共查询到20条相似文献,搜索用时 17 毫秒
1.
Multiple copies of a gene that encodes human U1 small nuclear RNA were introduced into mouse C127 cells with bovine papilloma virus as the vector. For some recombinant constructions, the human U1 gene copies were maintained extrachromosomally on the viral episome in an unrearranged fashion. The relative abundance of human and mouse U1 small nuclear RNA varied from one cell line to another, but in some lines human U1 RNA accounted for as much as one-third of the total U1. Regardless of the level of human U1 expression, the total amount of U1 RNA (both mouse and human) in each cell line was nearly the same relative to endogenous mouse 5S or U2 RNA. This result was obtained whether measurements were made of total cellular U1 or of only the U1 in small nuclear ribonucleoprotein particles that could be precipitated with antibody directed against the Sm antigen. The data suggest that the multigene families encoding mammalian U1 RNA are subject to some form of dosage compensation. 相似文献
2.
Saccharomyces cerevisiae has a U1-like small nuclear RNA with unexpected properties 总被引:35,自引:0,他引:35
Previous experiments indicated that only a small subset of the approximately equal to 24 small nuclear RNAs (snRNAs) in Saccharomyces cerevisiae have binding sites for the Sm antigen, a hallmark of metazoan small nuclear ribonucleoproteins (snRNPs) involved in pre-messenger RNA splicing. Antibodies from human serum to Sm proteins were used to show that four snRNAs (snR7, snR14, snR19, and snR20) can be immunoprecipitated from yeast extracts. Three of these four, snR7, snR14, and snR20, have been shown to be analogs of mammalian U5, U4, and U2, respectively. Several regions of significant homology to U1 (164 nucleotides) have now been found in cloned and sequenced snR19 (568 nucleotides). These include ten out of ten matches to the 5' end of U1, the site known to interact with the 5' splice site of mammalian introns. Surprisingly, the precise conservation of this sequence precludes perfect complementarity between snR19 and the invariant yeast 5' junction (GTATGT), which differs from the mammalian consensus at the fourth position (GTPuAGT). 相似文献
3.
Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing 总被引:31,自引:0,他引:31
U6 is one of the five small nuclear RNA's (snRNA's) that are required for splicing of nuclear precursor messenger RNA (pre-mRNA). The size and sequence of U6 RNA are conserved among organisms as diverse as yeast and man, and so it has been proposed that U6 RNA functions as a catalytic element in splicing. A procedure for in vitro reconstitution of functional yeast U6 small nuclear ribonucleoproteins (snRNP's) with synthetic U6 RNA was applied in an attempt to elucidate the function of yeast U6 RNA. Two domains in U6 RNA were identified, each of which is required for in vitro splicing. Single nucleotide substitutions in these two domains block splicing either at the first or the second step. Invariably, U6 RNA mutants that block the first step of splicing do not enter the spliceosome. On the other hand, those that block the second step of splicing form a spliceosome but block cleavage at the 3' splice site of the intron. In both domains, the positions of base changes that block the second step of splicing correspond exactly to the site of insertion of pre-mRNA-type introns into the U6 gene of two yeast species, providing a possible explanation for the mechanism of how these introns originated and adding further evidence for the proposed catalytic role of U6 RNA. 相似文献
4.
Small nuclear RNA U2 is base-paired to heterogeneous nuclear RNA 总被引:18,自引:0,他引:18
Eukaryotic cells contain a set of low molecular weight nuclear RNA's. One of the more abundant of these is termed U2 RNA. The possibility that U2 RNA is hydrogen-bonded to complementary sequences in other nuclear RNA's was investigated. Cultured human (HeLa) cells were treated with a psoralen derivative that cross-links RNA chains that are base-paired with one another. High molecular weight heterogeneous nuclear RNA was isolated under denaturing conditions, and the psoralen cross-links were reversed. Electrophoresis of the released RNA and hybridization with a human cloned U2 DNA probe revealed that U2 is hydrogen-bonded to complementary sequences in heterogeneous nuclear RNA in vivo. In contrast, U2 RNA is not base-paired with nucleolar RNA, which contains the precursors of ribosomal RNA. The results suggest that U2 RNA participates in messenger RNA processing in the nucleus. 相似文献
5.
为探究endo-siRNA在小鼠胚胎母源基因降解过程中的功能,通过生物信息学分析对小鼠母源基因和对应小RNA作筛选与鉴定,研究发现近三分之二母源基因为小RNA靶标。母源基因在早期胚胎发育过程中表达模式分析表明endo-siRNA与母源基因表达呈较强负相关,预示endo-siRNA在母源基因降解过程中具有重要功能。验证表明, endo-siRNA可在转录后水平调控母源mRNA水平,调控母源基因降解。研究结果为哺乳动物母胚转换的相关研究提供理论基础。 相似文献
6.
An early hierarchic role of U1 small nuclear ribonucleoprotein in spliceosome assembly 总被引:81,自引:0,他引:81
Splicing of nuclear precursor messenger RNA (pre-mRNA) occurs on a large ribonucleoprotein complex, the spliceosome. Several small nuclear ribonucleoproteins (snRNP's) are subunits of this complex that assembles on the pre-mRNA. Although the U1 snRNP is known to recognize the 5' splice site, its roles in spliceosome formation and splice site alignment have been unclear. A new affinity purification method for the spliceosome is described which has provided insight into the very early stages of spliceosome formation in a yeast in vitro splicing system. Surprisingly, the U1 snRNP initially recognizes sequences at or near both splice junctions in the intron. This interaction must occur before the other snRNP's (U2, U4, U5, and U6) can join the complex. The results suggest that interaction of the two splice site regions occurs at an early stage of spliceosome formation and is probably mediated by U1 snRNP and perhaps other factors. 相似文献
7.
Spatial control of gut-specific gene expression during Caenorhabditis elegans development 总被引:9,自引:0,他引:9
The nematode Caenorhabditis elegans was transformed with constructs containing upstream deletions of the gut-specific ges-1 carboxylesterase gene. With particular deletions, ges-1 was expressed, not as normally in the gut, but rather in muscle cells of the pharynx (which belong to a sister lineage of the gut) or in body wall muscle and hypodermal cells (which belong to a cousin lineage of the gut). These observations suggest that gut-specific gene expression in C. elegans involves not only gut-specific activators but also multiple repressors that are present in particular nongut lineages. 相似文献
8.
Control of alternative splicing by the differential binding of U1 small nuclear ribonucleoprotein particle. 总被引:45,自引:0,他引:45
Cellular factors controlling alternative splicing of precursor messenger RNA are largely unknown, even though this process plays a central role in specifying the diversity of proteins in the eukaryotic cell. For the identification of such factors, a segment of the rat preprotachykinin gene was used in which differential expression of neuropeptides gamma and K is dependent on alternative splicing of the fourth exon (E4). Sequence variants of the three-exon segment, (E3-E4-E5) were created, resulting in a sensitive assay for factors mediating the splicing switch between E4-skipping and E4-inclusion. A dinucleotide mutation in the 5' splice site of E4 that increase base-pairing of this site to U1 small nuclear RNA resulted in uniform selection of E4, whereas a control mutation that destroyed base-pairing resulted in uniform E4-skipping. Affinity selection of spliceosomes formed on these functionally distinct substrates revealed that the extreme difference in splicing was mediated by differential binding of the U1 small nuclear ribonucleoprotein particle (snRNP) to the 5' splice site of E4. These data show that, apart from its established role in selecting 5' splice sites, U1 snRNP plays a fundamental role in 3' exon selection and provides insight into possible mechanisms of alternative splicing. 相似文献
9.
Affinity chromatography of splicing complexes: U2, U5, and U4 + U6 small nuclear ribonucleoprotein particles in the spliceosome 总被引:69,自引:0,他引:69
The splicing process, which removes intervening sequences from messenger RNA (mRNA) precursors is essential to gene expression in eukaryotic cells. This site-specific process requires precise sequence recognition at the boundaries of an intervening sequence, but the mechanism of this recognition is not understood. The splicing of mRNA precursors occurs in a multicomponent complex termed the spliceosome. Such an assembly of components is likely to play a key role in specifying those sequences to be spliced. In order to analyze spliceosome structure, a stringent approach was developed to obtain splicing complexes free of cellular contaminants. This approach is a form of affinity chromatography based on the high specificity of the biotin-streptavidin interaction. A minimum of three subunits: U2, U5, and U4 + U6 small nuclear ribonucleoprotein particles were identified in the 35S spliceosome structure, which also contains the bipartite RNA intermediate of splicing. A 25S presplicing complex contained only the U2 particle. The multiple subunit structure of the spliceosome has implications for the regulation of a splicing event and for its possible catalysis by ribozyme or ribozymes. 相似文献
10.
Erythrocyte transfer RNA: change during chick development 总被引:10,自引:0,他引:10
Radioactive aminoacyl transfer RNA's isolated from erythrocytes in the blood of 4-day-old chick embryos and from reticulocytes of adult chickens were analyzed by chromatography on methylated albumin kieselguhr and freon columns. Embryonic and adult methionyl transfer RNA's showed qualitative and quantitative differences in both chromatographic systems. The patterns for arginyl, seryl, and tyrosyl transfer RNA's in the two cell types were similar, while the leucyl transfer RNA patterns suggested a difference. 相似文献
11.
12.
13.
The initiation of X-chromosome inactivation is thought to be tightly correlated with early differentiation events during mouse development. Here, we show that although initially active, the paternal X chromosome undergoes imprinted inactivation from the cleavage stages, well before cellular differentiation. A reversal of the inactive state, with a loss of epigenetic marks such as histone modifications and polycomb proteins, subsequently occurs in cells of the inner cell mass (ICM), which give rise to the embryo-proper in which random X inactivation is known to occur. This reveals the remarkable plasticity of the X-inactivation process during preimplantation development and underlines the importance of the ICM in global reprogramming of epigenetic marks in the early embryo. 相似文献
14.
DNA rearrangement and altered RNA expression of the c-myb oncogene in mouse plasmacytoid lymphosarcomas 总被引:51,自引:0,他引:51
Three types of tumors termed plasmacytomas (ABPC's), lymphosarcomas (ABLS's), and plasmacytoid lymphosarcomas (ABPL's) arise in BALB/c mice treated with pristane and Abelson murine leukemia virus (A-MuLV). While most ABPC's and BLS's contain integrated A-MuLV proviral genome and synthesize the v-abl RNA, most ABPL's do not. The ABPL tumors were examined for the expression of other oncogenes that may be associated with their transformed state, in the absence of transforming virus. These tumors expressed abundant c-myb RNA of unusually large size and showed DNA rearrangements of the c-myb locus. 相似文献
15.
为了解小鼠早期发育过程中端粒酶的活性变化,本研究利用端粒重复序列扩增法(TRAP)进行了小鼠卵母细胞和附植前胚胎端粒酶活性的测定。结果表明,小鼠卵母细胞、桑椹胚和囊胚为端粒酶阳性,而2-细胞和8-细胞为阴性。依据电泳条带在成像系统下的光密度,计算相对总产品产量(TPG)的定量比较发现,囊胚端粒酶活性最高,为269.331;桑椹胚次之,为96.231;卵母细胞最低,为85.782。小鼠桑椹胚和囊胚胚胎记数及单细胞端粒酶活性比较结果显示,囊胚单细胞TPG最低,为3.45;桑椹胚单细胞略高于囊胚,为4.00;而卵母细胞最高,为85.782,大约是囊胚细胞的25倍。 相似文献
16.
17.
以生长速度不同的花山麻鸡和清远麻鸡为试验素材,采用实时荧光定量PCR方法检测鸡9、12、16、21胚龄(E9 d、E12 d、E16 d、E21 d)和出雏后7日龄(7 d)时胸肌和腿肌中IGF1R mRNA表达变化情况,并与肌肉质量进行相关性研究。结果发现,21胚龄时,花山麻鸡和清远麻鸡胸肌质量都出现了显著降低,腿肌质量持续增长。花山麻鸡胸肌IGF1R mRNA表达呈前高后低趋势,9胚龄时表达量最高,之后显著降低并维持在较低的水平,出雏后7日龄时表达量再次下降;清远麻鸡在胸肌中的表达则呈“波浪形”,9胚龄和16胚龄表达量升高,其他日龄表达量显著降低。腿肌中,花山麻鸡IGF1R mRNA表达量在16胚龄之后显著降低;清远麻鸡腿肌IGF1R mRNA表达呈依次递减模式,各时间点之间差异显著(P<0.05)。品种间各个时间点胸肌和腿肌IGF1R mRNA表达量均呈显著差异(P<0.05)。两个品种骨骼肌IGF1R mRNA表达与胸肌、腿肌质量均呈极显著相关(P<0.01)。以上结果初步揭示了生长发育早期不同品种鸡胸肌和腿肌IGF1R基因表达发育变化趋势和品种差异,为深入研究IGF1R基因在鸡肌肉发育中的调控机理提供基础资料。 相似文献
18.
19.
20.