共查询到20条相似文献,搜索用时 0 毫秒
1.
利用RS和GIS的森林蓄积量偏最小二乘估测研究 总被引:8,自引:0,他引:8
在运用RS、GIS可提取的因子为自变量的森林蓄积量遥感估测中 ,本文提出运用偏最小二乘 (PLS)估计的数学模型。它能使蓄积量估测模型的稳健性增强 ,能够很好地克服传统的基于最小二乘 (OLS)估计建立起来的模型无法真正克服样地少、各自变量之间相关性强及对蓄积量的解释性不强等问题 ,并应用于福建漳浦地区。结果表明 :该方法有较高的预报精度 ,同时可大大降低成本。 相似文献
2.
3.
森林蓄积量受遥感因子与地形因子的影响,但这些因子间存在多重相关性,会影响模型稳定性与精度。针对森林蓄积量遥感估测自变量间存在多重共线性问题,采用异于传统最小二乘的偏最小二乘方法建立密云县森林蓄积量遥感估测模型。先对可能影响蓄积量的因子进行分析,选取既存在相关性又对模型显著性有影响的因子为森林蓄积量估测的自变量。用预留的样本对模型进行检验,预测值与实测值相比精度达到90.1%。将通过检验的模型对整个密云县进行反演,得到密云县估测森林蓄积量为2 447 695.203 m3。 相似文献
4.
为了快速有效获取《综合开发利用项目》项目区的森林蓄积量,利用SPOT5和Rapid Eye高分辨率遥感影像,结合野外实地调查数据,采用最小二乘回归方法构建森林蓄积量遥感估测模型,估算柬埔寨王国上丁省特许地2012年的森林蓄积量。结果表明:1利用预留独立样本对模型进行精度验证,不分类型的模型的总体预测精度可达到99.37%,分类型的模型的总体预测精度分别可达到99.57%、97.30%、99.41%、96.84%、76.25%;2不分类型建模反演得到2012年研究区的森林总蓄积量为33197465.008 m3,各类型的森林蓄积量分别为16660360.382、7124988.801、5716238.005、4016470.930、186695.185 m3。结果表明利用高分辨率遥感影像快速估测区域森林蓄积量的可行性,也为合理规划和开发利用特许地的森林资源提供参考。 相似文献
5.
6.
森林蓄积量能够评估林地生产力的高低及经营措施的效果,为森林经营与采伐提供重要依据。目前,大多基于无人机影像的蓄积量估算,均建立在测绘标准所生成的DOM、DSM、DEM等测绘成果基础上,而未充分利用原始影像数据上的林业特征,无法从点云层面上加入林业业务逻辑产生成果数据。获取无人机影像后,利用特征点提取与匹配方法自动相对定向,结合控制点和光束法平差的迭代求解,解算出精确的相机姿态数据,并沿核线方向一维搜索特征点进行影像密集匹配生成密集点云。对原始三维点云过滤后进行树冠分割,在聚类后的林冠点云中提取了树顶点和树高因子估测了森林蓄积量。研究结果表明,冠幅的提取精度85.15%,树高的提取精度83.69%,林分蓄积量估算的精度达到了82.46%。 相似文献
7.
随着科学技术的发展,各种航空飞行器在农林业生产中得到了广泛应用.介绍了无人机航测数据源、航测注意事项及应用研究方法,总结了无人机航测在森林抚育工程中的应用成效. 相似文献
8.
《林业资源管理》2021,(2)
随着激光雷达和立体影像航天航空遥感技术的快速发展,目前,我国虽然具备了快速获得林分平均高、郁闭度等相关信息的能力,但缺少利用林分平均高和郁闭度来准确估测森林生物量和蓄积量的模型,这严重影响了激光雷达和立体影像航天航空遥感技术的推广应用。为了对模型的构建进行探研,利用湖南湘西地区地面调查数据中52块杉木样地的林分平均高、郁闭度、株数等数据,通过因子变量组合不同的自变量形式,并分别构建多个不同函数形式的杉木地上生物量、蓄积量反演模型,用决定系数R~2对模型进行评价。结果表明,基于杉木林分平均高、郁闭度构建的因子变量组合与地上生物量、蓄积量之间有紧密的联系。其中:以e为底数的对数形式变量ln(C×HH~2)作为解释变量的杉木地上生物量模型、蓄积量模型拟合效果最佳;指数函数模型能够精确地表达自变量与地上生物量、蓄积量之间的关系;与一次函数模型、幂函数模型、对数函数模型相比,指数函数模型的拟合效果更佳。对杉木林分平均高、林分郁闭度与地上生物量、蓄积量之间的关系进行了有效探究,构建了杉木地上生物量模型、蓄积量模型,以期为建立林分平均高和郁闭度因子估测其它树种的地上生物量和蓄积量模型提供参考依据。 相似文献
9.
10.
基于机载LiDAR数据,分析哑变量对林分蓄积量估测精度的影响。以广西高峰林场为研究对象,借助机载激光雷达点云数据和96个样地数据,将样地数据按7∶3的比例随机划分为建模样本和测试样本,采用随机森林模型(RFR)和支持向量机模型(SVR)对建模样本与对应的点云特征回归建模,将树种组(针叶林和阔叶林)和龄组分别作为哑变量引入到回归模型。利用测试样本的估测精度评价模型的估测精度,引入树种组哑变量,随机森林模型决定系数R2从0.59提高到0.64,支持向量机模型决定系数R2从0.49提高到0.50。引入龄组哑变量,随机森林模型决定系数R2从0.59提高到0.65,支持向量机模型决定系数R2从0.45提高到0.55。根据模型的建模精度和验证精度结果得出,引入哑变量对蓄积量估测模型的精度提升是相对有效的。龄组哑变量对模型精度提升效果优于树种组哑变量。 相似文献
11.
基于ALOS PALSAR数据的森林蓄积量估测技术研究 总被引:3,自引:1,他引:3
以吉林省汪清林业局为研究区,基于ALOS PALSAR和森林资源二类清查固定样地数据,利用非线性回归方法建立了固定样地蓄积量与所对应的PALSAR像元后向散射系数之间的关系,结果表明,除杨树(Populus us-suriensis)等树种组外,PALSAR的HV后向散射系数与蓄积量呈良好的正相关关系,对多数树种而言,交叉极化方式(HV)后向散射系数与蓄积量的决定系数比同极化方式(HH)的略高。若以林场为单位统计,采用回归方法得到的估测结果与直接利用固定样地估测的结果相差很小。 相似文献
12.
基于无人机数据的人工林森林参数估测 总被引:2,自引:0,他引:2
《林业资源管理》2019,(5):61-67
无人机凭借低成本、高精度的优势在森林资源调查中被广泛应用,基于无人机高分影像及点云数据的森林主要参数估测及评价方法研究,可以为无人机技术在人工林调查中的推广应用提供科学参考。选取南京林业大学树木园内东方杉(Taxodium mucronatum)人工实验林为研究对象,以2018年无人机高分影像、点云数据以及地面实测数据为主要信息源,通过局部最大值以及种子点分割的方法对株数、树高、冠幅、郁闭度等森林参数进行提取,并进行精度检验。研究结果表明:1)提取的株树探测率为0.92,株数准确率为0.97,F参数为0.95。2)单木树高估测的决定系数(R~2)为0.795 7,均方根误差(RMSE)为0.594 0;单木冠幅直径的决定系数(R~2)为0.800 8,均方根误差(RMSE)为0.897 8。3)提取的总冠幅的提取率达到0.95,准确率达到0.93,f参数达到0.94。4)提取的样地郁闭度相对误差只有0.32%。基于无人机高分数据及少量地面实测数据的人工林主要参数估测,可以在很大程度上替代全林实测,在人工林中具有较大的推广价值。 相似文献
13.
《林业资源管理》2021,(4)
基于广西壮族自治区森林资源年度监测评价成果数据,采用逐步回归选择机载激光雷达特征变量,建立多元线性回归、Logistic回归和随机森林模型,预测南方集体林区桉树、杉木和天然阔叶林样地的蓄积量。结果表明:1)桉树和杉木样地的逐步回归特征变量多为高度和强度变量,而天然阔叶林样地则是间隙率、覆盖度、叶面积指数等综合变量;2)桉树和天然阔叶林样地,随机森林模型的蓄积量估测精度(桉树R~2=0.97,RMSE=12.60m~3/hm~2;天然阔叶林:R~2=0.90,RMSE=18.45m~3/hm~2)高于多元线性回归和Logistic回归模型,而杉木样地在多元线性回归模型中得到了最优的蓄积量估测结果(R~2=0.91,RMSE=24.30m~3/hm~2);3)在3种模型估测精度中,人工桉树和杉木样地均优于天然阔叶林样地。可见,高密度的激光雷达点云可以获取更优的特征变量,针对复杂的样地条件需要灵活选择估测模型实现蓄积量调查,以便为林草部门进行森林资源调查、监测和经营管理提供科学依据。 相似文献
14.
基于机载激光雷达点云和随机森林算法的森林蓄积量估测 总被引:1,自引:0,他引:1
《林业科学》2021,57(8)
【目的】基于机载激光雷达点云数据提取的森林高度参数和郁闭度,结合分层地面样地调查数据,采用随机森林算法构建森林蓄积量估测模型,分析机载激光雷达点云数据在森林蓄积量反演方面的潜力,为森林蓄积量高效准确估测提供方法依据。【方法】以直径30 m的地面样圆离散点云数据为数据源,经数据校准等预处理后,利用Li DAR360软件提取森林高度参数(最大高、平均高等)和郁闭度,并将数据随机分成训练数据(70%)和验证数据(30%)。采用随机森林算法构建森林蓄积量估测模型,对仅用高度参数建模以及联合高度参数和郁闭度建模结果进行比较;同时运用R软件VSURF工具包筛选建模变量,对筛选后变量的建模结果进行分析。【结果】仅用高度参数建模的估测精度为R~2=0.75、RMSE=40.07 m~3·hm~(-2)、MAE=29.21 m~3·hm~(-2)、MRE=49.40%,联合高度参数和郁闭度建模的估测精度为R~2=0.79、RMSE=36.23 m~3·hm~(-2)、MAE=26.16 m~3·hm~(-2)、MRE=38.35%。通过变量筛选,建模参数从24个减少至7个,可极大提高运算效率,同时R~2未变化,RMSE从36.23 m~3·hm~(-2)升至36.50 m~3·hm~(-2),rRMSE从31.92%升至32.97%,MAE从26.16 m~3·hm~(-2)降至26.08 m~3·hm~(-2),MRE从38.35%降至38.05%。【结论】机载激光雷达点云数据可以提取森林的垂直结构信息(高度参数)和水平结构信息(郁闭度),具备三维结构参数提取能力。采用随机森林算法,增加林分郁闭度信息可显著提高森林蓄积量估测精度。通过变量筛选,虽然能够降低参数数量,但对模型精度具有一定影响,在建模精度要求较高的情况下,建议使用全变量进行蓄积量估测;而在数据量较大的情况下,建议使用筛选变量进行蓄积量估测。基于机载激光雷达点云数据估测森林蓄积量显著优于光学遥感数据,可为森林蓄积量高效准确估测提供方法依据,能够满足大范围森林蓄积量快速反演需求。 相似文献
15.
16.
针对传统森林资源二类调查方法周期长且费时费力,难以满足新形势下森林资源动态监测需求的问题,以南京市六合区内3个林场为研究区,利用平均点密度1点/m2的激光雷达数据提取特征变量,结合二类调查数据,使用SMLR与Boruta两种算法进行因子筛选,对比SMLR,SVM与RF这3种建模方法,估测森林蓄积量。结果表明:1)高度因子是影响森林蓄积量的主要特征参数;2)SVM和RF这算法在模型拟合与验证精度方面均表现较优,SVM算法在混交林方面表现略逊色于RF这算法,SMLR方法表现不佳。结果表明,利用激光雷达提取因子与森林蓄积量进行建模有较好的结果,稀疏性机载激光雷达对森林资源调查有较好的适用性,为今后森林资源调查提供了新的思路。 相似文献
17.
传统的森林资源调查是一项周期长、任务重、劳动强度大,需大量经费的工作。随着遥感技术广泛应用于森林资源调查工作,特别是森林蓄积量的遥感估测,将比传统方法省时、省力,节约经费。目前,利用遥感进行森林蓄积量的估测研究已取得了一系列重要进展,文章则简要综述了国内外在光学遥感和微波遥感范围内的森林蓄积量遥感估测方面的研究进展,认为利用遥感技术进行森林生物量估测对于了解和监测全球生态系统对气候变化和人类活动的反应具有重要的意义。 相似文献
18.
【目的】探讨采用Landsat-8遥感影像数据,基于距离相关系数特征选择的Catboost模型在森林蓄积量估测中的潜力和适应性,为森林蓄积量的估测方法再增加一种可能性,也能为“双碳”目标的实现提供理论支撑。【方法】以浙江省龙泉市为研究区域,使用多源数据,包括Landsat-8卫星影像数据、森林资源二调数据和数字高程模型的数据,整个过程使用十字折交叉验证法对模型检验。首先使用基于距离相关系数的方法筛选特征因子,在不区分树种的情况下,分别利用K最近邻算法(KNN)、装袋算法(Bagging)、决策树梯度提升算法(LGBM)、梯度增强集成分类器算法(Catboost)4种方法建立蓄积量估测模型。之后再选取样本数据中数量比较大的杉木、针叶混交林、马尾松3种优势树种,分别使用Catboost方法进行蓄积量估测,再按权求和与未区分树种情况下的估测结果进行比较。【结果】Catboost方法表现优势明显,优于K最近邻算法(KNN)、装袋算法(Bagging)以及决策树梯度提升算法(LGBM),其模型的精确度达到了81.43%,建模估测的精确度达到了76.74%,并且与3种不同优势树种按权求和的结果对比... 相似文献
19.
文章以鞍山市2006年Landsat TM数据和ASTER DEM高程数据为数据源,在提取出波段1~5、7这6个波段后,通过波段运算、缨帽变换、主成分分析等方法获取差值植被指数、土壤调节植被指数、大气阻抗植被指数、垂直植被指数、归一化差值植被指数、比值植被指数等,以及亮度、绿度,前3个主成分等24个变量因子。基于这些变量因子和采样点数据,通过逐步回归模型选择最优模型并估测鞍山市不同林分蓄积量。鞍山市总蓄积量估测模型的相关系数R2是0.73,通过进行交叉验证,发现实测蓄积量和交叉估测值之间的相关系数R2是0.58。基于2007年的森林资源规划设计调查,从森林中提取出针叶林和阔叶林,分不同林分建立蓄积量估测模型;针叶林蓄积量、阔叶林蓄积量估测模型的相关系数R2分别是0.73和0.75。 相似文献
20.
基于3S技术的山东省森林蓄积量估测 总被引:3,自引:0,他引:3
借助SPSS统计软件和ERDAS IMAGINE9.0/ArcGIS9.2的建模及空间分析工具,采用TM影像和1∶100 000地形图作为数据源,从TM影像提取野外GPS采样点缓冲区内6个波段的灰度值及其线性和非线性组合等遥感因子,从地形图提取海拔、坡度、坡向等GIS因子,以各遥感因子和GIS因子作为自变量,以GPS野外调查样点缓冲区内的蓄积量作为因变量建立多元线性回归模型.样本数据筛选采用标准差法,因子变量筛选采用主成分因子分析法、多元线性回归的逐步回归和强行进入法等方法,建立的多元回归模型预测总体精度达到87.35%.用2006年山东省TM影像提取的有林地掩膜模型中各因子变量灰度图,得到各因子变量的掩膜图层.将各因子变量的掩膜图层代入多元回归模型进行复合运算,得到有林地蓄积量灰度图像.经蓄积量灰度图像属性表统计得到山东省的有林地总蓄积量为6 203.53万m3,为快速、准确地对大面积的森林蓄积量估测提供一种有效的途径和方法. 相似文献