首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenolic compounds of 14 pomace samples originating from red and white winemaking were characterized by HPLC-MS. Up to 13 anthocyanins, 11 hydroxybenzoic and hydroxycinnamic acids, and 13 catechins and flavonols as well as 2 stilbenes were identified and quantified in the skins and seeds by HPLC-DAD. Large variabilities comprising all individual phenolic compounds were observed, depending on cultivar and vintage. Grape skins proved to be rich sources of anthocyanins, hydroxycinnamic acids, flavanols, and flavonol glycosides, whereas flavanols were mainly present in the seeds. However, besides the lack of anthocyanins in white grape pomace, no principal differences between red and white grape varieties were observed. This is the first study presenting comprehensive data on the contents of individual phenolic compounds comprising all polyphenolic subclasses of grapes including a comparison of several red and white pomaces from nine cultivars. The results obtained in the present study confirm that both skins and seeds of most grape cultivars constitute a promising source of polyphenolics.  相似文献   

2.
The monomeric, oligomeric, and polymeric flavan-3-ol composition of wines, grape seeds, and skins from Vitis vinifera L. cv. Graciano, Tempranillo, and Cabernet Sauvignon has been studied using (1) fractionation by polyamide column chromatography followed by HPLC/ESI-MS analysis, (2) fractionation on C(18) Sep-Pak cartridges followed by reaction with vanillin and acid-catalyzed degradation in the presence of toluene-alpha-thiol (thiolysis). The content of monomers ((+)-catechin and (-)-epicatechin), procyanidin dimers (B3, B1, B4, and B2), trimers (T2 and C1), and dimer gallates (B2-3-O-gallate, B2-3'-O-gallate, and B1-3-O-gallate) ranged from 76.93 to 133.18 mg/L in wines, from 2.30 to 8.21 mg/g in grape seeds, and from 0.14 to 0.38 mg/g in grape skins. In wines, the polymeric fraction represented 77-84% of total flavan-3-ols and showed a mean degree of polymerization (mDP) value of 6.3-13.0. In grapes, the polymeric fraction represented 75-81% of total flavan-3-ols in seeds and 94-98% in skins and showed mDP values of 6.4-7.3 in seeds and 33.8-85.7 in skins. All the monomeric flavan-3-ols and oligomeric procyanidins found in wines were also present in seeds, although differences in their relative abundances were seen. The skin polymeric proanthocyanidins participated in the equilibration of the wine polymeric proanthocyanidin fraction, especially contributing to the polymer subunit composition and mDP.  相似文献   

3.
The phenolic composition of wine depends on, among other factors, the grapes used to make it. In this sense, knowledge of the chemical composition of grapes and its association with the resulting wines is an important tool to determine if there is a relationship between the phenolic composition of grapes and the price that these wines obtain in the market. For this purpose, grape skins and seeds from the cultivar Cabernet Sauvignon from the central region of Chile, in 2009 and 2010 vintages from two ripening points, were subjected to chemical and phenolic analyses, as were the wines made from these grapes. Grapes and the corresponding wines from three retail price wine categories, U.S. $6-8, U.S. $28-30, and U.S. $150-160, were evaluated. No differences were found across the price categories in the chemical analysis of grapes. Berry skins and wines from the higher price categories presented a higher concentration only of total tannins, and the differences in their concentrations were only among the different fractions of proanthocyanidins in the skins, seeds, and wines; there were no differences in their proportions. A seasonal effect influenced the concentrations of certain compounds in grapes and led to a decrease in the concentration of total phenols, total tannins, and total anthocyanins between sampling dates as harvesting moved toward the common commercial grape harvest in Chilean viticulture.  相似文献   

4.
The responses of Vitis vinifera L. cv. Malbec to different solar ultraviolet-B radiation (UV-B) levels were assessed in two contrasting situations, under sunlight with full UV-B (+UV-B) and filtered UV-B (-UV-B), in three different locations at 500, 1000, and 1500 m above sea level (asl). To evaluate the effects of radiation, a simple, accurate, and rapid method for the separation and simultaneous determination of representative phenolic compounds in grape berry skins by capillary zone electrophoresis was developed. Separation was carried out in less than 20 min with 20 mM sodium tetraborate buffer containing 30% methanol, pH 9.00. The procedure is fast and reliable, and extracted grape berry skins can be directly analyzed without prior sample cleanup procedure. Berry skins from the +UV-B treatment at 1500 m asl showed the highest levels of total polyphenols anthocyanins, and resveratrol, compared with the -UV-B treatment at this altitude.  相似文献   

5.
Grape seeds and skins are good sources of phytochemicals such as gallic acid, catechin, and epicatechin and are suitable raw materials for the production of antioxidative dietary supplements. The differences in levels of the major monomeric flavanols and phenolic acids in seeds and skins from grapes of Vitis vinifera varieties Merlot and Chardonnay and in seeds from grapes of Vitis rotundifolia variety Muscadine were determined, and the antioxidant activities of these components were assessed. The contribution of the major monomeric flavonols and phenolic acid to the total antioxidant capacity of grape seeds and skins was also determined. Gallic acid, monomeric catechin, and epicatechin concentrations were 99, 12, and 96 mg/100 g of dry matter (dm) in Muscadine seeds, 15, 358, and 421 mg/100 g of dm in Chardonnay seeds, and 10, 127, and 115 mg/100 g of dm in Merlot seeds, respectively. Concentrations of these three compounds were lower in winery byproduct grape skins than in seeds. These three major phenolic constituents of grape seeds contributed <26% to the antioxidant capacity measured as ORAC on the basis of the corrected concentrations of gallic acid, catechin, and epicatechin in grape byproducts. Peroxyl radical scavenging activities of phenolics present in grape seeds or skins in decreasing order were resveratrol > catechin > epicatechin = gallocatechin > gallic acid = ellagic acid. The results indicated that dimeric, trimeric, oligomeric, or polymeric procyanidins account for most of the superior antioxidant capacity of grape seeds.  相似文献   

6.
The influence of growing season (winter vs summer) on the synthesis and accumulation of phenolic compounds and antioxidant properties was studied in five grape cultivars for three consecutive years. Four phenolic compound parameters (total phenols, flavonoids, flavan-3-ols, and anthocyanins) and three antioxidant property parameters [2,2-diphenyl-1-picrylhydrazyl radical scavenging, 2,2-azinobis(3-ethylbenzothiazolinesulfonic acid) radical scavenging, and ferric reducing antioxidant power] were investigated. Results showed that both phenolic compounds and antioxidant properties in the seed and skin of winter berries were significantly (p < 0.05) higher than those of summer berries for all of the cultivars investigated. The anthocyanin profiles of berry skins appeared to be extremely consistent in different years for the same crop, whereas they varied greatly between the two crops within the same year (winter vs summer). Winter berries contained richer glucosides of delphinidin, cyanidin, peonidin, and malvidin than summer berries. These seasonal variations of phenolic compounds and antioxidant properties on grape berries were largely contributed by climatic factors such as temperature, solar radiation, rainfall, and hydrothermic coefficient between different growing seasons.  相似文献   

7.
Knowledge about the relation between grape and wine phenolics is of key interest for the wine industry with respect to being able to predict wine quality from analyses of grapes. Prediction of the phenolic composition and color of experimentally produced red wines from the detailed phenolic composition of the corresponding grapes was investigated using a multivariate approach. Grape extracts and wines were produced from 55 different grape samples, covering 8 different Vitis vinifera cultivars: Alicante, Merlot, Syrah, Cinsault, Grenache, Carignan, Cabernet Sauvignon, and Mourvedre. The phenolic composition of the grapes and wines showed that the average ratios between wine and grape phenolics ranged from 0.25 to 7.9 for the different phenolic compounds. Most interestingly, the average ratios were low for anthocyanins (0.31) and tannins (0.32), intermediate for (+)-catechin (0.75) and polymeric pigments (0.98), and high for gallic acid (7.9). Individual wine phenolics in general correlated well with several grape phenolics, indicating that a multivariate approach might be advantageous for prediction of wine phenolics from grape phenolics analysis. However the use of multivariate prediction of individual wine phenolics from the complete grape phenolic composition only improved the prediction of wine polymeric pigments, whereas wine anthocyanins were predicted with the same precision as from the direct relation with grape anthocyanins. Prediction of color attributes of pH normalized experimental wines from the phenolic profiles of grapes was accomplished using a multivariate approach. The correlation between predicted and measured total wine color was high ( r = 0.958) but was very similar to the correlation coefficient obtained for the direct relation between grape anthocyanins and total wine color ( r = 0.961). Color due to copigmentation, color due to anthocyanins, and color intensity were also predicted well.  相似文献   

8.
Dehydrated waste grape skins from the juice industry were used as an additive to produce rosé wines. Maceration time, particle size, dosage, alcoholic content, and maceration temperature were first studied in model wine solutions using two different dehydrated waste grape skins. Full factorial experimental designs together with Factor Analysis and Multifactor ANOVA allowed for the evaluation of each parameter according to the composition of color and phenolic and aroma compounds. Higher maceration time favored the extraction of anthocyanins; phenolic compound release was influenced by dosage independent from other factors studied. Rosé wines were produced by direct addition of dehydrated waste grape skins, according to selected parameters in two different white wines, achieving characteristics equivalent to commercial rosé wines. After three months of storage, rosé wine composition was stable.  相似文献   

9.
Three newly formed Port wine pigments were isolated by Toyopearl HW-40(s) gel chromatography and semipreparative HPLC. Furthermore, the pigments were identified by mass spectrometry (LC/MS) and NMR techniques (1D and 2D). These anthocyanin-derived pigments showed UV-visible spectra different from those of the original grape anthocyanins. These pigments correspond to malvidin 3-glucoside linked through a vinyl bond to either (+)-catechin, (-)-epicatechin, or procyanidin dimer B3 [(+)-catechin-(+)-catechin]. NMR data of these pigments are reported for the first time.  相似文献   

10.
Seven table grape cultivars grown in Apulia region were considered: Italia, Baresana, Pizzutello, Red Globe, Michele Palieri, Crimson Seedless, and Thompson Seedless. Seeds, skins and pulps were extracted and analyzed for their phenolic profiles and antioxidant activities. The hierarchy in the phenolic contents was seeds, skins, and pulps. These results indicate that the intake of the whole berries (seeds included) must be strongly recommended. The highest phenolic contents were detected on Italia and Michele Palieri cv., respectively within the white and the red/black table grapes. Seeds gave a high contribution to the berry antioxidant activity, as they had higher phenolic content than skins and contained high quantities of proanthocyanidines, but the strongest antioxidant activity was shown by the pulp juices due to their content in hydroxycinnamyl acids. The principal component analysis applied to the phenolic composition and antioxidant activity of skins, pulps, and seeds allowed a good separation of Italia and Michele Palieri cultivars. According to the cluster analysis, cultivars were grouped into two clusters, one including Michele Palieri and the other one including Italia, Baresana, Pizzutello, and Thompson Seedless.  相似文献   

11.
French wines are abundant sources of phenolic compounds. The content of several catechins, i.e., (+)-catechin, (-)-epicatechin, dimers B1, B2, B3, and B4, trimers C1, and trimer 2 (T2), of 160 French wines was determined by HPLC with UV detection. Red wines (n = 95) were found to have high levels of catechins, ranging from 32.8 to 209.8 mg/L (mean concentration 114.5 mg/L) for (+)-catechin, from 22.1 to 130.7 mg/L (mean concentration 75.7 mg/L) for (-)-epicatechin, from 7.8 to 39.1 mg/L (mean concentration 25.4 mg/L) for B1, from 18.3 to 93 mg/L (mean concentration 47.4 mg/L) for B2, from 21.4 to 215.6 mg/L (mean concentration 119.6 mg/L) for B3, from 20.2 to 107.2 mg/L (mean concentration 81.9 mg/l) for B4, from 8.6 to 36.9 mg/L (mean concentration 26.3 mg/L) for C1, and from 26.7 to 79.3 mg/L (mean concentration 67.1 mg/L) for T2. White and rosé wines (n = 57 and n = 8) were found to have low levels of (+)-catechin (mean concentrations 9.8 and 10.6 mg/L, respectively) and (-)-epicatechin (mean concentrations 5.3 and 6.5 mg/L, respectively). These data provide a basis for the epidemiological evaluation of catechin intake by the consumption of French wine.  相似文献   

12.
The detailed phenolic composition (anthocyanins, flavonols, hydroxycinnamic acid derivatives, stilbenes, and flavan-3-ols) in the skin and flesh of the new BRS Clara and BRS Morena seedless table grapes has been studied using HPLC-DAD-ESI-MS/MS. The two grapes, especially BRS Morena, contained high amounts of phenolic compounds, mainly located in their skins and qualitatively not different from those found in Vitis vinifera grapes. In addition, BRS Morena (a teinturier variety) showed qualitatively different phenolic compositions in its skin and flesh, mainly affecting the anthocyanin and flavonol profiles. Consistent with high phenolic contents, high antioxidant capacity values were registered for both grape varieties, especially for BRS Morena. Proanthocyanidins and hydroxycinnamoyl-tartaric acids were the major phenolic compounds found in BRS Clara and were also important in BRS Morena, although anthocyanins were the main phenolic compounds in the latter case. These results suggest that the entire grapes, including the skin, may potentially possess properties that are beneficial to human health. In this context, the BRS Morena grape can be considered as a high resveratrol producer.  相似文献   

13.
Phenolic content and antioxidant capacity of muscadine grapes   总被引:10,自引:0,他引:10  
Fruits of 10 cultivars of muscadine grapes (five bronze skin and five purple skin) grown in southern Georgia were separated into skin, seed, and pulp. Each fruit part and the leaves from the corresponding varieties were extracted for HPLC analysis of major phenolics. Total phenolics were determined colorimetrically using Folin-Ciocalteu reagent. Total anthocyanins were determined according to a pH-differential method, using a UV-visible spectrophotometer. Antioxidant capacity was determined by the Trolox equivalent antioxidant capacity (TEAC) assay. Gallic acid, (+)-catechin, and epicatechin were the major phenolics in seeds, with average values of 6.9, 558.4, and 1299.4 mg/100 g of fresh weight (FW), respectively. In the skins, ellagic acid, myricetin, quercetin, kaempferol, and trans-resveratrol were the major phenolics, with respective average values of 16.5, 8.4, 1.8, 0.6, and 0.1 mg/100 g of FW. Contrary to previous results, ellagic acid and not resveratrol was the major phenolic in muscadine grapes. The HPLC solvent system used coupled with fluorescence detection allowed separation of ellagic acid from resveratrol and detection of resveratrol. Reported here for the first time are the phenolic content and antioxidant capacity of muscadine leaves. Major phenolics in muscadine leaves were myricetin, ellagic acid, kaempferol, quercetin, and gallic acid, with average concentrations of 157.6, 66.7, 8.9, 9.8, and 8.6, respectively. Average total phenolics were 2178.8, 374.6, 23.8, and 351.6 mg/g gallic acid equivalent in seed, skin, pulp, and leaves, respectively. Total anthocyanin contents were 2.1 and 132.1 mg/100 g of FW in the skins of bronze and purple grapes, respectively, and 4.3 and 4.6 mg/100 g of FW in seeds and pulps, in that order. Antioxidant capacity values were, on average, 2.4, 12.8, 281.3, and 236.1 microM TEAC/g of FW for pulps, skins, seeds, and leaves, respectively.  相似文献   

14.
Phenolic composition of grape stems   总被引:5,自引:0,他引:5  
Grape stems contain significant amounts of polyphenolic compounds, especially phenolic acids, flavonols, and flavanonols such as astilbin. The tannin content was characterized after the depolymerization reaction thiolysis. Tannins consisted of polymeric proanthocyanidins (up to 27 units) mainly consisting of (-)-epicatechin units along with smaller amounts of (+)-catechin, (-)-epicatechin gallate, and (-)-epigallocatechin. Flavanonols (astilbin) have been identified for the first time in stem and characterized by LC/MS and NMR. All phenolic compounds in grape stems were quantified by HPLC: quercetin 3-glucuronide was the most important, followed by catechin, caffeoyltartaric acid, and dihydroquercetin 3-rhamnoside (astilbin). Comparison was made of proanthocyanidin characteristics in different white and red grape varieties and also among parts of the cluster (skin, seed, and stem). Stem-condensed tannins were qualitatively intermediate between seed and skin but could not be differentiated between red and white varieties.  相似文献   

15.
This paper reports an attempt to functionally and chemically characterize commercial ingredients from Vitis vinifera L. grape skins, grape pomace, and leaves, which are used in the formulation of dietary antioxidant supplements. The antioxidant capacity of these ingredients was assessed for the first time by the oxygen radical absorbance capacity (ORAC) methodology. Ingredients from grape skins and pomace (n = 17) showed ORAC values from 1.38 to 21.4 mumol Trolox equivalents/mg whereas ingredients from leaves (n = 4) showed ORAC values from 1.52 to 2.55 mumol Trolox equivalents/mg. The high-performance liquid chromatography-diode array detection/electrospray ionization-mass sprectrometry analysis of anthocyanins and flavonols revealed the authenticity of the ingredients as derived from V. vinifera L. and confirmed large differences in their phenolic content and distribution. A progressive decline in both antioxidant capacity and total anthocyanin content of a grape skin ingredient (43 and 40% decrease, respectively) was observed over a 60 day storage period (45 degrees C and 75% relative humidity), demonstrating its poor stability under these conditions.  相似文献   

16.
The foliar fertilization has been used as an important agrotechnical measure to avoid deficiencies and to improve quality. During the two consecutive years, a study has been performed on Vitis vinifera L. (cv. 'Cardinal') to examine whether a grape berry quality has been affected by the foliar application of PK fertilizer. A liquid mineral fertilizer containing 15% P2O5, 20% K2O with 0.1% B, 0.1% Mn and 0.01% Mo (% w/w) has been sprayed three times at rate of 8 L ha(-1) every 14-15 days starting at about 15 days before veraison. The sugars, organic acids and flavonoids (anthocyanins, flavonols and flavan-3-ols) have been analyzed by the high performance liquid chromatography in the grape berries. The foliar fertilization of grapevine can accelerate the accumulation of sugars and anthocyanins, whereas climatic factors and yearly fluctuations influence the content of sugars, organic acids, and phenolic compounds in general. The effect of fertilizer spraying on flavonols and flavan-3-ols has not been found.  相似文献   

17.
Proanthocyanidins are supposed to have some therapeutical properties as antioxidants and antineoplasics. Most of the proanthocyanidins, however, are not commercialized since their separation from natural sources is either very expensive or not well-known. In this work, the feasibility of application of mixtures of carbon dioxide and alcohol under supercritical conditions for selective extraction of some phenolic compounds from grape seeds has been studied, among them some low polymerized proanthocyanidins, their main monomer units, (+)-catechin and (-)-epicatechin, and some low molecular weight phenolic compounds, like gallic acid. An analytical-scale supercritical fluid extractor, whose operation was previously optimized, was used to carry out the experiments. A commercial concentrate of complex phenols and tannins from grape seeds was subjected to supercritical extraction in order to find the best operation conditions before directly extracting defatted milled grape seeds. The solvent capacity was found to increase with pressure and with the amount of alcohol used as cosolvent as expected. Such variation in solvent capacity could be used for design of a selective separation process where individual phenolic compounds or groups of them could be obtained. HPLC coupled with two types of detectors, diode array and mass spectrometry, was used for tentative identification and quantification of complex phenols and tannins in the extracts and in the raw materials used for extraction.  相似文献   

18.
The sensitivity of agricultural crops to climate change is a major area for climate impact studies. The relationship between climate and three key phenolic compounds in grape skins important to premium wine quality (anthocyanins, tannins, and total phenolics) has not been well-studied. Here we conducted a three-year field study to collect and analyze berry samples from Pinot noir vineyards in the Carneros and Sonoma Valley American Viticultural Areas of California's North Coast wine country, and correlate phenolic measurements with climate statistics derived from hourly temperature measures at each vineyard site. We used several statistical approaches to identify key phenologically-based periods influencing phenolic concentration at maturity, including classification and regression trees, factor screening, principal component analysis, and pairwise correlations.The results from these statistical models showed that cool conditions following harvest the year before maturity, warm temperatures from budburst to bloom, and cool temperatures from bloom to veraison (the onset of ripening) were positively correlated with concentrations of all three classes of phenolics, although not all trends were statistically significant. Anthocyanins were positively and significantly correlated with temperatures between 16 and 22 °C from veraison to harvest. Tannins were significantly increased by warm nights preceding budburst and warm days from budburst to bloom. We measured relatively high levels of light interception (35% of incident photosynthetically active radiation), and we found that increased light interception was significantly correlated with lower levels of all three classes of phenolic compounds in this study.For the Pinot noir sites in this study, warm temperatures from budburst to bloom appear to increase phenolic concentrations, which is likely beneficial for wine quality. However, warmer periods during the preceding fall and summer during ripening appear to offset these effects. Given projections for greater summer warming in California with climate change, the overall impact of climate change on winegrowing is likely to be negative.  相似文献   

19.
A rapid and comprehensive qualitative method has been developed to characterize the different classes of polyphenols, such as anthocyanins, flavonols, phenolic acids, and flavanols/proanthocyanidins, in grape products. The detection was achieved by two runs with the same LC gradient in different MS ionization modes and mobile phase modifiers (positive ionization mode and 0.4% trifluoroacetic acid for anthocyanins and flavonols; negative ionization mode and 0.1% formic acid for phenolic acids and flavanols). From an analysis of the MS and UV data and in comparison with the authenticated standards, a total of 53 compounds were identified, including 33 anthocyanins, 12 flavonols, 4 phenolic acids, and 4 flavanols/proanthocyanidins. With the method developed, a survey was then conducted to qualitatively assess the composition of polyphenols among 29 different grape products including original grape, grape juice, grape wine, and grape-derived dietary supplements, and their chemical profiles were systematically compared. This method provided a comprehensive qualitative insight into the composition of polyphenols in grape-derived products.  相似文献   

20.
The flash release (FR) process, consisting of rapidly heating the grapes and then applying strong vacuum, has been proposed to increase the polyphenol content of red wines. Its impact on polyphenol extraction kinetics and on the polyphenol composition of red juice and wines was studied over two seasons on different grape varieties (Grenache, Mourvedre, Carignan). The FR process allows fast extraction of all phenolic compounds (hydroxycinnamic acids, flavonols, anthocyanins, catechins, proanthocyanidins) and can be used to produce polyphenol-enriched grape juices. However, the concentration of all polyphenols dramatically decreased throughout fermentation when pressing was achieved immediately after FR. The FR wines made with pomace maceration were also enriched in polyphenols compared to the corresponding control wines. Increasing the duration of high-temperature exposure in the FR treatment further increased extraction of phenolic compounds but also accelerated their conversion to derived species. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase, higher after FR than in the control, and even higher after longer heating. FR resulted in an increased tannin-to-anthocyanin ratio and an increased conversion of anthocyanins to tannin-anthocyanin adducts showing the same color properties as anthocyanins. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase that also contained larger amounts of orange sulfite bleaching-resistant pigments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号