首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纤维素在自然界中储量丰富,是一种很好的生物质资源,但纤维素中含大量氢键,很难溶于常见有机溶剂,开发有效的纤维素溶解体系是纤维素应用的重点和难点。相对传统纤维素溶剂而言,离子液体具有对纤维素溶解性好,低毒性、难挥发等优点,成为近几年的研究热点。本研究通过离子交换法合成了四己基醋酸铵(THAA)离子液体,并分别以二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAc)和N,N-二甲基甲酰胺(DMF)为助溶剂对不同纤维素原料微晶纤维素、滤纸等进行溶解。探讨助溶剂类型、THAA含量、溶解温度和纤维素聚合度对THAA/助溶剂混合体系溶解纤维素的影响。结果表明,DMSO对纤维素溶解有促进作用,DMAc和DMF效果不大。当THAA/DMSO混合体系中THAA质量分数为30%时溶解纤维素性能最佳,25℃下能溶解7.51%的微晶纤维素。此外,纤维素在此溶剂体系中的溶解速度随溶解温度的升高及纤维素聚合度的降低而提高。纤维素经THAA/DMSO混合体系溶解再生后纤维素晶型由Ⅰ型变成Ⅱ型。  相似文献   

2.
纤维素和壳聚糖是地球上储量最丰富的两种天然高分子,通过静电纺丝法将纤维素与壳聚糖高效复合可制备综合性能突出的绿色功能化纳米纤维新材料,并进一步拓展二者的应用领域.适宜溶剂体系的选用与开发是静电纺丝法制备高品质纳米纤维的重要前提和保证.基于此,本文综述了近年来国内外学者们对静电纺丝纤维素、壳聚糖单一纳米纤维以及两者复合纳...  相似文献   

3.
为寻找制备再生竹纤维素(RBC)膜合适的溶剂体系,本研究分别采用N-甲基吗啉-N-氧化物(NMMO)、1-丁基-3-甲基咪唑氯盐([BMIM]Cl)离子液体(ILs)、氢氧化钠/尿素(NaOH/urea)、二甲基乙酰胺/氯化锂(DMAc/LiCl)以及传统的铜乙二胺(CED)和二硫化碳/氢氧化钠(CS2/NaOH)6种溶剂体系溶解竹纤维素(BC),通过温度可控平板刮膜实验装置,刮膜后利用相转换法制备RBC膜,研究膜的形貌结构、化学组成、结晶结构、热稳定性、力学性能和透光性能。结果表明,所有膜的化学组成类似于竹纤维素,结晶结构为纤维素Ⅱ型,结晶度低于竹纤维素。NMMO、ILs和NaOH/urea膜的热稳定性最高; NMMO、ILs、Na OH/urea和DMAc/Li Cl膜的拉伸强度均较高; Na OH/urea和ILs膜的透光率最高;CS2/Na OH膜的热稳定性、拉伸强度和透光率均最低。NMMO、ILs和Na OH/urea溶剂体系在满足再生竹纤维素膜市场和环境要求方面具有巨大潜力。  相似文献   

4.
采用同轴静电纺丝技术,将酸水解获得的纤维素纳米晶体(cellulose nanocrystals,CNCs)添加到聚甲基丙烯酸甲酯(PMMA)/二甲基甲酰胺(DMF)溶液中作为壳层电纺液,聚丙烯腈(PAN)/DMF溶液为核层电纺液,成功制备出核-壳结构的纳米复合纤维。探讨了CNCs添加量对电纺液的电导率和黏度的影响及同轴复合纤维的微观形貌、直径分布、结晶特性、热学性能和疏水性能的影响。结果表明:CNCs添加后电纺液的电导率和黏度有明显提高,所制备的同轴纳米纤维具有较好的核-壳结构,其直径随CNCs加载量的增加而减小,且分布更加集中;添加高结晶度的CNCs后,复合纤维的结晶性得到明显提高;在热学性能方面,CNCs增强的同轴纳米材料最大热分解温度为402.7℃,远高于单纺PMMA和单纺PAN纤维以及未添加CNCs的同轴PMMA/PAN纳米材料;添加亲水性CNCs后,水接触角值由130.0°降低至116.7°,复合纤维的疏水性能明显下降。  相似文献   

5.
竹纤维经一步碱纯化制得α-纤维素含量高于96%的碱处理竹纤维素,达到了商业合成醋酸纤维素对原料的要求;随后对提纯的竹纤维素进行乙酰化改性,以提高其用于静电纺丝技术制备纳米材料的溶解特性。采用相应的表征手段(SEM和NMR)分析了竹纤维纯化和乙酰化反应过程中产物形貌及结构的变化,结果表明:经Na OH溶液纯化后样品的纤维形貌得到了保持,粗糙的纤维表面印证了原料中杂质成分的脱除;乙酰反应使得纤维素分子上的羟基被取代转变为醋酸纤维素结构。并基于静电纺丝技术(纺丝工艺条件:电压22 k V,溶液流速为1 m L/h,接收距离15 cm,滚筒转速15.2 m/s)成功制得了形貌均匀、取向可控的竹纤维源纳米纤维。相关研究结论可为我国农业纤维性资源纳米化全新利用提供一定的理论基础,契合时下充分开发环境友好型可再生生物质资源的研究主题。  相似文献   

6.
采用氯化胆碱-尿素低共熔溶剂(DES)体系预处理,结合纳米均质化机械处理将漂白硫酸盐杨木浆纤维制备成纤维素纳米纤丝(CNF),并利用元素分析、扫描电子显微镜、红外光谱、热重分析和X射线衍射对CNF的性能进行了分析表征,还计算了CNF的聚合度(DP)和制备能耗.研究结果表明:DES预处理可以促进纸浆纤维的润胀,有利于纳米...  相似文献   

7.
低共熔溶剂(DESs)是一种新型绿色溶剂,具有蒸汽压低、合成过程简单、价格低廉、无毒、可生物降解等优点,被认为是最有发展潜力的生物质预处理试剂之一,在木质纤维类生物质领域中的研究应用逐年增加。综述了DESs在木质素、纤维素和半纤维素的溶解、改性以及利用等相关方面的研究进展,分析了DESs氢键供体和氢键受体种类、摩尔比、浓度、处理温度等条件对三大素溶解性能的影响,以及三大素在DESs中酯化、活化和降解等的研究现状。介绍了DESs预处理稻壳、玉米芯、农作物秸秆、木材等木质纤维类原料的研究现状,利用DESs预处理木质纤维类生物质主要是提取并获得高纯木质素组分,同时提高富纤维物质的葡萄糖得率和木糖得率,对DESs预处理木质纤维类生物质的机理进行了分析。重点介绍了利用DESs预处理纸浆等木质纤维类生物质制备纳米纤维素的研究进展。最后,提出了DESs在木质纤维类生物质领域研究的发展方向,以期为DESs应用于木质纤维类生物质资源化利用提供依据和参考。  相似文献   

8.
木质纤维素生物质细胞壁全组分在有机溶剂或离子液体中的溶解是解析木质纤维素结构特性和制备生物质基材料的有效途径。笔者将不同球磨程度的麦草茎秆和叶子溶解在8%(w/w)LiCl/DMSO溶剂体系,并于水中再生,对比分析麦草茎秆和叶子溶解-再生行为及木质素结构特性对再生原料酶水解性能的影响。结果显示,球磨4 h的麦草茎秆和叶子可完全溶解在LiCl/DMSO溶剂体系,但麦草茎秆木质素及碳水化合物的溶解-再生行为与叶子有较大差异。经LiCl/DMSO溶解和水再生的原料,部分木质素损失,酶水解效率显著提高,且再生叶子酶水解效率明显高于再生茎秆。化学降解分析表明,短时间的球磨处理(≤4 h)和溶解再生过程对木质素结构影响较小,但球磨时间延长对木质素β-O-4键特别是赤型结构破坏严重。麦草茎秆木质素比叶子木质素具有较高的硝基苯氧化、臭氧降解得率、赤型/苏型结构比例以及较多的β-O-4连接键。麦草茎秆和叶子酶水解效率及木质素结构的差异表明,木质纤维素生物质酶水解效率不仅受木质素芳环结构的影响,而且受木质素侧链β-O-4连接键的影响。  相似文献   

9.
纸浆纤维是制备纤维素纳米纤维(NCF)的重要原料,研究其前处理方法是实现NCF低能耗制备的重要手段。该文采用7种有机、无机溶剂对纸浆纤维进行润胀处理,并协同高频超声增强处理,通过对水中竹浆纤维的沉降速度及堆积高度对润胀效果进行评价。结果表明:溶剂对纤维的润张效果差异显著,所采用试剂中,喹啉和碘化钾对竹浆纤维的润胀效果最为明显;高频超声处理发现对纤维润胀效果有明显的增强,且对不同试剂的润胀效果有明显改善。  相似文献   

10.
纳米纤丝化纤维素(NFC)通过化学改性的方法可以赋予其特殊表面性质。研究以漂白竹浆为原料,采用机械(球磨机和高压均质机)和化学改性相结合的方法,制备改性纳米纤丝化纤维素(m-NFC)。在球磨中使用丁酰氯为酰基化试剂,N,N-二甲基甲酰胺(DMF)为分散剂,降低纤维尺寸的同时对纸浆纤维进行化学改性,再经高压均质机处理制备了取代度为2.07的m-NFC。利用激光粒度分析仪、原子力显微镜(AFM)、傅里叶红外光谱(FTIR)、X射线衍射仪(XRD)对m-NFC的结构和形态进行表征。均质20次最高压力80 MPa制备的mNFC微纤丝长度为316.9 nm,直径分布在25~80 nm范围内,强物理机械力作用改变了m-NFC的晶体结构。改性后的m-NFC在低极性溶剂丙酮中具有较好的分散稳定性。研究结果可为纳米纤丝化纤维素应用于疏水性生物基质材料制备提供依据。  相似文献   

11.
碳纳米纤维的制备及应用   总被引:1,自引:0,他引:1  
本文介绍了碳纳米纤维的主要制备方法,包括化学气相沉积法、静电纺丝法及固相合成法等。并讨论了碳纳米纤维在复合材料、锂离子电池负极材料、纳米电子器件、储氢材料等方面广阔的应用前景。  相似文献   

12.
采用硫氰酸钾/乙二胺(KSCN/ED)溶解体系制备纤维素水凝胶,分析纤维素质量分数、溶解时间、溶解温度对水凝胶性能的影响。采用紫外可见分光光度计、电子万能试验机、扫描电镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、X射线衍射仪(XRD)和热分析仪(TGA)等对所制备纤维素水凝胶的透光率、压缩性能、形貌特征、谱学性能、晶体强度和热学性能进行分析表征。结果表明,在溶解时间4 h,温度90℃,纤维溶度4%的工艺下所制备的水凝胶应力-应变曲线表现出非线性特征,表明材料具备较好的黏弹性。纤维素水凝胶内部由均匀的球状粒子(直径为10~50 nm)和致密多孔的三维网状结构组成;XRD分析结果表明,纸浆纤维在溶解过程中晶型发生转变,由纤维素Ⅰ型转变为Ⅱ型。TGA分析结果表明,纤维素水凝胶的热分解温度为315.8℃,热稳定性较原料有所降低。硫氰酸钾/乙二胺作为一种纤维素溶解体系制备纤维素水凝胶具有操作简单、高效、可回收利用等优点。  相似文献   

13.
将助水溶剂体系应用于生物质精炼领域是当今的研究热点之一,助水溶剂可以有效地将木质纤维组分分离,实现产物的高附加值利用,如用助水溶剂处理木质纤维原料生产生物质燃料、化学品、生物基复合材料等。综述了近年来利用助水溶剂体系分离纤维组分以及制备生物乙醇、纳米纤维素、纳米木质素及其他高附加值产品的应用研究。  相似文献   

14.
以纳米纤维素为原料,采用"CaCl_2溶液促进物理凝胶法"制备水凝胶,选用叔丁醇溶液为置换溶剂并采用"多步法"完成溶剂置换,最后通过冷冻干燥法制备纳米纤维素气凝胶。通过扫描电子显微镜(SEM)、全自动比表面积与孔隙度分析仪和热重分析仪(TG)对所制备的纳米纤维素气凝胶进行微观形貌、比表面积、孔径分布及热稳定性进行表征分析。结果表明:叔丁醇冷冻干燥法制备的纳米纤维素气凝胶是具有层状的以中孔和大孔为主的多孔材料,其比表面积可达174.3 m2/g,收缩率仅为7.86%,平均孔径约为18.4 nm。随着纤维素质量分数的增加,纳米纤维素气凝胶的吸附量和比表面积增大,孔隙度增加,收缩率逐渐减小;纳米纤维素气凝胶具有与微晶纤维素和纳米纤维素相似的热稳定特性。CaCl_2溶液通过改变原始溶胶体系的电荷分布而使粒子更易相互靠近聚集形成凝胶,落入其中的纳米纤维素颗粒会保持其落入瞬间的完整状态。  相似文献   

15.
纳米纤维素是一种来源于植(动)物或微生物的天然绿色纳米材料,拥有高表面化学活性、独特的网络结构、优异的力学强度和高比表面积等优良特性。通过层层自组装、原位化学聚合和电化学沉积等方式,纳米纤维素可与金属氧化物、导电聚合物和二维纳米材料等多种纳米粒子高效复合,形成不同微观尺寸和结构特性的纳米纤维素基多孔膜材料和导电复合材料,在金属离子电池、超级电容器等储能器件用隔膜和电极材料领域具有广阔的应用前景。根据材料来源、制备方法和纤维形态的差异,纳米纤维素可分为纤维素纳米晶体、纤维素纳米纤丝、细菌合成纳米纤维和静电纺丝纳米纤维4大类,目前用于储能材料的主要是前3类。这些纳米纤维素常与水混合成胶体状态,失水后借助氢键自组装(织)形成力学性能和热稳定性优异的薄膜,在电解质溶液中具有良好的保湿能力,易于离子和电子传输,是储能器件隔膜材料的理想选择。纳米纤维素丰富的活性基团、独特的网络结构和易于成膜的特性,可作为骨架材料与其他导电活性成分(主要包括碳纳米材料、金属氧化物和导电聚合物)复合制备储能用电极材料。纳米纤维素也可以直接炭化用于电极材料,其储能性能与石墨化程度密切相关,常通过掺杂改性、多元复合等方式提高储能效率和性能。现阶段纳米纤维素基电极材料有主要碳纤维材料、二维纳米材料、导电高分子材料和多元复合材料,尽管具有无可比拟的性能优势和乐观的应用前景,但纳米纤维素与电极活性材料之间的复合方式、界面相容性以及微观形貌调控等研究尚处于起步阶段,如何最大限度发挥纳米纤维素的尺寸效应和网络结构,构建具有更加精细的纳米体系及高转化效率的储能器件是下一步需要攻克的主要难题。本文在简要介绍纳米纤维素分类和性能的基础上,详细阐述其在储能器件隔膜材料和新型电极材料领域的研究现状,并进一步对纳米纤维素在该领域的发展趋势进行展望。  相似文献   

16.
竹Lyocell纤维研制工艺探讨   总被引:2,自引:0,他引:2  
该文叙述了竹Lyocell纤维研制过程中碰到的几个技术问题,包括原料纤维素浆的选择、溶剂氧化甲基吗啉的合成、纤维素浆的溶解和纺丝工艺、溶剂回用与纯化、制胶和纺丝设备等,探索了制造竹Lyocell纤维的技术可行性,为竹纤维产品的开发和生产提供科学依据.  相似文献   

17.
为制备力学性能优良、透光性能好以及阻隔性能较佳的可再生生物质基膜材料,以漂白硫酸盐竹浆纤维(BP)为原料,先制备竹纳米纤维素(B-CNF),再通过高碘酸钠氧化改性的方法对竹纤维中纤维素的分子结构进行调控,制备了以竹材为基质的竹纳米纤维素膜材料。当NaIO4氧化处理0.5、 1.5、 3 h时,所得氧化竹纳米纤维素分别标记为OB-CNF-0.5、OB-CNF-1.5和OB-CNF-3,对应制备的膜材料分别标记为OBF-0.5、OBF-1.5和OBF-3,B-CNF制备的膜材料为BF。采用傅里叶红外光谱(FT-IR)、扫描电子显微镜(SEM)、原子力显微镜(AFM)等方法对膜材料进行了表征,并测试了其力学性能、透光性能、水蒸气和氧气阻隔性能。结果表明:高碘酸盐氧化可成功地在竹纤维的纤维素分子长链中引入醛基,随着NaIO4氧化时间延长至3.0 h,竹纳米纤维素中含醛基量增加至1.23 mmol/g;与BF相比,随着氧化时间的延长,竹纳米纤维素基膜材料会逐渐出现分层结构,在波长为600 nm处的透光率从82.24%增加至97.49%,水蒸气透过量(W...  相似文献   

18.
制竹Lyocell纤维的竹浆纯化与溶解工艺研究   总被引:1,自引:0,他引:1  
该研究选择用溶剂纺丝法制备竹Lyocell纤维的合适竹浆原料,并摸索其纯化和溶解的工艺条件,为利用竹子开发纺织纤维积累有关的基础数据。分别用氢氧化钠溶液和乙二胺四乙酸钠溶液处理竹浆原料,以去除其中的木质素、半纤维素和钙、镁、铁等离子类杂质;研究了用氧化甲基吗啉作溶剂溶解竹纤维素的工艺条件。阐述了如何选择纺制竹Lyocell纤维的竹浆原料,提出以纤维素的"平均聚合度"和"α-纤维素含量"这两个指标作为判断的依据。试验表明:适宜的竹纤维素平均聚合度为800~900左右,其α-纤维素含量应在94%以上。可用含水13%的氧化甲基吗啉单水化合物NMMO.H2O,在100~110℃下溶解竹纤维素;也可用含水50%左右的NMMO溶液,用减压工艺溶解竹纤维素。  相似文献   

19.
采用静电纺丝技术制备了聚己内酯(PCL)纤维支架,并将酸水解制得的纤维素纳米晶体(CNCs)作为增强体,制备了不同CNCs加载量的CNCs/PCL复合纤维支架,以提高PCL纤维支架的力学性能,并探讨了CNCs对PCL纤维支架细胞相容性的影响。结果表明:最佳增强条件是m(CNCs)/m(PCL)为5.25%,在该条件下制备的复合纤维支架(CNCs-5.25/PCL)最大应力和断裂伸长与纯PCL纤维支架相比分别提高了291%和320%。复合纤维支架上成功培养了成人胰腺导管癌细胞(Panc-1)和肝细胞(HL7702);对成人胰腺导管癌细胞在PCL及CNCs/PCL复合纤维支架上的增殖速率进行的单因素方差分析表明,CNCs没有增大PCL复合纤维支架的细胞毒性。CNCs可以作为静电纺PCL纤维支架的增强材料,制备具有良好力学性能和细胞相容性的纳米复合纤维支架,为CNCs在组织工程中的应用提供了理论依据。  相似文献   

20.
为寻求较优的醋酸纤维素膜原料,选用巨龙竹纤维素(BC)、竹纸浆纤维素(PC)和微晶纤维素(MC)作为原料,乙酸酐作为乙酰化试剂,浓硫酸为催化剂,制备得到巨龙竹醋酸纤维素(BCA)、竹纸浆醋酸纤维素(PCA)和醋酸纤维素(MCA),再用3种醋酸纤维素制备膜材料,并对其性能进行表征分析。结果表明:巨龙竹纤维素(BC)活性羟基被乙酰基取代能力最强,乙酰化处理后制备的BCA乙酰基可达48.54%,略高于MCA(46.06%)和PCA (44. 13%),且所制得的BCA膜具有最好的力学性能,断裂伸长率与拉伸强度分别为2. 1%和45.97 MPa,显著强于PCA膜和MCA膜; BCA膜的透光率90%,还具有最强的疏水性能,接触角可达92.9°;同时BCA膜的表面比较平滑,结构最为致密,热稳定性较高。因此,BC是较优的醋酸纤维素膜原料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号