共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
[目的]近年来,越来越多高时间分辨率、高空间分辨率卫星相继出现,为我们的生产生活提供了很大的便利,如何利用好这些数据庞大、信息丰富的遥感影像一直以来都是国内外研究的热点问题.其中遥感影像的分类是将大量的遥感影像应用于各个领域的基础,针对传统方法对于高分辨率影像分类精度提高难的问题,提出一种面向对象结合卷积神经网络的遥感... 相似文献
3.
4.
介绍面向对象森林分类的背景,综述森林分类的理论和方法,概述面向对象遥感图像森林分类研究进展,分析其目前尚存在着影像自动识别困难、图像阴影去除困难、优势树种识别困难及分类精度偏低等问题,并展望了发展趋势。 相似文献
5.
基于BP神经网络的针阔混交林TM遥感图像自动分类技术研究 总被引:3,自引:0,他引:3
在对标准BP神经网络试验分析的基础上,通过输入矢量归一化处理、主成分分析、增加验证集、改进训练学习算法、扩大隐层和输出层规模等措施,对BP神经网络自动分类系统进行改进;利用改进后的BP系统对吉林省汪清林业局的典型针阔混交林TM遥感图像进行辩识、分类试验研究。结果表明:改进后的BP网络分类系统自动分类精度提高了19.14%,比传统无监督自动分类精度提高8.55%,达到了区分森林类型的分类要求。研究还显示了该改进系统应用于针阔混交林TM遥感图像自动分类识别的精度随网络规模增大而提高。 相似文献
6.
随着计算机与医学影像技术的不断进步,医学图像的分割逐渐成为医学图像技术研究的热点,在医学领域发挥着重要作用,核磁共振(MRI)成像能敏感地检查出组织成分中水含量的变化,能显示功能和新陈代谢过程等生理生化信息的变化,为一些早期病变提供了诊断依据,常常比CT能更有效和更早地发现病变以及不会像CT那样产生对人体有损伤的电离辐... 相似文献
8.
9.
遥感图像分类后处理3种实现方法比较 总被引:2,自引:0,他引:2
图像分类后处理是图像分类制图过程中十分重要的一个步骤.利用ERDAS IMAGE软件进行图像分类,在此基础上比较分别基于ERDAS、ArcGIS 9.0和Arcinfo Workstation的3种图像分类后处理方法的处理效率与效果.结果认为,基于ArcInfo的workstation的分类后处理效率最高、效果最好. 相似文献
11.
典型地物数据库是通过计算机自动分类来识别地物信息的。然而传统的以中低空间分辨率遥感数据建立的典型地物数据库由于同物异谱,同谱异物,单一指标信息等原因无法很好地区分相近目标。因此本文利用WorldView数据为典型地物影像建立数据库,可以加大遥感影像中的信息量,同时拟采用非监督分类、聚类分析的方法,以及多种指标信息对地物进行分类(如纹理信息、光谱信息等),可显著地提高识别精度,有助于更加快速、精确的识别地物类型,从而实现对地物的分类,增强遥感图像的识别,提高最终的地物分类精度以及此实验的分类效率与工作效率的提高,有着十分重要的现实意义。 相似文献
12.
分层分类与监督分类相结合的遥感分类法研究 总被引:2,自引:0,他引:2
遥感分类技术是获取土地利用/覆盖数据的主要方法.分层分类思想强调将分类过程逐级进行,每层选用不同的分类标准和方法;监督分类是基于传统统计分析的分类法,具有算法成熟,简便易行的特点.将2种方法相结合,建立起一个复合分类模型,并在SPOT影像上进行试验.试验证明:该方法能有效地提高分类精度,比单一使用监督分类法得到的结果精度提高了8.41%. 相似文献
13.
车辆分类识别自动化是当前道路安全和智能交通系统面临的重要挑战之一.图像处理、模式识别和深度学习技术的发展克服了许多障碍,针对车型多、计算量大导致车型识别准确率低、效率低的问题,深度学习的卷积神经网能够很好地解决这一问题.基于该方法实现5种车型的识别.首先,收集足够多的数据集以此来平衡数据集(交通网获取足够多的图片数据)... 相似文献
14.
15.
16.
【目的】探讨深度卷积神经网络在机载高光谱数据分类中的应用,以提高亚热带地区森林树种分类精度。【方法】以广西南宁高峰林场为试验区,基于中国林业科学研究院Li CHy系统获取的机载高光谱数据,以三维卷积层为基础,提出一种高效的卷积神经网络(CNN)结构。CNN模型以端到端方式处理高光谱影像分析问题,将原始数据作为输入,不需要降维或特征筛选,可省去传统分类方法在不同程度上人工筛选特征的工作;网络中3D卷积层可同时提取光谱特征和空间特征,学习特征立方体空间和光谱维度的局部信号变化,利用重要的识别特征进行分类,以提高对高光谱影像的判别能力。针对机载高光谱数据维度高、训练样本相对较少的问题,对模型进行优化,以避免过拟合。【结果】相较传统的特征筛选与面向对象分割结合的方法,本研究提出的3D-CNN结构森林树种总体分类精度达98.38%,Kappa系数为0.98,与随机森林特征选择结合支持向量机分类相比,总体精度提高8.82%,Kappa系数提高0.11;小样本训练情况下(减少75%训练样本),总体精度仍可达95.89%,Kappa系数为0.94。【结论】三维卷积神经网络在处理机载高光谱影像特征提取和... 相似文献
17.
植被是湿地生态系统的重要组成部分,湿地植被遥感分类研究能为湿地保护、管理和恢复提供实践指导。文中主要从湿地植被遥感分类的数据源和分类方法2方面综述湿地植被遥感分类研究的现状,分析目前湿地植被遥感分类研究的不足,展望未来我国湿地植被遥感分类的发展趋势。 相似文献
18.
19.