首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From case studies in humans it is known that primary hypothyroidism (PH) may be associated with morphological and functional changes of the pituitary. There is no insight into the time scale of these changes. In this study, seven beagle dogs were followed up for 3 years after the induction of primary hypothyroidism. Three of these dogs were followed up for another 1.5 years while receiving l-thyroxine. Adenohypophyseal function was investigated at 2-month intervals with the combined intravenous injection of CRH, GHRH, GnRH, and TRH, and measurement of the plasma concentrations of ACTH, GH, LH, PRL, and TSH. In addition, after 2 years of hypothyroidism a single TRH-stimulation test and a somatostatin test were performed, with measurements of the same pituitary hormones. Every 6 months the pituitary gland was visualized by computed tomography (CT). Induction of PH led to high plasma TSH concentrations for a few months, where after concentrations gradually declined to values no longer significantly different from pre-PH values. A blunted response to stimulation of TSH release preceded this decline. Basal plasma GH concentrations increased during PH and there was a paradoxical hyperresponsiveness to TRH stimulation. Basal GH concentrations remained elevated and returned only to low values during l-thyroxine treatment. Basal PRL concentrations decreased significantly during PH and normalized after several months of l-thyroxine treatment. The pituitary gland became enlarged in all dogs. Histomorphology and immunohistochemical studies in 4 dogs, after 3 years of PH, revealed thyrotroph hyperplasia, large vacuolated thyroid deficiency cells, and decreased numbers of mammotrophs. Several cells stained for both GH and TSH. In conclusion, with time PH led to a loss of the TSH response to low T4 concentrations, hypersecretion of GH, and hyposecretion of PRL. The enlarged pituitaries were characterized by thyrotroph hyperplasia, large vacuolated thyroid deficiency cells, and double-staining cells, which are indicative of transdifferentiation.  相似文献   

2.
Thyroid hormones permit the annual reproductive transition of seasonal breeders. Although, precise function of thyroid hormones in seasonal breeding is not well understood. In the present study, we examined effects of hypothyroidism on the hypothalamus-pituitary-gonadal axis in adult male golden hamsters after transition of the short-day photoperiod (SD; 8 h light: 16 h dark) condition. We confirmed that hypothyroid, which had been induced by administration of thiouracil in drinking water for 4 weeks, did not have direct effects on testes in male hamsters under the long-day photoperiod. Plasma concentrations of free T3 and T4 decreased 15 weeks after transition of SD condition. Plasma concentrations of testosterone in the hypothyroid group decreased earlier than in the control group after the transition from LD to SD. In animals treated with testosterone after castration, plasma concentrations of LH in the hypothyroid group decreased earlier than in the control group after the transition of SD. On the other hand, pituitary response to GnRH for LH release did not change in castrated hamsters as a result of hypothyroidism. These results suggest that thyroid hormones act the hypothalamus and might be required to maintain GnRH secretion in male golden hamsters.  相似文献   

3.
To investigate the effect of hypothyroidism on gonadal and adrenal functions in male Japanese quail (Coturnix japonica), hypothyroidism was induced in male adult Japanese quail by daily administration of 2-Mercapto-1-methylimidazole (methimazole) in their drinking water. Four weeks after methimazole treatment, the Japanese quail were sacrificed, and the plasma concentrations of free triiodothyronine (FT3), free thyroxine (FT4), total T3 (TT3), total T4 (TT4), corticosterone, testosterone, LH and immunoreactive (ir) inhibins were measured by radioimmunoassay, the testes and adrenal glands were removed and weighed and the thyroid glands and testes were fixed in 4% paraformaldehyde for histological observation. The results showed that the hypothyroidism induced by methimazole caused a significant decrease in body and testes weight; the plasma levels of FT3, FT4 and TT4 significantly decreased, and the hypothyroid quail possessed a greater number of small follicles and more follicular epithelial cells in the thyroid gland. In addition, hypothyroidism resulted in a significant decrease in the plasma concentrations of corticosterone, LH, testosterone and ir-inhibin. Furthermore, no spermatogenesis was found in the seminiferous tubules of the methimazole treatment groups. These results clearly demonstrate that hypothyroidism caused both gonadal and adrenal disturbances in the adult male Japanese quail.  相似文献   

4.
Hypothyroidism has been cited as a cause of infertility, abnormal semen quality, and poor libido in people and animals. The purpose of this study was to evaluate the effect of hypothyroidism on variables indicative of reproductive function in adult male dogs. Nine normal dogs were randomly assigned to 2 groups. Hypothyroidism was induced with 131I in 6 dogs. Three dogs remained untreated, normal, and euthyroid. Thyroid hormone concentrations, body weight, clinical signs, and reproductive function were determined for each dog every 3 months for 2 years. Reproductive function was assessed by determining daily sperm output, total scrotal width, spermatozoal motility and morphology, libido, and serum testosterone and luteinizing hormone concentration responses to exogenous gonadotropin-releasing hormone. The 131I-treated dogs developed clinical and laboratory signs of hypothyroidism. In the hypothyroid dogs, serum concentrations of thyroid hormones were consistently below the reference range and were significantly lower than that in the euthyroid dogs. There was no difference in reproductive function between the hypothyroid and euthyroid dogs. The results of this study show that 131I-induced hypothyroidism does not affect indices of reproductive function in adult male dogs.  相似文献   

5.
Pituitary cells, collected from five healthy dogs, were cultured and treated with various doses of ovine corticotropin-releasing hormone (CRH), arginine vasopressin (AVP), oxytocin (OT), or angiotensin II (AII) to determine which of these hypothalamic peptides affected adrenocorticotropin (ACTH) secretion. Of the 4 peptides, only CRH significantly increased ACTH secretion from cultured canine anterior pituitary cells. The lowest dose of CRH tested, 0.01 nM, significantly stimulated ACTH release. Co-addition of AVP, OT, or AII with CRH did not increase ACTH secretion beyond that caused by addition of CRH alone. Similarly, neither co-addition of AVP with OT, AVP with AII, or OT with AII significantly stimulated ACTH secretion. These results support a role for CRH in the physiologic regulation of ACTH secretion from the canine anterior pituitary, but do not support regulatory roles for AVP, OT, or AII.  相似文献   

6.
Juvenile-onset hypothyroidism was diagnosed in an adult mixed-breed dog examined because of quadraparesis. Unusual clinical signs attributable to juvenile-onset or congenital hypothyroidism included disproportionate dwarfism; enlarged, protruding tongue; mental dullness; and retention of a "puppy" coat, which was soft and fluffy, without guard hairs. Radiography of the vertebral column and long bones revealed multiple areas of delayed epiphyseal closure and epiphyseal dysgenesis. Myelography demonstrated several intervertebral disk protrusions in the cervical and lumbar regions. Hypothyroidism was confirmed on the basis of a low basal serum thyroxine concentration that failed to increase after the administration of thyroid stimulating hormone. Other laboratory abnormalities included nonregenerative, normocytic, normochromic anemia; mild hypercalcemia; and an impaired growth hormone (GH) secretory response after xylazine administration. At necropsy, the thyroid gland was small and weighed only 0.2g. Microscopic examination of the thyroid gland revealed a loss of glandular tissue, which was replaced by adipose tissue along its periphery. Gross or microscopic abnormalities were not noted in the pituitary gland, and immunohistochemical staining of the pituitary gland revealed a normal number of GH-containing acidophils. This suggests that primary hypothyroidism may result in an impaired secretion of growth hormone, and that pituitary dwarfism or GH deficiency may be difficult to differentiate from hypothyroid dwarfism on the basis of provocative GH testing alone.  相似文献   

7.
Hypothyroidism in the foal   总被引:3,自引:0,他引:3  
Hypothyroidism in the foal occurs as two entities because of the separate actions of thyroid hormones in regulation of metabolic rate and in cell differentiation. The hypometabolic state which results in inadequate thermogenesis and lethargy, occurs concurrently with a period when thyroid hormone secretion is inadequate. Also the severity of the concurrent symptoms is related to the degree of hormone inadequacy as measured by plasma concentrations of free T4 and T3. By contrast, the developmental lesions caused by hypothyroidism are often observed during periods when plasma thyroid hormone concentrations are normal. This is because during the development of most tissues there is a period during which deprivation of thyroid hormones leads to developmental defects which may first appear weeks or months later, by which time thyroid hormone levels may have returned to normal. In the foal the critical period for some developmental processes, eg, myelination, is before birth so it is difficult to confirm a pre-natal hypothyroid state as the cause of neonatal neuromuscular incompetence. Post natal developmental lesions of the epiphyses or ossification centres, for example, may also manifest themselves some weeks subsequent to the period during which hypothyroidism existed. Because confirmation of diagnosis using plasma hormone measurements is very difficult in the foal, and because the symptoms of hypothyroidism are not specific, the incidence of confirmed hypothyroidism in foals is low. However there is suggestive evidence that where awareness of the condition exists it is diagnosed frequently. The aetiology is obscure although diet has been implicated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Estrogen regulates the serum level of phosphorylated prolactin in mice   总被引:2,自引:0,他引:2  
Phosphorylated prolactin (PPRL) is considered to be the most quantitatively important post-translationally modified form of prolactin (PRL) in rodents. We recently detected two different types of PPRL in the mouse pituitary gland; one was phosphorylated at serine and the other was phosphorylated at serine/threonine. Furthermore, we showed that there are obvious differences in the ratios between PPRLs and non-phosphorylated PRL in the pituitary gland based on age and sex and that estrogen influences PRL phosphorylation at serine in female mice. In the present study, we examined whether estradiol (E2) increases serine PPRL in the male pituitary gland in the same manner as in the female pituitary gland and examined whether PPRL is released into serum. We first determined the relative amounts of intrapituitary PPRLs in male mice under different pharmacological conditions that increased PRL secretion. The results indicated that treatment with E2 increases serine PPRL. We then performed two-dimensional electrophoresis and immunoblotting analysis after immunoprecipitation with anti-mouse PRL antibody using male and female sera under different pharmacological conditions that increased PRL secretion. The results of this experiment indicated that there were PRLs phosphorylated at serine and serine/threonine in the female serum but not in the male serum. The levels of PPRLs in sera were greatly increased with the E2 treatment for both male and female sera. Furthermore, we examined the effect of E2 on PPRL synthesis in cultured male pituitary glands. In this experiment, we observed increased serine PPRL synthesis and stronger immunohistochemical staining of PRL cells with E2 treatment. These findings suggested that serine PPRL synthesis and secretion were influenced by estrogen.  相似文献   

9.
Background: A recent study of dogs with induced primary hypothyroidism (PH) demonstrated that thyroid hormone deficiency leads to loss of thyrotropin (TSH) hypersecretion, hypersomatotropism, hypoprolactinemia, and pituitary enlargement with large vacuolated "thyroid deficiency" cells that double-stained for growth hormone (GH) and TSH, indicative of transdifferentiation of somatotropes to thyrosomatropes.
Hypothesis: Similar functional changes in adenohypophyseal function occur in dogs with spontaneous PH as do in dogs with induced PH, but not in dogs with nonthyroidal illness (NTI).
Animals: Fourteen dogs with spontaneous PH and 13 dogs with NTI.
Methods: Adenohypophyseal function was investigated by combined intravenous administration of 4 hypophysiotropic releasing hormones (4RH test), followed by measurement of plasma concentrations of ACTH, GH, luteinizing hormone (LH), prolactin (PRL), and TSH. In the PH dogs this test was repeated after 4 and 12 weeks of thyroxine treatment.
Results: In 6 PH dogs, the basal TSH concentration was within the reference range. In the PH dogs, the TSH concentrations did not increase with the 4RH test. However, TSH concentrations increased significantly in the NTI dogs. Basal and stimulated GH and PRL concentrations indicated reversible hypersomatotropism and hyperprolactinemia in the PH dogs, but not in the NTI dogs. Basal and stimulated LH and ACTH concentrations did not differ between groups.
Conclusions and Clinical Importance: Dogs with spontaneous PH hypersecrete GH but have little or no TSH hypersecretion. Development of hyperprolactinemia (and possible galactorrhea) in dogs with PH seems to occur only in sexually intact bitches. In this group of dogs with NTI, basal and stimulated plasma adenohypophyseal hormone concentrations were not altered.  相似文献   

10.
Prolactin (PRL) has been proposed to directly stimulate corticosterone release. However, the role of PRL on adrenocortical function in male HAA rats has not been fully clarified. The aim of this study was to investigate the effect of PRL on the secretion of corticosterone and progesterone using an in vitro cell culture system in male rats. Administration of PRL (10(-7) and 10(-6) M) resulted in dose-dependent increases in corticosterone and progesterone release. Cotreatment with PRL produced an increase in the stimulatory effects of ACTH-induced corticosterone and progesterone secretion. However, the PRL-induced corticosterone and progesterone releases were significantly reduced by treatment with AG490, a specific Janus kinase 2 (Jak2) inhibitor. In addition, administration of AG490 blunted the significant inhibition of ACTH-induced corticosterone and progesterone secretion by PRL. These results demonstrated that PRL could act directly on the adrenal gland to drive corticosterone and progesterone secretion in male rats. Additionally, the results emphasize that PRL stimulation of adrenal steroid release may be mediated through Jak2 activity.  相似文献   

11.
Previously it has been shown that androgen suppresses transportation-induced increases in plasma adrenocorticotropic hormone (ACTH), possibly by suppressing the secretion of corticotrophin releasing hormone (CRH) or arginine vasopressin (AVP) from the hypothalamus, or secretion of ACTH from the pituitary gland. The aim of the present study was to examine androgen target sites in the caprine diencephalon and pituitary gland using immunohistochemical methods. The androgen receptor (AR) was expressed strongly in the bed nucleus of the stria terminalis, the medial preoptic area, the arcuate nucleus, the ventromedial hypothalamic nucleus and the suprachiasmatic nucleus in the diencephalon. Between 8% and 11% of CRH and AVP neurons in the paraventricular hypothalamic nucleus (PVN) expressed AR. In the pituitary gland, 7.1% of corticotrophs expressed AR. The results are consistent with the proposal that androgen acts directly and indirectly on CRH and/or AVP neurons in the PVN. The possibility of a direct action of androgen on the corticotrophs in the pituitary gland was also considered.  相似文献   

12.
Oviductal regions show particular histological characteristics and functions. Tubal pathologies and hypothyroidism are related to primary and secondary infertility. The impact of hypothyroidism on the histological characteristics of oviductal regions has been scarcely studied. Our aim was to analyse the histological characteristics of oviductal regions in control and hypothyroid rabbits. Hypothyroidism was induced by oral administration of methimazole (MMI) for 30 days. For both groups, serum concentrations of thyroid and gonadal hormones were determined. Sections of oviductal regions were stained with the Masson's trichrome technique to analyse both epithelial and smooth muscle layers. The percentage of proliferative epithelial cells (anti‐Ki67) in diverse oviductal regions was also quantified. Data were compared with Student t‐test, Mann–Whitney U‐test, or Fischer's test. In comparison with the control group, the hypothyroid group showed: (i) a low concentration of T3 and T4, but a high level of TSH; (ii) similar values of serum estradiol, progesterone and testosterone; (iii) a large size of ciliated cells in the ampulla (AMP), isthmus (IST) and utero‐tubal junction (UTJ); (iv) a large size of secretory cells in the IST region; (v) a low percentage of proliferative secretory cells in the fimbria‐infundibulum (FIM‐INF) region; and (vi) a similar thickness of the smooth muscle layer and the cross‐sectional area in the AMP and IST regions. Modifications in the size of the oviductal epithelium in hypothyroid rabbits could be related to changes in the cell metabolism that may impact on the reproductive functions achieved by oviduct.  相似文献   

13.
Incubation of eggs by birds and lactation in mammals are regulated by pituitary prolactin (PRL) and associated with an increase in pituitary PRL-producing cells or lactotrophs. However, the mechanisms controlling this increase in lactotroph numbers are not known. PRL secretion in birds is regulated by vasoactive intestinal polypeptide (VIP). This study was designed to determine whether VIP treatment could modulate lactotroph abundance in culture. Anterior pituitary cells were isolated from laying Japanese White Silkie hens and cultured for 2 or 6 days in the absence or presence of VIP. PRL-secreting cells were identified by reverse hemolytic plaque assay. Treatment with VIP for 6 days substantially increased the abundance of PRL-secreting cells from 47.5% under basal conditions to 70.6% of all pituitary cells following VIP stimulation. However, 2-day VIP treatment had no effect. Furthermore, the extent to which the hens were allowed to accumulate eggs in a clutch prior to isolation of the pituitaries did not affect the lactotroph response to VIP in vitro. These findings indicate that chronic VIP stimulation may be responsible for the increased abundance of lactotrophs found in the pituitary glands of incubating hens.  相似文献   

14.
Thyroid hormones are important in the development and regulation of testes. This study was conducted to determine the effects of hyper‐ and hypothyroidism on testicular development in prepubertal rats aged 20–70 days. Weaning male rats (20 days old) until day 70 age were randomly divided into four groups: control, hyperthyroid (hyper‐T), hypothyroid (hypo‐T) and hypothyroid treated with thyroxine (T4) (hypo‐T+T4). The results indicated that thyroid hormones caused a significant effect in body and testis weights, and food and water consumption. In addition there were changes in serum concentrations of tri‐iodothyronine, T4, thyroid stimulating hormone (TSH) and testosterone. Histomorphology showed a significant decrease in seminiferous tubule diameter in hyper‐T compared to the other groups. Leydig cell numbers showed a significant elevation in hyper‐T but not in hypo‐T groups. Immunostaining indicated that TSH receptor (TSHR), thyroid hormone receptors α/β (TRαβ) and proliferating cell nuclear antigen (PCNA) have the roles in testicular development. Our findings suggest that hyper‐ and hypo‐thyroidism regulate testicular cell proliferation and spermatogenesis in prepubertal rats, indicating that expression of TSHR, TRαβ and PCNA may be regulated by thyroid hormones that are involved in testicular development; and that the administration of T4 to the hypo‐T+T4 group leads to an improvement in the testicular condition.  相似文献   

15.
Although thyroid dysfunction occurs frequently in humans and some animal species, the mechanisms by which hypo‐ and hyperthyroidism affect the corpus luteum have not been thoroughly elucidated. This study evaluated the levels of proliferative activity, angiogenesis, apoptosis and expression of cyclooxygenase‐2 in the corpus luteum of female rats with thyroid dysfunction. These processes may be important in understanding the reproductive changes caused by thyroid dysfunction. A total of 18 adult female rats were divided into three groups (control, hypothyroid and hyperthyroid) with six animals per group. Three months after treatment to induce thyroid dysfunction, the rats were euthanized in the dioestrus phase. The ovaries were collected and immunohistochemically analysed for expression of the cell proliferation marker CDC‐47, vascular endothelial growth factor (VEGF), VEGF receptor Flk‐1 and cyclooxygenase‐2 (COX‐2). Apoptosis was evaluated using the TUNEL assay. Hypothyroidism reduced the intensity and area of COX‐2 expression in the corpus luteum (p < 0.05), while hyperthyroidism did not alter COX‐2 expression in the dioestrus phase. Hypothyroidism significantly reduced the expression of CDC‐47 in endothelial cells and pericytes in the corpus luteum, whereas hyperthyroidism did not induce a detectable change in CDC‐47 expression (p > 0.05). Hypothyroidism reduced the level of apoptosis in luteal cells (p < 0.05) and increased VEGF expression in the corpus luteum. In contrast, hyperthyroidism increased the level of apoptosis in the corpus luteum (p < 0.05). In conclusion, thyroid dysfunction differentially affects the levels of proliferative activity, angiogenesis and apoptosis and COX‐2 expression in the corpus luteum of female rats.  相似文献   

16.
Hypothyroidism is recognised as an important endocrine disorder of dogs, and a frequent differential for numerous presenting complaints. Its diagnosis has never been straight forward as results suggestive of hypothyroidism can occur for a variety of reasons in dogs with normal thyroid function (euthyroid). As a consequence, the accurate investigation of hypothyroidism has been hindered by the potential inclusion of a number of cases not truly hypothyroid. In recent years, the development of newer diagnostic tests, e.g. free thyroxine, canine thyroid stimulating hormone, thyroglobulin autoantibodies, has significantly improved our ability to reliably differentiate hypothyroidism from other clinically similar disorders. This has led to a marked increase in our knowledge of the phenotypic, genotypic and aetiological aspects of this disorder in dogs.  相似文献   

17.
Pit-1 is a pituitary-specific POU-domain DNA binding factor, which binds to and trans-activates promoters of growth hormone- (GH), prolactin- (PRL) and thyroid stimulating hormone-beta- (TSHbeta) encoding genes. Thyrotropin-releasing hormone (TRH) is located in the hypothalamus and stimulates TSH, GH and PRL release from the pituitary gland. In the present study, we successfully used the cell aggregate culture system for chicken pituitary cells to study the effect of TRH administration on the ggPit-l* (chicken Pit-1), GH and TSHbeta mRNA expression in vitro. In pituitary cell aggregates of 11-day-old male broiler chicks the ggPit-l * mRNA expression was significantly increased following TRH administration, indicating that the stimulatory effects of TRH on several pituitary hormones are mediated via its effect on the ggPit-l* gene expression. Therefore, a semiquantitative RT-PCR method was used to detect possible changes in GH and TSHbeta mRNA levels. TRH affected both the GH and TSHbeta mRNA levels. The results of this in vitro study reveal that ggPit-1 * has a role in mediating the stimulatory effects of TRH on pituitary hormones like GH and TSHbeta in the chicken pituitary.  相似文献   

18.
Objectives were to examine mechanisms underlying anabolic actions of cimaterol in skeletal muscle and to evaluate cimaterol's actions in hypothyroid and hyperthyroid rats. In the first study growing rats were fed either a control diet or a diet containing cimaterol for 10 days. In a second study sham-thyroidectomized and thyroidectomized (Tx) rats were assigned to one of 5 treatments: control (sham-Tx), Tx, Tx supplemented with cimaterol, Tx injected with triiodothyronine (T3), and Tx rats injected with T3 and supplemented with cimaterol. Effects of treatments on growth, muscle weights and urinary NT-methylhistidine (NMH) excretion were evaluated in both trials. Muscle was also collected for determinations of DNA, RNA, protein and activities of several proteolytic enzymes. Cimaterol caused muscle hypertrophy and increased urinary NMH excretion. Hence, anabolic actions of cimaterol may result from an increase in myofibrillar protein synthesis which exceeds changes in myofibrillar protein degradation. Urinary NMH excretion was reduced by thyroidectomy and increased in hyperthyroid rats and both hypothyroidism and hyperthyroidism were characterized by myopathy. Cimaterol increased muscle weights in hypothyroid but not in hyperthyroid rats. Therefore, cimaterol's anabolic properties are thyroid hormone-independent and antagonized by excess thyroid hormone. Anabolic actions of cimaterol in hypothyroid rat muscle were attributed to an action on protein synthesis because urinary NMH excretion was not affected by cimaterol but muscle RNA concentration was increased. Activities of cathepsins B, D and L and neutral proteinase were dose-related to thyroid status, however, were unrelated to cimaterol-dependent perturbations in NMH excretion. Control of muscle protein balance by thyroid hormones may involve regulation of these enzymes; however, control of muscle protein degradation by cimaterol is likely directed towards other proteolytic mechanisms or to mechanisms which alter susceptibility of myofibrillar proteins to degradation.  相似文献   

19.
Background: Hypothyroidism has been implicated in the development of multiple peripheral mono‐ and polyneuropathies in dogs. The objectives of this study were to evaluate the clinical and electrophysiologic effects of experimentally induced hypothyroidism on the peripheral nervous system of dogs. Hypothesis: Chronic hypothyroidism will induce peripheral nerve sensorimotor dysfunction. Animals: Eighteen purpose‐bred, female dogs. Methods: Prospective, longitudinal study: Hypothyroidism was induced by radioactive iodine administration in 9 dogs, and the remaining 9 served as untreated controls. Neurological examinations were performed monthly. Electrophysiologic testing consisting of electromyography (EMG); motor nerve conduction studies of the sciatic‐tibial, radial, ulnar, and recurrent laryngeal nerves; sciatic‐tibial and ulnar F‐wave studies; sensory nerve conduction studies of the tibial, ulnar, and radial nerves; and evaluation of blink reflex and facial responses were performed before and 6, 12, and 18 months after induction of hypothyroidism and compared with controls. Results: Clinical evidence of peripheral nervous dysfunction did not occur in any dog. At 6 month and subsequent evaluations, all hypothyroid dogs had EMG and histologic evidence of hypothyroid myopathy. Hypothyroid dogs had significant (P≤ .04) decreases in ulnar and sciatic‐tibial compound muscle action potentials over time, which were attributed to the concurrent myopathy. No significant differences between control and hypothyroid dogs were detected in electrophysiologic tests of motor (P≥ .1) or sensory nerve conduction velocity (P≥ .24) or nerve roots (P≥ .16) throughout the study period, with values remaining within reference ranges in all dogs. Conclusion: Chronic hypothyroidism induced by thyroid irradiation does not result in clinical or electrophysiologic evidence of peripheral neuropathy, but does cause subclinical myopathy.  相似文献   

20.
OBJECTIVE: To evaluate the effects of mitotane administration on the function and morphology of pituitary corticotrophs in clinically normal dogs. ANIMALS: 12 clinically normal adult Beagles. PROCEDURES: Dogs were randomly assigned to the control group or the mitotane treatment group. In mitotane treatment group dogs, mitotane was administered for 1 month. In both groups, ACTH stimulation testing and corticotrophin-releasing hormone (CRH) stimulation testing were performed. Magnetic resonance imaging (MRI) of the pituitary gland and brain was performed in mitotane treatment group dogs before and after administration of mitotane. After CRH stimulation testing and MRI, dogs were euthanatized and the pituitary gland and adrenal glands were excised for gross and histologic examination. RESULTS: ACTH concentrations in mitotane treatment group dogs were significantly higher than in the control group dogs following CRH stimulation. Magnetic resonance imaging revealed that pituitary glands were significantly larger in treatment group dogs after administration of mitotane, compared with before administration. On gross and histologic examinations, the adrenal cortex was markedly atrophied. Immunohistochemistry revealed hypertrophy of corticotrophs in pituitary glands of mitotane treatment group dogs. CONCLUSIONS AND CLINICAL RELEVANCE: These findings indicate that inhibition of the adrenal cortex by continuous administration of mitotane leads to functional amplification and morphologic enhancement of corticotrophs in clinically normal dogs. In instances of corticotroph adenoma, hypertrophy of individual corticotrophs induced by mitotane may greatly facilitate enlargement of the pituitary gland and increases in ACTH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号