首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of alpha-tocopherol (TH) in beef was analyzed using a stable isotope dilution capillary gas chromatography-mass spectrometry assay. TH decreased while alpha-tocopherolquinone (TQ) and 2,3-epoxy-alpha-tocopherolquinone (TQE(2)) increased in ground longissimus lumborum (LL) and psoas major (PM) muscles during storage (P < 0.10). In LL steaks, the relative concentrations of TH decreased and TQ and TQE(2) increased in surface samples; changes were less dramatic in deep samples. Deuterated alpha-tocopherolhydroquinone (THQ) standard was not recovered and endogenous THQ was not detected in meat; THQ was measurable in microsomes isolated from PM and incubated in the presence of 2, 2'-azobis(2-amidopropane)HCl (ABAP) or myoglobin. ABAP-challenged microsomes yielded a tocopherol product profile which favored 5, 6-epoxy-alpha-tocopherolquinone (TQE(1)) and TQE(2), while the use of myoglobin as prooxidant resulted in a higher proportion of TQ and THQ. Results demonstrated that concentrations of TH decreased and TQ and TQE(2) increased in meat during storage and are consistent with the peroxy-radical scavenging function of tocopherol.  相似文献   

2.
The effect of high-temperature treatment on the stability of alpha-tocopherol (1) in triolein was assessed under a reduced-pressure atmosphere (4-40 mbar) simulating the deodorization step of the refining of vegetable oils. A marked degradation of 1 was observed, which increased with increasing temperature (180-260 degrees C) and heating time (20-80 min). The degradation of 1 in triolein at 240 degrees C was inhibited by the addition of the synthetic antioxidant TBHQ or when heating was performed under nitrogen atmosphere, indicating oxidative degradation. The oxidation products were isolated and identified as alpha-tocopherolquinone (2), 4a,5-epoxy-alpha-tocopherolquinone (3), and 7,8-epoxy-alpha-tocopherolquinone (4).  相似文献   

3.
The influence of galloyl residues on the antioxidant mechanism of polyphenols to prevent hemoglobin-promoted lipid oxidation was investigated by using polyphenolic fractions with different degrees of galloylation: nongalloylated structures from pine bark (IVP), medium-galloylated from grape pomace (IVG), and high-galloylated from witch hazel bark (IVH). Hemoglobin (Hb) from the pelagic fish horse mackerel (Trachurus trachurus) was employed as a Hb standard. In vitro experiments showed an important increase in the deoxygenation and autoxidation of horse mackerel Hb at acidic pH values. All polyphenolic fractions significantly reduced the redox stability of Hb in buffer solutions, showing a greater deoxygenation and methemoglobin (metHb) formation in the presence of IVH, followed in decreasing order by IVG and IVP. However, galloylated polyphenols (IVH and IVG) were efficient to inhibit the oxidation of the oxygenated Hb (OxyHb) and the formation of lipid oxidation products in chilled washed fish muscle. This antioxidant activity of galloylated proanthocyanidins showed a positive relationship with the phenolic concentration. Polyphenols devoid of galloyl groups (IVP) were less active to prevent either Hb oxidation or lipid oxidation in fish muscle. The results draw attention to the potential role of galloyl residues to lessen Hb-catalyzed lipid oxidation in muscle and to maintain Hb in reduced and oxygenated states, which exhibit lower pro-oxidant activity as compared to the metHb and deoxyHb species.  相似文献   

4.
Hydroxytyrosol, a natural phenolic compound obtained from olive oil byproduct, was characterized as an antioxidant in three different foodstuffs rich in fish lipids: (a) bulk cod liver oil (40% of omega-3 PUFAs), (b) cod liver oil-in-water emulsions (4% of omega-3 PUFAs), and (c) frozen minced horse mackerel ( Trachurus trachurus) muscle. Hydroxytyrosol was evaluated at different concentration levels (10, 50, and 100 ppm), and its antioxidant capacity was compared against that of a synthetic phenolic, propyl gallate. Results proved the efficiency of hydroxytyrosol to inhibit the formation of lipid oxidation products in all tested food systems, although two different optimal antioxidant concentrations were observed. In bulk oil and oil-in-water emulsions, a higher oxidative stability was achieved by increasing the concentration of hydroxytyrosol, whereas an intermediate concentration (50 ppm) showed more efficiency, delaying lipid oxidation in frozen minced fish muscle. The endogenous depletion of alpha-tocopherol and omega-3 polyunsaturated fatty acids (omega-3 PUFAs) was also inhibited by supplementing hydroxytyrosol in minced muscle; however, the consumption of the endogenous total glutathione was not efficiently reduced by either hydroxytyrosol or propyl gallate. A concentration of 50 ppm of hydroxytyrosol was best to maintain a longer initial level of alpha-tocopherol (approximately 300 microg/g of fat), whereas both 50 and 100 ppm of hydroxytyrosol were able to preserve completely omega-3 PUFAs. Hydroxytyrosol and propyl gallate showed comparable antioxidant activities in emulsions and frozen fish muscle, and propyl gallate exhibited better antioxidant efficiency in bulk fish oil.  相似文献   

5.
The reducing and chelating capacities and the affinity for the incorporation into the fish muscle of grape procyanidins, hydroxytyrosol, and propyl gallate were studied together with their antioxidant activity in frozen horse mackerel (Trauchurus trauchurus) fillets. Fillets were supplemented with phenolic antioxidants by (a) spraying an aqueous phenolic solution, (b) glazing with an aqueous phenolic solution, and (c) a previous washing of fillets with water plus spraying an aqueous phenolic solution. The effect of washing on the endogenous pro-oxidant/antioxidant balance of the fillets was also determined. All phenolic compounds were effective delaying lipid oxidation in the fish fillets. The order of antioxidant efficiency in spraying and glazing was propyl gallate > hydroxytyrosol > procyanidins, which was similar to the reducing power of these phenolics, but did not show any correlation with their chelating capacity and their affinity to the fish muscle. Washing the fillets with water prior to spraying phenols increased synergistically the antioxidant activity of grape procyanidins and changed the relative antioxidant efficiency to propyl gallate approximately procyanidins > hydroxytyrosol. This synergism may be a result of a better distribution of the procyanidins onto the fillet surface because of the residual water that remained on the fillets surface after washing.  相似文献   

6.
Natural phenolic antioxidants have been tested in hake (Merluccious merluccious) microsomes as inhibitors of lipid oxidation promoted by fish muscle prooxidants: hemoglobin (Hb), enzymatic NADH-iron and nonenzymatic ascorbate-iron. The phenolics selected were as follows: (a) a grape phenolic extract (OW), (b) a fraction (IV) with isolated grape procyanidins with a medium-low degree of polymerization and galloylation percentage, (c) hydroxytyrosol obtained from olive oil byproducts, and (d) a synthetic phenolic antioxidant, propyl gallate. All compounds delayed lipid oxidation activated by Hb, enzymatic NADH-iron, and nonenzymatic ascorbate-iron, excluding hydroxytyrosol that was not an effective antioxidant on oxidation promoted by nonenzymatic iron. The relative antioxidant efficiency was independent of the prooxidant system, IV > propyl gallate > OW > hydroxytyrosol, and showed a positive correlation with their incorporation into microsomes (p < 0.05). The reducing capacity or ability for donating electrons and the chelating properties may also contribute to the antioxidant activity of phenolics, although these factors were less decisive than their affinity for incorporating into the microsomes. Conversely, the inhibition of Hb oxidation by phenolics and their polarity did not seem to play an important role on antioxidant mechanism. These results stressed the importance of incorporating the exogenous antioxidants into the membranes where are located key substances for fish lipid oxidation (highly unsaturated phospholipids, iron-reducing enzymes, and endogenous alpha-tocopherol).  相似文献   

7.
There was a wide variation in the amounts of hemoglobin extracted from the muscle tissue of bled and unbled fish. Averaged values suggested that the residual blood level in the muscle of bled fish was substantial. Myoglobin content was minimal as compared to hemoglobin content in mackerel light muscle and trout whole muscle. Hemoglobin made up 65 and 56% of the total heme protein by weight in dark muscle from unbled and bled mackerel, respectively. Bleeding significantly reduced rancidity in minced trout whole muscle, minced mackerel light muscle, and intact mackerel dark muscle but not minced mackerel dark muscle stored at 2 degrees C. The reduction was in the number of fish that had a longer shelf life; muscle from certain bled fish had rancidity that was comparable to the rancidity in unbled controls. The soluble contents of erythrocytes accounted for all of the lipid oxidation capacity of whole blood added to washed cod muscle. Limiting lysis of erythrocytes delayed lipid oxidation, which was likely due to keeping hemoglobin inside the erythrocyte. Apparent breakdown of lipid hydroperoxides occurred only when a critical level of hemoglobin was present. Blood plasma was slightly inhibitory to oxidation of washed cod lipids. These studies suggest that blood-mediated lipid oxidation in fish muscle depends on various factors that include hemoglobin concentration, types of hemoglobin, plasma volume, and erythrocyte integrity.  相似文献   

8.
Approximately 7% of the iron associated with hemoglobin was released from the heme protein during 2 degrees C storage in washed cod muscle. EDTA (2.2 mM) neither accelerated nor inhibited hemoglobin-mediated lipid oxidation based on the formation of lipid peroxides and TBARS. This suggested that low molecular weight iron was a minor contributor to hemoglobin-mediated lipid oxidation in washed cod muscle. Ascorbate (2.2 mM) was a modest to highly effective inhibitor of hemoglobin-mediated lipid oxidation depending on which washed cod preparation was assessed. Experimental evidence suggested that the ability of residual ascorbate to breakdown accumulating lipid hydroperoxides to reactive lipid radicals can explain the shift of ascorbate from an antioxidant to a pro-oxidant. Increasing the lipid peroxide content in washed cod muscle accelerated hemoglobin-mediated lipid oxidation and decreased the ability of ascorbate to inhibit lipid oxidation. Preformed lipid peroxide content in cod muscle was highly variable from fish to fish.  相似文献   

9.
冷熏对高白鲑理化性质及肌球蛋白构象的影响   总被引:1,自引:0,他引:1  
以新疆塞里木湖高白鲑为研究对象,研究冷烟熏过程对鱼肉理化性质及肌球蛋白构象的影响。冷熏温度为(20±2)℃,发烟温度140℃,冷熏时间分别为0、6、12、18、24 h,研究冷熏鱼肉理化性质(含水率、水分活度、色泽、质构特性、TVB-N)及肌球蛋白构象(蛋白浓度、总巯基含量、Ca^2+-ATPase、表面疏水性)变化。研究结果表明,冷熏0~24h,鱼肉含水率由75.75%下降至53.03%,水分活度(Aw)由0.988下降至0.952;鱼肉亮度值(L^*)显著降低(P<0.05),红度值(a^*)缓慢增加,黄度值(b^*)显著增加(P<0.05);表征鱼肉质构特性的剪切力与韧性均呈明显上升趋势(P<0.05);鱼肉挥发性盐基氮(TVB-N)由9.81上升至14.23 mg/100g;肌球蛋白浓度、总巯基含量、Ca^2+-ATPase活性均显著降低(P<0.05),表面疏水性增加(P<0.05);综上,控制冷熏时间12~18 h有利于提高冷熏鱼肉品质,降低鱼肉肌球蛋白变性与氧化程度。该研究为特色淡水鱼冷熏制品开发与烟熏过程中蛋白氧化调控提供理论依据与技术参考。  相似文献   

10.
The effect of berry phenolics such as anthocyanins, ellagitannins, and proanthocyanidins from raspberry (Rubus idaeus), black currant (Ribes nigrum), and cranberry (Vaccinium oxycoccus) and byproducts of deoiling processes rich in phenolics such as rapeseed (Brassica rapa L.), camelina (Camelina sativa), and soy (Glycine max L.) as well as scots pine bark (Pinus sylvestris) was investigated in an H2O2-oxidized tryptophan (Trp) solution. The oxidation of Trp was analyzed with high-performance liquid chromatography using both fluorescence and diode array detection of Trp and its oxidation products. Mechanisms of antioxidative action of the phenolic compounds toward the oxidation of Trp were different as the pattern of Trp oxidation products varied with different phenolic compounds. The antioxidant protection toward oxidation of Trp was best provided with pine bark phenolics, black currant anthocyanins, and camelina meal phenolics as well as cranberry proanthocyanidins.  相似文献   

11.
Polyphenols extracted from extra virgin olive oil (EVOO) were tested for their ability to inhibit lipid oxidation of canned tuna. Hydroperoxide formation during oxidation was monitored by measurement of peroxide value and decomposition of hydroperoxides by static headspace gas chromatographic analysis of volatiles. In tuna oxidized at 40 and 100 degrees C, 400 ppm of the EVOO polyphenols was an effective antioxidant as compared with 100 ppm of a 1:1 mixture of the synthetic antioxidants butylated hydroxytoluene and butylated hydroxyanisole. However, at concentrations <100 ppm, the EVOO phenolic compounds promoted hydroperoxide formation and decomposition. The EVOO polyphenols were effective antioxidants when added to heated tuna muscle in the presence of either brine or refined olive oil. The oxidation rate in tuna muscle packed in brine was higher than that of tuna packed in refined olive oil. The EVOO polyphenols had higher antioxidant activity in the brine samples than in the refined olive oil. The higher antioxidant activity of EVOO polyphenols in tuna packed in brine may be explained by their greater affinity toward the more polar interface between water and the fish oil system.  相似文献   

12.
The antioxidant effectiveness of two different families of phenolic compounds, hydroxycinnamic acids and catechins, added as a power (0.001% w/w) to chilled minced horse mackerel muscle was evaluated. Caffeic acid, chlorogenic acid, o-coumaric acid, and ferulic acid were selected as hydroxycinnamic acids with similar molecular structures. Commercial catechins with different numbers of hydroxylic groups, including catechin, gallocatechin, catechin gallate, and gallocatechin gallate, were also tested. The effectiveness found was individually discussed for each family as a function of the molecular structure. The capacity of hydroxycinnamic acids for donating electrons seems to play the most significant role for retarding the development of rancidity in fish muscle. Conversely, the properties related to the ability for chelating metals and the distribution between oily and aqueous phases were not correlated with the inhibitory activities. Among hydroxycinnamic acids, the results highlighted the potent antioxidant activity of 10 ppm caffeic acid in inhibiting lipid oxidation in fish muscle. Its antioxidant efficacy was similar to that of propyl gallate. Among catechins, catechin showed the highest antioxidant activity. There was an increment of efficacy in fish muscle using concentrations ranging between 10 and 100 ppm of both caffeic acid and catechin.  相似文献   

13.
The pro-oxidative activity of trout hemoglobin was significantly increased at low pH (2.5-3.5) in a washed fish muscle (WFM) system. It was found that the more unfolded the hemoglobin was the more exposed its heme group was, which increased its pro-oxidative activity. The amount of oxidation products produced (TBARS) were, however, lower at low pH vs neutral pH. At pH 10.5-11, the pro-oxidative activity of hemoglobin was greatly suppressed. The conformation of hemoglobin was significantly more stable at high pH as compared to pH 7 as judged by its visible absorption spectrum. Hemoglobin readjusted from low pH to pH 7 had a higher pro-oxidative activity (i.e., more rapid oxidation) in WFM than native hemoglobin at pH 7, even though TBARS values were lower than in the untreated sample at pH 7. The results suggest that the WFM becomes slightly more susceptible to oxidation after low pH treatment but also produces less TBARS. The increased pro-oxidative activity after pH readjustment correlated well with an incomplete recovery in the native structure on pH readjustment. A longer unfolding time and a lower pH led to a less refolded hemoglobin with increased pro-oxidative activity. Hemoglobin was less pro-oxidative at low pH in the presence of 500 mM NaCl. The presence of salt did, however, increase the pro-oxidative properties of hemoglobin after readjustment to pH 7. The treatment of washed fish muscle at alkaline pH followed by adjustment to pH 7 led to a slight delay in hemoglobin-mediated lipid oxidation in WFM as compared to native hemoglobin at pH 7. The results suggest that WFM becomes less susceptible toward oxidation after pH readjustment from alkaline pH. These results clearly show that for muscle protein extraction/isolation processes requiring highly alkaline or acidic conditions, alkaline conditions are preferred if the lipid oxidation originating from hemoglobin is to be minimized.  相似文献   

14.
This paper aims to study phospholipid (PL) profiling of muscle from Ctenopharyngodon idellus during room-temperature storage for 72 h by direct-infusion electrospray ionization tandem mass spectrometry (ESI-MS/MS). Five classes of PLs, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and sphingomyelin (SM), were analyzed. At least 110 molecular species of PLs were identified, including 32 species of PC, 34 species of PE, 24 species of PS, 18 species of PI, and 2 species of SM. The result showed that oxidation and hydrolysis are the two main causes for the deterioration of PLs in fish muscle during storage. Most content of PL molecular species increased and then decreased gradually. However, some special PE molecular species with former low abundance, such as PE 32:1, PE 34:2, and PE 34:1, emerged during the storage in quantity. It indicated that those PE molecular species may come from the microbe bred in the muscle. This phenomenon was found and discussed for the first time. The possible relevance between the emergence of these special PE molecular species and the freshness of the fish muscle during storage will be investigated in further studies.  相似文献   

15.
Protein oxidation in fish meat is considered to affect negatively the muscle texture. An important source of free radicals taking part in this process is Fenton's reaction dependent on ferrous ions present in the tissue. The aim of this study was to investigate the susceptibility of cod muscle proteins in sarcoplasmic and myofibril fractions to in vitro metal-catalyzed oxidation and to point out protein candidates that might play a major role in the deterioration of fish quality. Extracted control proteins and proteins subjected to free radicals generated by Fe(II)/ascorbate mixture were labeled with fluorescein-5-thiosemicarbazide (FTSC) to tag carbonyl groups and separated by two-dimensional gel electrophoresis. Consecutive visualization of protein carbonyl levels by capturing the FTSC signal and total protein levels by capturing the SyproRuby staining signal allowed us to quantify the relative change in protein carbonyl levels corrected for changes in protein content. Proteins were identified using MALDI-TOF/TOF mass spectrometry and homology-based searches. The results show that freshly extracted cod muscle proteins exhibit a detectable carbonylation background and that the incubation with Fe(II)/ascorbate triggers a further oxidation of both sarcoplasmic and myofibril proteins. Different proteins exhibited various degrees of sensitivity to oxidation processes. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), nucleoside diphosphate kinase B (NDK), triosephosphate isomerase, phosphoglycerate mutase, lactate dehydrogenase, creatine kinase, and enolase were the sarcoplasmic proteins most vulnerable to ferrous-catalyzed oxidation. Moreover, NDK, phosphoglycerate mutase, and GAPDH were identified in several spots differing by their pI, and those forms showed different susceptibilities to metal-catalyzed oxidation, indicating that post-translational modifications may change the resistance of proteins to oxidative damage. The Fe(II)/ascorbate treatment significantly increased carbonylation of important structural proteins in fish muscle, mainly actin and myosin, and degradation products of those proteins were observed, some of them exhibiting increased carbonylation levels.  相似文献   

16.
To clarify fish flesh quality problems and softening of fish muscle tissue during chilled storage, the collagen content, types I and V, and its changes in solubility during storage on ice in muscle of farmed Atlantic salmon (Salmo salar L.) were analyzed. The contents of acid-soluble, pepsin-soluble, and insoluble collagen in white muscle were determined in fresh fish muscle and after 3 days of storage in ice. The total collagen content was 2.9 g kg(-)(1) fresh weight. During storage on ice, a progressive change in solubility of muscle collagen was found. For acid- and pepsin-soluble collagen fractions, significantly higher and lower values, respectively, were detected. The presence and quantification of types I and V collagen in the different collagen fractions was determined also, but no significant difference in solubility during storage was found. The result suggested that collagen fibers of Atlantic salmon have a high solubility in acid solutions and contain few cross-links.  相似文献   

17.
The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.  相似文献   

18.
The muscle composition of a pelagic fish species, Atlantic mackerel (Scomber scombrus), has been studied to determine the relationship with its susceptibility to develop lipid oxidation during chilled storage. For such an aim, the initial concentrations of the major components (water, total lipids, protein, and PUFAs) and minor pro-oxidant and antioxidant components (ascorbic acid, α-tocopherol, hemoglobin, total iron, LMW-iron, copper, and zinc) of different batches of mackerel were characterized. For the study, several batches of mackerel were caught during the spring and summer periods. The different batches were subjected to chilled storage, and the onset of lipid oxidation was statistically related with the initial muscle composition. Results showed significant compositional differences among the mackerel lots, especially for the muscle lipid content (2.83-9.50%). In a first step, a Pearson correlation test was used to check the influence of each component on the progress of lipid oxidation. Results showed a significant relationship between shelf life and water and total lipid contents. Multiple regression was performed to reveal the contribution of each component to the susceptibility to lipid oxidation. The model obtained combines the content of PUFAs, total iron, hemoglobin, and ascorbic acid. An accurate prediction of shelf life in terms of rancidity was achieved by the model created (R(2) = 0.9975). These results establish that the levels of endogenous pro-oxidants and antioxidants present in fish muscle together with the polyunsaturated lipids are relevant factors affecting the shelf life of mackerel muscle.  相似文献   

19.
The use of washed cod light muscle minces in mechanistic studies of hemoglobin (Hb)-mediated fish lipid oxidation has largely increased in the past 5 years. Although cod light muscle has a low level of intrinsic lipid oxidation catalysts, a prerequisite for a good oxidation model system, we believe it cannot fully mimic the oxidation kinetics taking place in other fish species being more susceptible to lipid oxidation. The aim of this study was to systematically investigate whether washed mince model systems useful in Hb-mediated oxidation studies could be prepared also from herring (Clupea harengus) and salmon (Salmo salar) light muscles. The kinetics of oxidation in the washed models was measured during ice storage (+/-Hb), and the results were related to compositional differences. Minces from cod, herring, and salmon light muscles were washed 3 times with 3 volumes of water and buffer. A 20 microM portion of Hb and 200 ppm streptomycin was then added, followed by adjustment of pH and moisture to 6.3 and 86%, respectively. Samples with or without Hb were then stored on ice, and oxidation was followed as peroxide value (PV), rancid odor, redness (a*) loss and yellowness (b*). Prior to storage, all minces and models were also analyzed for total lipids, fatty acids, alpha-tocopherol, proteins, Hb, Fe, Cu, and Zn. Hb-mediated lipid oxidation appeared within 2 days on ice in all models. Small differences in the oxidation rates ranked the models as herring > cod > salmon. These differences were ascribed to more preformed peroxides and trace elements in the herring model, and more antioxidants in the salmon model. Controls, without Hb, stayed stable in all cases except herring, where a very slight oxidation appeared, especially if the herring raw material had been prefrozen. In conclusion, fattier fish like dark muscle species and salmonoids are useful for making washed mince model systems and would be a better choice than cod if there is an interest in the oxidation kinetics of such species.  相似文献   

20.
Hemoglobin-mediated lipid oxidation in washed, minced cod muscle was related to the triacylglycerol to membrane lipid ratio. The same rapid development of thiobarbituric acid reactive substances (TBARS) and painty odor occurred with and without the presence of up to 15% menhaden oil. Without hemoglobin, development of TBARS and painty odor was slow, despite a high amount of hydroperoxides in samples with oil added (1135 micromol/kg muscle). This suggested that hemoglobin reacted by cleaving preformed hydroperoxides into secondary oxidation products. Nearly doubling the hemoglobin concentration approximately doubled the extent of lipid oxidation with and without added oil. This indicated that hemoglobin was limiting for the oxidation reaction. The noneffect of added oil suggests that membrane lipids and/or preformed membrane lipid hydroperoxides provided sufficient substrate in hemoglobin-catalyzed oxidation of washed minced cod muscle. Fe(2+-)ADP did not induce any oxidation of washed minced cod with/without added oil. Results suggest that lipid oxidation in fatty fish may be more related to the quantity and type of the aqueous pro-oxidant and the membrane lipids than to variations in total fat contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号