首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究旨在科学评价威百亩熏蒸对土壤微生物生态系统的影响,为环境友好型消毒剂的选择提供理论线索。本研究以实验室威百亩熏蒸的土壤为材料,通过高通量测序技术,研究威百亩熏蒸对土壤细菌群落的影响及熏蒸后土壤微生物群落重建及功能修复的机制。结果表明:高通量测序总共测得1 062 241个高质量序列,共比对出5 882个细菌分类单元(OTUs)。熏蒸处理后不同阶段土壤细菌群落结构在门水平上较为类似,但是在种水平差异显著。威百亩熏蒸处理对微生物群落结构和功能造成很大影响,使得细菌群落α多样性、群落构建的驱动因素、共发生网络关系以及碳水化合物代谢、氨基酸代谢、能量代谢等代谢活性在熏蒸处理后的初、中期阶段表现出上升或者下降的趋势,并在处理后的中后期迅速恢复并趋于平稳。以上结果表明,威百亩处理对细菌群落造成强烈的“生态扰动”,导致细菌群落表现出“抑制-激活-恢复”的阶段性特征。微生物群落的稳定性与群落的抵抗力和恢复力密切相关。本研究为科学评价威百亩土壤消毒对土壤微生态系统的影响提供理论支撑,为环境友好型消毒剂的选择提供线索。  相似文献   

2.
Enhanced biodegradation of soil-applied pesticides has long been correlated with soil pH above ca 6.5-7.5, but the possibility of confounding or interdependence with calcium, given that soil calcium concentration increases exponentially as pH rises above that range, has not previously been studied. Enhanced biodegradation of the broad-spectrum biocide metam-sodium was readily induced de novo in a naturally acid sandy soil (pH 4.2 measured in 0.01 M CaCl2) by multiple treatments, but only when the pH and calcium concentration were raised simultaneously using calcium carbonate (lime). Enhanced biodegradation was not induced when soil pH alone was raised with magnesium carbonate, nor when calcium alone was raised using calcium chloride. In limed sand treated monthly for 12 months, the degradation rate increased to where dissipation was complete within 24 h of application after the fifth metam-sodium treatment at pH 7.8 and after the eighth metam-sodium treatment at pH 6.8. Pesticide concentration was reduced, but not eliminated, at pH 5.8 and was unchanged at pH 4.8. When metam-sodium was applied bi- and tri-monthly, the degradation rate also increased when soil pH was raised with calcium carbonate, but to a lesser extent than with monthly applications. In an acid loam soil amended to the same pH values with calcium carbonate and treated monthly, there was no correlation between soil pH or calcium concentration and degradation. The results reveal the crucial interdependence of pH and calcium concentration in enhancement of biodegradation of soil-applied pesticides, but confirm that the phenomenon ultimately depends on interaction with soil type and frequency of application factors, all of which probably together act to affect the abundance, composition and activity of the soil microbial biomass.  相似文献   

3.
The effects of metam-sodium application rate on soil residence time, spatial and temporal distributions of methyl isothiocyanate and pest control efficacy were studied in a Georgia sandy soil. Metam-sodium 420 g L(-1) SL was drip applied at rates of 147 and 295 L ha(-1) in plastic-mulched raised beds. Methyl isothiocyanate concentrations in soil air space were monitored from four preselected sites: 10 and 20 cm below the emitter, and 20 and 30 cm laterally away from the emitter at 3, 12, 24, 48, 72, 120 and 240 h after chemigation. A higher rate of metam-sodium application resulted in higher methyl isothiocyanate concentrations in the soil. Highest methyl isothiocyanate concentrations were found at 20 cm below the emitter, and lowest at 30 cm laterally away from the emitter. Methyl isothiocyanate concentrations decreased with time and distance from the emitter. Lower methyl isothiocyanate concentration x time product values at 20 and 30 cm away from the emitter resulted in lower mortalities of Rhizoctonia solani Kühn and yellow nutsedge (Cyperus esculentus L.). The results demonstrated that methyl isothiocyanate can be delivered at lethal doses with drip-applied water downward within the beds. Lateral diffusion of methyl isothiocyanate from the point of application did not reach biologically active concentrations to affect the survival of R. solani or yellow nutsedge. Further studies on the lateral distribution of methyl isothiocyanate in sandy soils are needed to circumvent this limitation.  相似文献   

4.
Prolonged and short-lasting fumigations with NO2 were carried out with tomato plants. Very young plants showed increase in length as a consequence of fumigations with 0.5 ppm for ten days. A concentration of 0,4–0.5 ppm applied during a period of 21 to 45 days also resulted in an increase in length and gave rise to the development of smaller leaves and shorter leaf petioles. Fumigations with a concentration of 0.25 ppm during the entire growth period caused a decrease in crop yield of 22%.Samenvatting Met NO2 werden begassingen van betrekkelijk korte en van lange duur op tomateplanten uitgevoerd. Concentraties van 0,4–0,5 dpm (delen per miljoen delen lucht), gedurende 20–37 dagen toegepast, hadden enerzijds een afname van het bladoppervlak en verkorting van de bladstelen, en anderzijds een toename in lengtegroei van de planten tot gevolg (Tabel 1). Een begassing met 0,5 dpm gedurende 10 dagen veroorzaakte een gewichtsvermindering van bladeren en bladstelen en wederom een toename in lengtegroei van de planten vergeleken met de controle (Tabel 2). Door begassing met een concentratie van 0,25 dpm gedurende de gehele teelt verminderde de opbrengst met 22% (Tabel 3). Het nitraatgehalte van de bladeren bleek na deze langdurige begassingen te zijn afgenomen, terwijl dat van de bovenste 30 cm van de grond hoger was geworden (Tabel 4).  相似文献   

5.
WEPP模型在砒砂岩地区土壤侵蚀模拟的适用性研究   总被引:4,自引:0,他引:4  
以内蒙古自治区准格尔旗西黑岱沟小流域为研究区,基于研究区2004~2009年的气象和土壤侵蚀资料,选取林地、草地和休闲地三种不同土地利用方式的坡面,研究了WEPP模型在三种坡面土壤侵蚀过程模拟中的适用性。结果表明:WEPP模型对研究区三种管理方式下的土壤侵蚀模拟中总体结果较好,模拟值与实测值的相关系数均较高,分别为0.915、0.889和0.899;WEPP模型模拟林地和草地土壤侵蚀的纳什模型效率分别为0.661和0.775,说明WEPP模型适用性较强,而模拟休闲地侵蚀量时效率为负值,可能与休闲地受人为活动影响较大,导致模型不能很好地模拟实际情况有关。  相似文献   

6.
BACKGROUND: Metam-sodium, 1,3-dichloropropene (1,3-D) and chloropicrin are widely used soil fumigants. Combined application of metam-sodium and 1,3-D + chloropicrin is intended to improve efficacy and broaden spectrum of control, but little is known about the effect on crop safety. This study aimed to evaluate the effects of application timing of fumigant combinations on soilborne pest and disease control (nematodes, soil fungi and weeds) and growth of squash. Two separate tests with chisel-injected and drip-applied fumigant combinations and plant-back times ranging from 1 to 4 weeks were conducted in Tifton, GA, USA, in spring and fall 2002. RESULTS: Fumigant combinations using 1,3-D, chloropicrin and metam-sodium were as effective as methyl bromide in controlling Meloidogyne incognita (Kofoid & White) Chitwood, Pythium irregulare Buis., Rhizoctonia solani Kühn and Cyperus esculentus L. Chisel-applied combinations were more effective in terms of root-knot nematode control than drip-applied combinations. Root-knot nematode reduced squash yields by up to 60%. Phytotoxicity problems and lower yields were observed during spring, especially following 1,3-D + chloropicrin and when plant-back periods were shorter. CONCLUSION: The main problem with fumigant alternatives to methyl bromide may not be reduced efficacy but, in particular for 1,3-D products, loss of flexibility in terms of longer plant-back periods.  相似文献   

7.
Adequate concentration, exposure time and distribution uniformity of activated fumigant gases are prerequisites for successful soil fumigation. Field experiments were conducted to evaluate gas phase distributions of methyl isothiocyanate (MITC) and chloropicrin (CP) in two forest-tree nurseries. Concentrations of MITC and CP in soil air were measured from replicated microplots that received dazomet, metam-sodium and CP. Half of the plots were covered with high-density polyethylene tarp immediately after fumigation; the other half were not covered but received daily sprinkler irrigation for 1 week to create and maintain a water seal. The magnitude of MITC concentrations was similar between nurseries for metam-sodium in both tarp and water seal treatments and for dazomet in the tarp treatment. Consistently greater MITC and CP concentrations were found in the upper 30 cm of soil in the tarped plots compared with the water-sealed plots. Despite potential environmental and economic benefits with the water seal method, tarp covers were more reliable for achieving and maintaining higher MITC and CP concentrations and less prone to variations due to irrigation/rain, soil bulk density and other environmental conditions.  相似文献   

8.
The adsorption of diuron and isoproturon by a clay loam soil at 35% (3-16 kPa) and 62% (1 kPa) soil moisture content was studied by means of glass microfibre filters capable of sampling soil solution for herbicide analysis. Adsorption was rapid, with 40–80% of the final (24 h) sorption being achieved within 2 min. These equilibria were achieved more rapidly for diuron, which was also the more highly adsorbed. Adsorption of both herbicides was favoured by low soil moisture initially, but was enhanced by higher soil moistures at sorption times greater than 30 min. However, increasing the soil moisture from 31% (10 kPa) to 62% (1 kPa) had little effect on the final soil sorption capacity. Regarding the water status in the soil, it is thought that adsorption took place in small pores (<3 μm). Herbicides diffused rapidly into small pores and adsorption by wet soil was delayed for a short period of time (about 30 min).  相似文献   

9.
不同粘粒含量土壤水分入渗能力模拟试验研究   总被引:9,自引:0,他引:9  
为研究土壤粘粒含量对土壤入渗能力的影响,通过向自然土壤中添加沙粒、人工粘土的方法配制不同粘粒含量土壤,用土柱积水入渗模拟了人工配制土壤中粘粒含量对其入渗能力的影响.结果表明:(1) 土壤粘粒含量对土壤入渗能力有较大影响,随粘粒含量增多,入渗能力递减:<0.001 mm粘粒含量从6%增加至40.4%时,稳定入渗速率从0.0169 cm/min降低至0.0068 cm/min,90 min累积入渗量则从3.66 cm降低至2.02 cm;(2) 稳定入渗速率、90 min累积入渗量与粘粒及物理性粘粒含量分别呈幂函数负相关、指数负相关关系,但与粘粒含量相关性更为显著;(3) 通过对Green-Ampt模型、Philip模型及Kostiakov模型的参数拟合及累积入渗量计算,发现在本试验中Kostiakov模型拟合精度最高,Philip模型次之,Green-Ampt模型较差,说明Kostiakov模型对于均质土体是个比较实用的入渗模型.  相似文献   

10.
A dynamic model simulating infection of apple leaves by Venturia inaequalis   总被引:2,自引:0,他引:2  
A new dynamic model of the infection of apple leaves by Venturia inaequalis is described. The model begins with the release of spores by rain and incorporates the effect of light on the discharge of ascospores from pseudothecia. The model then simulates infection through the sub-processes of germination, appressorium formation and penetration, separately for ascospores and conidia landed concurrently on wet leaves. The rate of the infection process is determined using different equations for ascospores and conidia. Spore mortality when leaves dry is determined by the stage of infection and RH in the dry period. The infection process is driven by surface wetness, temperature and RH. The progress of each infection period is measured as infection efficiency (IE), namely the percentage of landed spores which have penetrated and thereby infected leaves. The final IE quantifies the favourability of weather in each infection period. In orchard tests in each of three years, the new model detected crucial infection periods in spring and early summer which accounted for outbreaks of leaf scab. These periods were not detected by a static model based on Mills'criteria. The models performed similarly in detecting infection periods later in summer.  相似文献   

11.
农药污染土壤的植物修复研究   总被引:21,自引:0,他引:21  
信欣  蔡鹤生 《植物保护》2004,30(1):8-11
植物可以吸收、转移元素和化合物,可以积累、代谢和稳定污染物,具修复被污染土壤等作用值得关注。本文综述了植物修复被农药污染土壤的机理和研究现状,列举了修复各种有机污染物的典型植物,及对此方法存在的问题和发展前景作了相应的讨论。  相似文献   

12.
Considering a potential application of selected biochemically activated insect hormonogen substances (juvenogens) against pest termite species, we aimed this study to describe the metabolism of these compounds by termites and soil bacteria and to evaluate the potential impact of their metabolites on the environment. Radiolabelled derivatives of the juvenogens cis- and trans-isomers of ethyl N-{2-[4-(2-butanoyloxycyclohexyl)methyl]phenoxy}ethyl carbamate were metabolized by the termite Reticulitermes flavipes and the bacteria Bacillus simplex and Bacillus sp., strain 05 (GenBank EU399813) giving rise to different numbers of metabolites. The trans-isomer of the juvenogen was metabolized by both Bacillus species into its parent synthetic structure, ethyl trans-N-{2-[4-(2-hydroxycyclohexyl)methyl]phenoxy}ethyl carbamate, while the cis-isomer was metabolized into further products. Both racemic juvenogens were metabolized bytermites, affording mainly the parent juvenoids. In terms of ecotoxicity, the trans-juvenogen shows a significantly lower toxicity than the cis-juvenogen. In contrast, the toxicity of the cis-juvenoid (main degradation product of cis-juvenogen) is higher than the toxicity of trans-juvenoid (main degradation product of trans- juvenogen). The precursors of the two juvenogens cis- and trans-2-(4-hydroxybenzyl)cyclohexanol were also tested but exhibited a low toxicity. The results demonstrate that bacteria can metabolize the juvenogen in liquid media culture and have implications for the development of a strategy for bioremediation of soil. Moreover, the products of the biodegradation exhibited low toxicity. Both juvenogens have a high juvenilizing effect, cause low mortality and are stable within a period of two weeks.  相似文献   

13.
Strawberry (Fragaria?×?ananassa) is one of the most important berry crops worldwide. Fusarium wilt poses a serious threat to commercial strawberry production worldwide and causes severe economic losses. Our previous surveys suggested that soil pH, soil amendment with organic matter and/or crop rotation could offer opportunities for improved management of strawberry disease. Studies were conducted for the first time to determine the effects of soil pH, soil amendments with manure compost and crop residue, and crop rotation on the severity and impact of Fusarium wilt on strawberry. At soil pH 6.7, plants showed the least severe disease and the lowest reductions in shoot and root dry weight (DW) of plants from disease, significantly lower than those of plants in acidic soil at pH 5.2 or 5.8. In soil amendment with manure compost at 5.0?%, plants showed the least severe disease and the lowest reductions in shoot and root DW of plants from disease, significantly lower than those of plants in the other three levels of manure compost. In soil amendment with crop residue at 2.5?% or 5.0?%, shoot and root disease of plants and reductions in shoot and root DW of plants from disease were significantly lower than those of plants in soil without crop residue or excessive crop residue amendment at 10.0?%. Plants in soil rotated with tomato not only showed the least severe disease but also showed the lowest reductions in shoot and root DW of plants from disease, significantly lower than those of plants in soil continuously planted with strawberry without rotation or rotated with capsicum. Soil pH, soil amendment with manure compost or crop residue, and crop rotation, all significantly reduced the severity and impact of Fusarium wilt on strawberry. There is great potential for manipulating soil pH, adding soil organic amendments and utilizing crop rotation, not only to successfully manage Fusarium wilt on strawberry, but to do so in a sustainable way without current reliance upon chemical fumigants.  相似文献   

14.
Model simulations of chlorsulfuron (1-(2-chlorophenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea) leaching in a loamy soil were made with the mechanistic dual-porosity model MACRO. Comparisons were made with a data set obtained in a lysimeter experiment in which leaching was measured during an 11-month period after applying chlorsulfuron at two rates (4 and 8 g ha−1). In this experiment, peak concentrations appeared c.6 months after pesticide application, reaching levels of 14 and 21 ng litre−1 in the low- and high-dose treatments, respectively. These peak concentrations appeared after c.70 mm of accumulated leachate, implying that some of the herbicide was displaced through the soil columns by non-equilibrium flow processes. Model calibration was limited to parameters related to evapotranspiration, water uptake by roots and degradation rates in the subsoil. With this minimum amount of calibration, the model successfully described the leaching pattern of chlorsulfuron, provided that the two-flow domain option in the model was used. Running the model in one-flow domain resulted in considerable underestimates of leaching of chlorsulfuron over the short-term (<1 year). The degradation rate in the subsoil was also found to be critical. It had to be increased about fivefold to match measured chlorsulfuron concentrations in leachate. At such concentrations, 0·012 g ha−1 of chlorsulfuron (0·3% of that applied) was predicted to leach through the soil profile during the 11-month simulation period when the lower dose of the compound was applied.  相似文献   

15.
在GIS支持下运用模糊评价法、层次分析法、地力综合指数法,对农五师81团耕地土壤养分现状及耕地地力进行自动化、定量化评价。结果表明:研究区6 291.65 hm2耕地,分为6级,1级地面积196.71 hm2占评价面积的3.13%,2级地面积480.37 hm2占评价面积的7.64%,3级地面积825.48 hm2占评价面积的13.12%,4级地面积1 709.68 hm2占评价面积的27.17%,5级地面积2312.05 hm2占评价面积的36.75%,6级地面积767.36 hm2占评价面积的12.20%。所建立的量化和半量化耕地地力评价指标体系,及获取的各耕地地力等级面积数据及其分布信息、改良措施,经实地调查分析,符合当地实际。  相似文献   

16.
冻融对北疆盐碱地长期滴灌棉田土壤盐分的影响   总被引:3,自引:0,他引:3  
为了解北疆积雪覆盖条件下,冻融作用对盐碱地膜下滴灌棉田土壤盐分分布及变化的影响。采用时空变异法,以连续应用膜下滴灌0、4、6、8、10、15 a 6块棉田初春土壤盐分的变化为例进行分析。结果表明,"冻层滞水"及积雪消融入渗对80~100cm深度土体中盐分具有天然淋洗作用,冻融前后土壤盐分分布呈"广口杯"状。4月5日至14日在水分(直接驱动力)运动影响下,60~80 cm土层含盐量降低,其中一部分随毛管水向上蒸发,滞留于0~40 cm土壤;另一部分受重力水作用向下淋洗,80 cm以下土层含盐量升高。滴灌0 a地块0~140 cm土体内储盐量为29 063.00 g,滴灌15 a后,降至5 778.86 g。冻融对盐分的淋洗作用在应用滴灌年限较短地块表现得相对明显,即土壤中含盐量越高,淋洗作用越显著;冻融后滴灌0 a棉田0~140 cm土体储盐量降低8 941.33 g,滴灌15 a棉田降低614.62 g。提出冻融循环对土壤中盐分的天然淋洗作用是北疆盐碱地长期膜下滴灌棉田土壤盐分降低的重要因素之一。  相似文献   

17.
不同留茬覆盖模式对土壤蒸发和表层土壤含水量的影响   总被引:2,自引:0,他引:2  
秸秆覆盖模式可显著影响土壤蒸发量和土壤含水量。本研究根据小麦机械收获的特点,设置不同的小麦留茬高度和覆盖量,研究了不同留茬高度和覆盖量组合对冬小麦收获后土壤表层含水量和土壤蒸发量的影响。试验结果显示冬小麦留茬高度0~35 cm对表层土壤含水量和土壤蒸发影响较小,而覆盖会明显改善土壤含水量和降低土壤蒸发量。当留茬高度为0~15 cm、田间剩余秸秆覆盖量为0.348~0.470 kg/m2时,试验期间(31 d)土壤累积蒸发量较无覆盖减少了16%~51%。考虑机收特点,建议小麦留茬高度为5~15 cm,其余残留碎杆覆盖在土壤表面,以减少土壤蒸发和提高水分利用效率。  相似文献   

18.
低分子量有机酸对二氯喹啉酸在土壤中吸附-解吸的影响   总被引:2,自引:0,他引:2  
采用高效液相色谱仪及批量平衡试验方法,研究了乙酸、苹果酸、酒石酸、草酸、丁二酸和柠檬酸6种低分子量有机酸对麻沙泥和第四纪红土红壤吸附-解吸二氯喹啉酸的影响。结果表明:低分子量有机酸可推迟二氯喹啉酸在土壤中的吸附平衡时间,其吸附动力学过程可用准二级动力学方程描述。Linear和Freundlich方程能较好地拟合二氯喹啉酸在供试两种土壤中的吸附等温线;二氯喹啉酸在麻沙泥中的吸附能力(lg Kf值)从大到小依次为苹果酸柠檬酸草酸=乙酸丁二酸酒石酸,在第四纪红土红壤中为苹果酸丁二酸乙酸草酸柠檬酸酒石酸;低分子量有机酸浓度对二氯喹啉酸解吸的影响因有机酸种类和供试土壤的不同而差异较大,6种供试有机酸均促进了第四纪红土红壤对二氯喹啉酸的解吸,且其解吸率均明显高于麻沙泥对二氯喹啉酸的解吸率,但在麻沙泥中呈现不同的影响模式。  相似文献   

19.
连作年限对土壤理化性质及酶活性的影响   总被引:6,自引:1,他引:6  
以新疆北疆博乐市精河县托托乡连作5年、10年、15年、20年和30年的棉田土壤为研究对象,应用Pearson相关分析方法对不同连作年限棉田土壤基本理化性状及酶活性进行了分析。结果表明:棉花连作对土壤理化性质及酶活性有较大影响,土壤pH、有机质、全氮与四种土壤酶相关性较好,是影响酶活性的重要因子;随着连作年限增加,过氧化氢酶、蔗糖酶活性增强,磷酸酶、脲酶活性降低;不同种土壤酶随土层厚度的增加酶活性逐渐降低,并在三个土层中存在显著差异;棉田连作对土壤理化性质及酶活性的影响有利也有弊,在评价土壤肥力状况方面,某些土壤酶可以作为土壤生化过程强度的较好指标。  相似文献   

20.
施肥对西红柿土壤微生物和土壤呼吸的影响   总被引:3,自引:0,他引:3  
以不施肥为对照,研究了化肥、有机肥、沼肥对西红柿土壤微生物数量和土壤呼吸的影响.结果表明:施用化肥土壤的细菌数量比对照减少0.6%~57.2%,真菌数量呈现先增加后减少的趋势,放线菌数量比对照增加7.4% ~65.0%;化肥用量减少一半,土壤的真菌数量增加,放线菌数量减少.施用有机肥土壤的细菌、真菌、放线菌数量比对照分...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号