首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
为探寻辽河三角洲地区稻田排水的利用方式,揭示稻田排水循环灌溉容易引起面源污染风险。通过定位定期监测灌排沟渠水体氮磷浓度变化,研究灌溉模式对施肥时期田面水氮磷浓度与水稻生育性状的影响。结果表明:灌水沟和排水渠水体总氮(TN)浓度于第2次达峰值(4.49 mg/L和15.61 mg/L)后下降,这与基肥泡田时期相吻合,排水渠TN和总磷(TP)浓度高于灌水沟,关键施肥时期应控制稻田水外排,以减少排水渠水体氮磷浓度。在基肥和追肥灌溉时期,施肥各处理田面水TN浓度在3 d达到峰值后下降,10 d趋于稳定,循环灌溉比常规灌溉高0.65~2.42 mg/L,田面水TN浓度与氮肥用量呈正相关,排水循环灌溉后1 d的TN浓度均高于常规灌溉,在3 d后差异不显著,排水循环灌溉与常规灌溉TP浓度差异不显著,排水循环灌溉增加了氮磷流失风险,3 d内应避免田面水外排,基肥后10 d内也是氮磷流失风险期。排水循环灌溉结合氮肥减施22%可促进水稻有效分蘖并提高产量,合理利用排水循环灌溉可应用于水稻生产和减少氮磷流失风险。  相似文献   

2.
耕作模式和滞水时间对稻田中氮磷动态变化的影响研究   总被引:2,自引:0,他引:2  
通过微区模拟稻田试验,分析了免耕、浅耕和深耕3种耕作模式下滞水时间不同的稻田排水中氮磷的动态特征及总氮、总磷流失潜能,研究了稻田夏季施肥耕作模式和滞水时间对氮磷的减排效能.结果表明:(1)深耕有利于土壤固肥作用的发挥,田面水中TN和NH+4-N浓度呈逐渐下降的趋势.浅耕和深耕土壤中微生物环境利于硝化反应,不易被土壤吸附的NO-3-N得以迅速向田面水中释放.免耕和深耕处理的田面水中TP和DP浓度在第1~5 d内浓度较高,3个耕作处理的滞排水中TP和DP在耕作处理5 d后均处于较低的浓度水平.(2)不同耕作模式滞水5 d后TN的绝对流失量均处于较低水平.免耕、浅耕、深耕在滞水5 d后可分别减少田面水中TN流失59.55%~65.68%、70.15%~88.20%和65.23%~77.26%.深耕处理的模拟稻田田面水中TN的流失潜能相对较小.不同耕作模式处理相对流失形态与潜能以TN为主.(3)免耕处理田面水中TP的绝对流失量最大,浅耕处理田面水中TP绝对流失量最少.免耕、浅耕、深耕在滞水5 d后再排水可分别减少田面水中TP流失54.70%~67.78%、62.99%~85.09%和52.45%~87.99%.浅耕处理模拟稻田田面水中TP的相对流失潜能较小.不同耕作模式处理田面水中磷素的相对流失形态表现出一定的差异性,田面水中磷素流失形态随时间变化呈现出 TP与DP交替变化的现象.总之,从减少田面水中氮磷的绝对流失量出发,夏季浅耕不失为最佳清洁耕作模式;同时在滞水5 d后排水,能有效减少田面水中氮磷的流失量,减少稻出排水对面源污染的影响.  相似文献   

3.
为探讨牛粪化肥最优配比条件下不同轮作方式对稻田氮磷流失的影响,通过田间小区试验设置Y-OL(70%化肥+30%牛粪-黑麦草-水稻)、Y-OV(70%化肥+30%牛粪-紫花苕-水稻)、Y-ON(70%化肥+30%牛粪-冬闲-水稻)3种轮作处理,以C-ON(100%化肥-冬闲-水稻)为对照,研究不同轮作模式下水稻产量及稻田田面水、下渗水、径流中的总氮(TN)和总磷(TP)浓度变化特征。结果表明:不同处理田面水TN浓度在施穗肥后第2 d达到峰值,TP浓度在施基肥第2 d达到峰值,且最高值均出现在Y-ON处理; C-ON和Y-ON处理下渗水TN浓度在施基肥第2 d出现峰值,Y-OL和Y-OV处理下渗水TN浓度在施穗肥后第2 d出现峰值,在整个水稻生育期Y-OV处理下渗水TP浓度整体低于其他处理;不同处理间稻田氮磷径流流失量无显著差异,稻田氮磷径流流失量与降雨量极显著相关,且降雨量最大时,各处理TN径流流失量占径流流失总量的70.24%~73.42%,TP径流流失量占径流流失总量的35.12%~42.42%; Y-OV、Y-OL、Y-ON处理TN总流失量与C-ON相比分别降低43.92%、25.21%、35.74%,Y-OL、Y-ON处理TP总流失量与C-ON相比分别显著上升66.67%、13.13%,Y-OV处理TP总流失量与C-ON无显著差异; Y-OV、Y-OL、Y-ON各处理水稻产量与C-ON相比无显著差异。研究表明,70%化肥+30%牛粪施肥条件下,紫花苕-水稻的轮作方式可保证水稻产量,有效降低下渗水和径流中氮素流失量且维持较低水平的磷素流失量,是一种有效减少氮磷面源污染、增加土地利用效率的种植模式。  相似文献   

4.
李振炜  吴迪  于兴修  井光花 《安徽农业科学》2012,(12):7269-7270,7312
[目的]揭示暴雨条件下沂蒙山区的氮磷流失特征。[方法]以沂蒙山区沂河上游的孟良崮小流域为例,对2010年8月12日一场暴雨的径流及氮磷流失动态过程进行了监测分析。[结果]暴雨条件下产流迅速,降雨强度峰值出现于流量峰值之前;铵态氮(AN)和总氮(TN)浓度先变大后趋于稳定,硝态氮(NN)降雨初期无明显变化,后期逐渐变大并趋于稳定;水溶性无机磷(DOP)浓度呈锯齿状变化,水溶性有机磷(DIP)、水溶性全磷(DP)、颗粒态全磷(PP)和全磷(TP)浓度先变大后趋于稳定,浓度峰值出现于流量峰值之前;TN和TP输出浓度较大,远超过水体富营养化的标准。[结论]该研究可为沂蒙山区农业非点源污染的合理治理提供科学依据。  相似文献   

5.
丁继平  汪名富  谢学智 《农技服务》2013,(10):1078-1078
习惯施肥处理施用尿素的田面水TN(总氮)和DN(溶解态氮)浓度峰值分别为152.5 mg/L和121.2 mg/L、控释肥处理施用"金正大"控释氮肥TN和DN峰值分别为51.6 mg/L和43.5 mg/L,至1012 d氮浓度下降明显并趋于稳定,水稻施用基肥前10 d是控制稻田N素流失的关键时期。  相似文献   

6.
免耕稻田田面水磷素动态及其淋溶损失   总被引:4,自引:1,他引:3  
以免耕和翻耕稻田为研究对象,通过大田试验与室内分析,研究了不同耕作方式下稻田田面水和渗漏水的淋溶损失及其对环境的影响。试验共设4个处理,分别是免耕+不施肥(NT0)、翻耕+不施肥(CT0)、免耕+复合肥(NTC)和翻耕+复合肥(CTC)。结果表明,施磷肥显著提高稻田田面水以及渗漏水各形态磷浓度。施磷肥2d后田面水总磷(TP)浓度、颗粒态磷(PP)浓度和溶解磷(DP)浓度即达到最大值,此后由于水中颗粒或表土对田面水磷素的固定,磷素的淋失,水稻生长吸收及前期的稻田排水和灌水稀释,1周后迅速降低并趋于稳定;渗漏水TP浓度和溶解磷(RP)浓度在施磷肥2d后达到最大值,渗漏水TP浓度在施肥后一个半月达到最低值,而渗漏水RP浓度在施肥4d后就降低到最低值。处理NTC田面水TP、DP与PP显著高于处理CTC,而处理NT0与处理CT0之间无差异;与翻耕相比,免耕不影响渗漏水TP与RP浓度及磷下渗淋失。对田面水磷素及渗漏水磷素变化动态分析表明,施磷肥后的1周左右是控制磷素流失的关键时期。  相似文献   

7.
为了阐明秸秆还田模式和施氮量对稻田周年氮磷径流风险的影响,于2014年11月—2015年10月通过监测稻田在稻季田面水和麦季径流中的氮磷浓度,研究了秸秆不还田配施推荐施氮(N1)、麦秸还田配施推荐施氮(WN1)、稻秸还田配施推荐施氮(RN1)、稻秸麦秸均还田配施推荐施氮(WRN1)和稻秸麦秸均还田配施常规施氮(WRN2)5处理对长江下游稻田周年氮磷径流风险的影响。结果表明,秸秆还田增加小麦和水稻周年产量,增幅约9.03%~18.5%,其中WRN1和RN1处理增产效果显著高于WN1处理;与WRN2处理相比,WRN1处理可以维持稻田高产。在推荐施氮条件下,秸秆还田分别降低稻季田面水和麦季径流中溶解态总氮(DTN)浓度约5.17%~14.9%和12.3%,降低稻田氮径流风险;但增加溶解态总磷(DTP)浓度,增幅分别为6.67%~33.3%和30.0%,增加稻田磷径流风险。RN1处理下稻季田面水中DTN和DTP浓度均低于WRN1和WN1处理,且其DTP浓度与N1处理间无显著差异。在稻秸麦秸均还田下,WRN1处理下稻季田面水DTP浓度与WRN2处理没有显著差异,但能有效降低田面水DTN浓度的12.4%。研究表明,在长江下游稻-麦轮作农田推荐采用"RN1"模式,该模式可以维持稻田的周年高产和有效降低稻田的周年氮径流风险,同时对稻田的磷径流风险影响不显著,是一种兼顾粮食生产和生态环境效益的耕作模式。  相似文献   

8.
通过田间试验观察了施肥后稻田田面水中几种养分动态变化特征。结果表明,基肥施入后8d内田面水中的总氮、总磷含量呈现明显衰减,并于施肥后第8d趋于稳定,处于较低水平;分蘖肥(尿素)施用后3d天以内田面水的氮、磷含量再次升高,接着呈现下降趋势,10d后趋于稳定。为防止氮、磷素大量流失,建议在施肥后10d内严格控制田间排水。对于鱼塘-稻田系统,鱼塘水通过稻田表面流异位处理应在施肥后养分衰减稳定后进行。  相似文献   

9.
[目的]揭示暴雨条件下沂蒙山区的氯磷流失特征.[方法]以沂蒙山区沂河上游的孟良崮小流域为例,对2010年8月12日一场暴雨的径流及氮磷流失动态过程进行了监测分析.[结果]暴雨条件下产流迅速,降雨强度峰值出现于流量峰值之前;铵态氮(AN)和总氮(TN)浓度先变大后趋于稳定,硝态氮(NN)降雨初期无明显变化,后期逐渐变大并趋于稳定;水溶性无机磷(DOP)浓度呈锯齿状变化,水溶性有机磷( DIP)、水溶性全磷(DP)、颗粒态全磷(PP)和全磷(TP)浓度先变大后趋于稳定,浓度峰值出现于流量峰值之前;TN和TP输出浓度较大,远超过水体富营养化的标准.[结论]该研究可为沂蒙山区农业非点源污染的合理治理提供科学依据.  相似文献   

10.
采用室外微区模拟稻田人工蓄水的控排水技术,在5、10、20cm等3个蓄水深度处理(分别表示为t-5、t-10、t-20)条件下,对拔节孕穗期稻田中氮磷的动态特征及降污潜力进行了研究.结果表明,田面水中TN、NH4+-N和TP浓度与蓄水深度呈显著负相关(y=-2.18x+10.870,R2=0.960;y=-0.048x+2.063,R2=0.999;y=-0.05x+0.223,R2=0.949),即蓄水深度越大,TN、NH4+-N和TP浓度越低.田面水中的NO3--N浓度与蓄水处理相关性不明显,但比较而言,t-20的NO3--N浓度要大于t-5和t-10,并于深施处理第5天后出现反弹升高现象.撒施尿素对田面水中悬浮物(SS)有絮凝沉淀作用,以致在施肥后第2天SS浓度最低.从减排降污综合效能看,在暴雨或大雨频发期,将排水堰高度提高到10~20cm,延长滞留涝水时间5~7d左右,具有显著的减排降污潜力.  相似文献   

11.
施肥导致的水体氮流失是重要的面源污染源。开展不同养分来源下,基肥和追肥下不同施肥模式下稻田田面水中的铵态氮(NH_4~+-N)、硝态氮(NO_3~--N)、总氮(TN)及可溶性生物量氮(DON)的含量监测研究。结果显示:稻田田面水NH_4~+-N、TN浓度随尿素用量增加而增加,无论是单施尿素还是增施猪粪或继续增施秸秆,NH_4~+-N及TN浓度峰值均出现在施肥后4~5 d,基肥施用后的前10 d,田面水以NH_4~+-N为主,基施尿素的NH_4~+-N及TN峰值分别达47.6、54.5 mg/L。NO_3~--N浓度变化不如NH_4~+-N明显,且流失风险较小;DON在施肥后10 d增至峰值后缓慢下降,但占总氮比较高。提高尿素用量或增施猪粪用量,田面水NH_4~+-N、TN及DON都呈增加趋势,增施秸秆虽然提高田面水的NH_4~+-N和TN,但NO_3~--N和DON含量呈下降趋势。以上结果表明,施肥后的10 d内NH_4~+-N是重点需要关注的氮形态,增施猪粪增加氮流失风险,尿素配合猪粪和秸秆施用,可降低田面水的NO_3~--N和DON含量。  相似文献   

12.
采用微区模拟施肥后春耕耕整稻田控水减排试验,研究了稻田施肥耕整后田面水中氮磷浓度的分布特征,排水时间及溢流堰排水高度对田面水氮磷的流失和减排效能。结果表明:春耕耕整后,若控制6 cm高排田面水,较常规控制3 cm高排水,可减少排放总氮35.76%~72.13%,总磷20.41%~50%。稻田耕整后蓄水6 cm高在第5 d排水比在3 d内排水可减少排放总氮21.22%~55.41%,减少排放总磷67.67%~83.70%。  相似文献   

13.
玉米秸秆生物炭对稻油轮作农田磷流失风险的影响   总被引:2,自引:1,他引:1  
以云南大理洱海流域典型稻油轮作模式为研究对象,通过2年田间定位试验,研究生物炭(玉米秸秆制备)、玉米秸秆与化肥配施对我国稻油轮作模式农田磷流失风险的影响。田间小区试验包括常规施用化肥(NPK)、生物炭与化肥配施(NPK+C)、生物炭与化肥减半配施(1/2NPK+C)、玉米秸秆与化肥配施(NPK+S)四个处理,通过比较不同处理间土壤有效磷含量、作物产量、吸磷量和水稻生长期间土壤有效磷、田面水总磷、可溶性总磷的动态变化特征,分析施用玉米秸秆生物炭和直接施用玉米秸秆对土壤、作物和磷流失风险的影响。结果表明,与NPK处理相比,增施生物炭和玉米秸秆,可显著提高水稻和油菜产量,但对水稻季田面水磷浓度无显著影响;施用生物炭条件下减施化肥,短期内未造成水稻和油菜减产,却降低了水稻整个生育期内田面水总磷(TP)和可溶性总磷(TDP)浓度;各处理水稻季田面水TP和TDP浓度在栽秧后第1 d内达到峰值,4~5 d内浓度迅速降低,7 d之后浓度趋于稳定。在此过程中,田面水TP下降64.2%~79.1%,TDP下降63.1%~82.4%。上述研究结果表明,为降低稻油轮作农田磷流失风险,可以考虑在水稻季施用生物炭的条件下减施化肥磷,并且在水稻栽秧后7 d内控制田面水外流。  相似文献   

14.
生活污水氮磷浓度对水稻生长及氮磷利用的影响   总被引:6,自引:5,他引:1  
通过设置不同N、P浓度的生活污水进行水稻盆栽实验,研究了生活污水灌溉对水稻生长、产量以及氮磷吸收利用的影响。结果表明,在正常灌溉和不施肥条件下,污水灌溉明显降低了水稻施肥期的田面水氮磷浓度,水稻移栽后70 d左右田面水N、P浓度与不施肥处理田面水N、P浓度趋于一致;污水TN、TP浓度与水稻的生长指标和产量密切相关,生活污水灌溉提高了穗粒数、千粒重和结实率,但穗数明显减少,导致产量下降;当污水中总氮浓度达20~25 mg·L~(-1)、总磷浓度达1.0~1.5 mg·L~(-1)时,不施任何化肥条件下水稻产量即可达到常规化肥处理的95%,差异不显著,此时污水灌溉中带入的氮仅为常规施肥处理氮用量的64.1%和磷肥用量的23.2%。与常规化肥处理相比,污水灌溉提高了水稻的N、P利用效率,水稻对N、P的吸收利用与污水中的N、P浓度成正相关,且污水中的N、P存在着正交互作用,即提高P浓度促进了N的吸收利用,提高N浓度促进了P的吸收利用。在应用生活污水进行稻田灌溉时,需在分蘖期配施一定的化肥从而保证水稻高产。  相似文献   

15.
太湖典型地区水稻田面水氮素时空变异特征研究   总被引:1,自引:0,他引:1  
选择太湖典型地区常熟市新庄镇水稻田为研究对象,研究稻田田面水三氮(总氮、铵态氮、硝态氮)浓度时空变异规律,为制定控制该地区稻田氮排放对周边水体污染的技术措施提供决策依据.试验区面积120 m2,采取网格法布设120点,在施基肥、穗肥后第2,4,6,8 d,施蘖肥后第2,5,7,9 d分别采集田面水测定TN(总氮)、NH4+ - N和NO3- - N的质量浓度,借助地统计学方法研究了该试验区田面水三氮浓度时空变异规律.结果表明:TN、NH4+ - N和NO3- - N浓度在施肥后呈现出不同的变化趋势.在本试验条件下,如果施肥后8 d排水,则蘖肥后排水污染风险最大,其次是基肥,穗肥风险最小.氮素空间分布结果表明,田面水三氮浓度具有中等程度的空间相关性.田面水三氮浓度由东向西呈现逐渐增大趋势,稻田东部田面水的渗漏以及水流方向(自东向西)可能是导致田面水三氮浓度空间变异的主要原因.建议采用生态塘滞留初期排水,再采取生物、生态技术对其净化处理,以降低稻田排水对周边水体的污染风险.  相似文献   

16.
选择湖南省长沙县典型中亚热带双季稻田长期定位试验小区,通过田间观测明确不同施肥、水分管理、秸秆还田、生物质炭农艺管理措施对氮磷径流流失的影响,采用冗余分析方法(RDA)探明稻田氮磷径流流失的主控因子。研究结果表明:早晚稻各处理田面水总氮浓度在施肥后(基肥、分蘖肥和穗肥)第1 d达到峰值,并在10 d后逐步恢复到平稳水平;早稻田面水总磷浓度在施基肥后第1 d迅速达到最高,晚稻在施肥后第5 d才达到峰值。早晚稻田面水氮磷浓度受农艺管理措施影响明显,在间歇灌溉条件下,施有机肥、秸秆还田与生物质炭比常规化肥处理分别降低总氮浓度34.05%、15.34%~19.76%和15.46%~17.47%;秸秆还田与生物质炭相对常规化肥处理分别降低田面水总磷浓度6.33%~8.76%和9.09%~13.66%。铵态氮和颗粒态磷是氮磷径流流失的主要化学形态,施肥后10 d内是氮磷径流流失风险窗口期,该期间总氮和总磷径流流失分别占稻季总流失量的82.53%~97.66%和6.73%~47.02%。冗余分析结果表明配施有机肥促进氮磷径流流失,施用生物质炭主要促进稻田氮素径流流失,秸秆还田主要减少稻田氮素径流流失。综合考虑氮磷径流流失防控潜力、实际效果和实施可行性,中亚热带双季稻田采取高效水分管理(尤其是流失风险窗口期)加秸秆还田是减少稻田氮磷径流流失的可行方式。  相似文献   

17.
为揭示田面水的氮素浓度动态特征并探讨其快速检测方法,于2018年水稻生育期对稻田田面水的氮素浓度、常规水质参数进行原位监测。结果表明,水稻生育期内,人工栽秧稻田田面水的TN和NH4+-N浓度在施基肥后1周分别迅速降至4.03 mg/L和3.02 mg/L,至下次施肥前变化趋于平稳,TN和NH4+-N在追肥后2 d到达峰值,1周左右趋于平稳,机插秧稻田田面水的氮素动态特征与人工栽秧基本一致。基肥期田面水的TN和NH4+-N从峰值随时间的衰减趋势近似符合指数衰减规律,人工栽秧和机插秧稻田田面水的TN浓度在基肥期峰值出现后2周内衰减幅度分别为62%和72%,NH4+-N的衰减幅度分别为80%和83%。以DO、EC、pH、ORP为自变量,TN为因变量,得到了多元线性回归模型,为服务于稻田田面水氮素流失风险的监测和管理,按照GB 18918—2002中TN的限值15 mg/L(一级A标准)和GB 3838—2002中TN的限值2 mg/L(Ⅴ类)对TN的排放进行分级,得到模型预测的准确率为80%,基本满足水环境管理的需求。  相似文献   

18.
通过微区模拟稻田,设置不同排水高度进行春耕灌排水试验,研究春耕稻田田面水中氮、磷等污染物的时空分布特征,为控制稻田排水中氮磷排放量提供试验依据。结果表明:在耕作后,田面水中氮、磷等污染物随排放时间的变化呈降低趋势,若田面水排放时间延迟至2d,可减少总氮、总磷排放浓度分别约86.2%、85.3%。结合农业生产实际,若蓄水2~3d,保持稻田3cm左右深的田面水,可减排氮磷污染物,有效减轻春季农业面源污染。  相似文献   

19.
化肥配施生物炭对稻田田面水氮磷流失风险影响   总被引:11,自引:5,他引:6  
在控制外源氮输入相同的前提下,通过大田试验研究生物炭部分替代化肥作为底肥,不同生物炭施用量(5、10、20 t·hm~(-2))对水稻生长期内稻田田面水氮磷迁移转化特征的影响。研究结果表明:各处理的田面水总氮、硝氮、铵氮浓度在施肥后第3 d达到最高,然后迅速下降,并逐渐稳定;田面水总磷浓度在施肥后2~4 d内增幅较小,而后迅速下降至稳定,施加生物炭对田面水总磷的影响不大;可溶性磷浓度在施肥后2~4 d内处于平稳下降的状态,之后迅速下降至稳定。稻田施肥后10 d内是控制氮磷流失的最佳时段。采用生物炭代替部分化肥的施肥方式,在一定范围内能降低稻田田面水的氮磷浓度,稻田退水氮、磷的输出负荷分别减少了39%~50%和38%~50%,显著提高了水稻生态效益。通过综合效益评估可知,施加5 t生物炭代替化肥是综合效益最高的施肥方法,该施肥方式下氮、磷的年输出负荷分别为16.83、1.89 kg·hm~(-2)。  相似文献   

20.
增效复合肥减氮施用对稻田水氮素流失的影响   总被引:1,自引:1,他引:1  
通过田间试验研究氨基酸、腐植酸和海藻酸增效复合肥减氮施用对稻田水氮素动态特征和损失的影响,旨在为增效复合肥环境效应评价提供依据。试验设7个处理:不施肥(CK)、不施氮(PK)、常规施肥(CF)、常规施肥减氮20%(CR)、腐植酸复合肥减氮20%(HR)、氨基酸复合肥减氮20%(AR)、海藻酸复合肥减氮20%(SR)。采集水稻生长期不同时间的田面水、径流水和田间渗漏水,分析了不同形态氮素浓度的动态特征和氮素损失。结果表明:增效复合肥减氮处理(AR、HR和SR)明显降低了田面水TN和NH_4~+-N浓度峰值,峰值分别维持在37.1~49.7 mg·L~(-1)和26.0~28.8 mg·L~(-1),以SR处理田面水TN和NH_4~+-N浓度峰值最低,较CR处理分别降低了38.4%和14.3%,其他减肥处理之间未见显著差异;施肥一周后,田面水TN与NH_4~+-N浓度逐渐降低至峰值的15%后趋于稳定;各施肥处理NO_3~--N浓度变幅较小,峰值未见明显差异。SR处理0~20 cm土层渗漏液TN浓度最低为16.5 mg·L~(-1),较CR、HR和AR处理分别降低了60.8%、50.1%和54.0%,氮素形态以NH_4~+-N为主,随土层深度增加,渗漏液TN和NH_4~+-N递减。施氮肥处理的氮素流失率大小顺序依次为CFCRHRARSR,SR处理氮素径流损失量最低为6.22 kg·hm~(-2),较CR处理降低了58.5%;增效复合肥氮素减施均明显降低氮素渗漏损失,施氮肥处理氮素淋失率大小顺序依次为ARCFCRHRSR,SR处理渗漏损失最低为7.70 kg·hm~(-2),较CR处理氮素淋失率降低了18.1%;稻田水氮素损失总量也以SR处理为最低,达13.9 kg·hm~(-2),较CR处理降低了22.8%。研究表明,增效复合肥减氮施用对稻田田面水、土壤渗漏液不同形态氮素浓度有明显影响,可减少稻田水氮素损失风险,以海藻酸增效复合肥减氮处理效果最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号