解动态   总被引:1,自引:0,他引:1  
本研究采用气相色谱质谱法(GC-MS)测定了二甲戊灵在春季大葱中的残留消解动态和最终残留量。样品经乙腈提取,SAX/PSA固相萃取柱净化,气相色谱质谱选择离子(GC/MS/SIM)检测。建立的大葱中二甲戊灵残留量检测方法在0.01~0.10 mg/kg水平的平均添加回收率为95.8%~103.7%,相对标准差为3.6%~5.8%,二甲戊灵检测限为0.88μg/kg,定量限为2.92μg/kg。二甲戊灵在大葱中消解较快,半衰期为3.8 d。33%二甲戊灵乳油按推荐剂量(有效成分含量742.5 g/hm2)和加倍剂量(有效成分含量1 485 g/hm2)封闭处理土壤,于大葱收获时(施药后80 d)均未在大葱中检出二甲戊灵。说明建立的大葱中二甲戊灵残留检测方法准确可靠。  相似文献   

16.
为评价扑海因悬浮剂在番茄上使用后的残留动态及环境安全性,在北京和杭州市郊区对其在番茄上的残留进行了动态和最终残留进行了试验,用带ECD检测器的气相色谱测定了其有效成分异菌脲的残留量。异菌脲的最低检出量为1.8×10-11g;在番茄中的最低检出浓度为0.007 mg.kg-1,在土壤中的最低检出浓度为0.018 mg.kg-1。在番茄和土壤中的平均回收率为94.1%~99.4%,变异系数为0.9%~5.5%,符合农药残留分析的要求。研究结果表明:异菌脲在番茄和土壤中的降解均较快,在番茄上的半衰期为3.2~4.2 d,在土壤中的半衰期为5.4~6.6 d;在推荐剂量和1.5倍推荐剂量下,异菌脲在番茄中的最终残留量都低于最大残留限量,保证了番茄食用的安全性。  相似文献   

17.
为了评价联苯菊酯在小麦上使用的安全性,于2013-2014年在山东济南、河南焦作两地采用田间试验和气相色谱分析方法研究了联苯菊酯在小麦籽粒、植株及土壤中的消解动态和最终残留。结果表明,联苯菊酯在小麦植株和土壤中的降解行为均符合一级降解动力学方程,其降解半衰期分别为8.4~13.0 d、9.4~13.3 d。联苯菊酯在小麦籽粒和土壤中的最终残留质量分数均小于最低检出限0.05 mg·kg~(-1),低于联苯菊酯在小麦上的最高残留限量(MRL)0.5 mg·kg~(-1)。建议2.5%联苯菊酯微乳剂防治小麦蚜虫,用药次数1~2次,使用剂量15.0~22.5 g a.i./hm~2,在小麦上的安全间隔期7天。  相似文献   

18.
为了明确40%氯虫·噻虫嗪水分散粒剂在辣椒和土壤中的消解动态及残留规律,用乙腈匀浆提取辣椒和土壤样品,经N-丙基乙二胺(PSA)、C_(18)分散固相萃取剂净化,超高压液相色谱-串联质谱测定。结果表明,在辣椒植株和土壤中添加氯虫苯甲酰胺和噻虫嗪0.020~2.000 mg/kg,其平均回收率为88.5%~101.1%,相对标准偏差(RSD)为2.1%~8.3%,氯虫苯甲酰胺和噻虫嗪在辣椒中的定量限(LOQ)均为0.005 mg/kg。田间残留试验结果表明,氯虫苯甲酰胺和噻虫嗪在辣椒及土壤中的残留消解动态均符合一级动力学反应模型。氯虫苯甲酰胺在辣椒和土壤中的半衰期分别为5.0 d和4.8 d,噻虫嗪在辣椒和土壤中的半衰期分别为6.6 d和4.5 d。按照推荐剂量和1.5倍推荐剂量对辣椒施用40%氯虫·噻虫嗪水分散粒剂,最后一次施药后3.0 d,氯虫苯甲酰胺和噻虫嗪在辣椒中的残留量分别为0.912 mg/kg和0.627 mg/kg,低于欧盟规定氯虫苯甲酰胺和噻虫嗪在辣椒中的最大残留量。  相似文献   

19.
通过田间试验,对25%甲霜灵·霜脲氰水分散粒剂在辣椒和土壤中的残留消解动态及最终残留量进行了研究,采用高效液相色谱-串联质谱进行定量分析。消解动态试验结果表明:甲霜灵在土壤中的半衰期为8.2~9.3 d,霜脲氰在土壤中的半衰期为1.8~2.1 d;甲霜灵在辣椒中的半衰期为6.0~7.7 d,霜脲氰在辣椒中的半衰期为1.9~2.0 d。最终残留量试验结果表明:25%甲霜灵·霜脲氰水分散粒剂按施药剂量为625.0、937.5 mg a.i./kg,连续灌根3~4次,施药间隔期7 d,施药后14~21 d辣椒中甲霜灵残留量为0.0380~0.3100 mg/kg,土壤中甲霜灵残留量为0.1110~0.3580 mg/kg,均低于0.5 mg/kg(MRL);辣椒和土壤中霜脲氰均未检出。推荐25%甲霜灵·霜脲氰水分散粒剂在辣椒上的使用安全间隔期为14 d。  相似文献   

20.
辛硫磷在宁夏甘草及对应根际土壤中的残留及消解动态   总被引:2,自引:0,他引:2  
为制定辛硫磷在甘草上的安全使用技术标准,采用田间试验和液相色谱法,测定辛硫磷在宁夏甘草及对应根际土壤中的残留及消解动态。样品经乙腈提取、柱层析法净化、紫外检测器检测,结果表明,在设定的色谱条件下,样品的最小检出量为1.00×10-9g,最小检出含量为0.005 mg/kg。不同进样量测定结果表明,在0.1~10μg/mL的范围内,辛硫磷峰面积与进样量之间有良好的线性关系,线性方程为Y=1.2190X+0.1658(r2=0.9940)。甘草中辛硫磷的添加回收率在81.7%~85.1%之间,RSD介于3.39%~5.91%之间,甘草对应根际土壤中辛硫磷的添加回收率在90.9%~95.3%之间,RSD介于2.89%~4.07%之间,各项指标均符合农药残留分析检测限量的要求。残留检测结果表明,药后不同时期甘草根及土壤中辛硫磷的残留含量完全符合一级反应动力学方程式,分别为CT=1.0024e-0.1027T(r=0.9715)和CT=0.4577e-0.0402T(r=0.9836),残留消解较快,半衰期分别为6.75 d和17.24 d;40%辛硫磷乳油依推荐剂量1次施药后40 d,2次施药后53 d,在甘草及其土壤中的残留均低于0.05 mg/kg,因此建议40%辛硫磷乳油在甘草上依推荐剂量1次施药的安全间隔期不得少于40 d,2次施药的安全间隔期不得少于53 d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号