首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Terrell J 《Science (New York, N.Y.)》1966,154(3754):1281-1288
Many difficulties face the conventional interpretation of the red shift of quasars as a Hubble shift, with associated immense distances. These objects are not of galactic size or nature, and are not associated with galaxies or clusters of galaxies. The continuing energy source for such enormous powers for a period of 10(6) to 10(7) years has not been clearly revealed. The absence of the expected absorption for the Lyman-alpha spectral line of hydrogen is a new difficulty. Because of the relativistic limit on the diameter which can produce rapid fluctuations of light output, there may not be enough surface to radiate the required light.A similar and perhaps more serious difficulty exists for the fluctuating radio output. Calculations given here for synchrotron radiation self-absorption lead to a reasonably accurate formula for the angular diameter of a radio source. For the quasar 3C 273B these relations indicate a conflict with the usually assumed distance. However, the discrepancy may be explained in terms of strong variation of radio diameter with frequency. For CTA 102 the conflict is more serious, and could be explained -for cosmological distance-only by rejecting the data of Sholomitskii. These difficulties are removed by the hypothesis that the observed quasars were ejected from a gravitational collapse at the center of our own galaxy, which may have occurred roughly 5 million years ago. The resultant distances, of the order of a million lightyears, reduce the energy problem by a factor of 10(6) or 10(7). On this basis the optical diameter would be less than a light-hour, about the size of the earth's orbit. A rotating mass of a few thousand solar masses with this diameter would account for the unusual line width, could easily produce the required radiated energy, and could readily account for observed short fluctuation periods and variations in spectrum. It is suggested that the radio output may be produced by high-speed passage of the quasar through intergalactic gas. This would probably correspond to a radio size of a few light-years or less, in agreement with the fluctuations. Since the radio power would be considerably less than that of radio galaxies, it is suggested that radio galaxies may have ejected groups of quasars. This would explain the peculiarly distant locations of the radio sources for many such galaxies. The objections to this model that have been raised are apparently not fatal. In particular, the receding hydrogen cloud discovered by Koehler to be in the line of sight to 3C 273 is more plausibly interpreted as having been ejected from our own galaxy, in the manner observed for other galaxies, than as being associated with the Virgo cluster of galaxies. The latter interpretation, which would place 3C 273 further away, is in conflict with Lyman-alpha absorption data for 3C 9 and other quasars. Thus the local model seems to give a reasonable explanation not only of quasars but also of radio galaxies, bothv of which seem largely to defy explanation on other grounds. Whether or not this model is valid, it is clear that an understanding of quasars will radically change our understanding of the universe.  相似文献   

2.
Before the launch of the Compton Gamma Ray Observatory (CGRO), the only source of >100-megaelectron volt (MeV) gamma radiation known outside our galaxy was the quasar 3C 273. After less than a year of observing, 13 other extragalactic sources have been discovered with the Energetic Gamma Ray Experiment Telescope (EGRET) on CGRO, and it is expected that many more will be found before the full sky survey is complete. All 14 sources show evidence of blazar properties at other wavelengths; these properties include high optical polarization, extreme optical variability, flat-spectrum radio emission associated with a compact core, and apparent superluminal motion. Such properties are thought to be produced by those few, rare extragalactic radio galaxies and quasars that are favorably aligned to permit us to look almost directly down a relativistically outflowing jet of matter expelled from a supermassive black hole. Although the origin of the gamma rays from radio jets is a subject of much controversy, the gamma-ray window probed by CGRO is providing a wealth of knowledge about the central engines of active galactic nuclei and the most energetic processes occurring in nature.  相似文献   

3.
Turner EL 《Science (New York, N.Y.)》1984,223(4642):1255-1259
Despite the expenditure of large amounts of telescope time and other resources, most of the fundamental questions concerning quasi-stellar objects (quasars) remain unanswered. A complex phenomenology of radio, infrared, optical, and x-ray properties has accumulated but has not yielded even a satisfactory classification system. The large red shifts (distances) of quasars make them very valuable tools for studying cosmology and the properties of intervening matter in the Universe through observations of absorption lines and gravitational lenses.  相似文献   

4.
A variety of recent optical, radio, and x-ray observation have confirmed the hypothesis that the peculiar star SS 433 is ejecting two narrow, opposed, highly collimated jets of matter at one-quarter the speed of light. This unique behavior is probably driven by mass exchange between a relatively normal star and a compact companion, either a neutron star or a black hole. However, numerous details regarding the energetics, radiation, acceleration, and collimation of the jets remain to be understood. This phenomenon may well be a miniature example of similar collimated ejection of gas by active extragalactic objects such as quasars and radio galaxies.  相似文献   

5.
The hypothesis that the quasistellar sources (quasars) are local objects moving with velocities close to the speed of light is examined. Provided there is no observational cutoff on apparent bolometric magnitude for the quasars, the transverse Doppler effect leads to the expectation of fewer blue shifts than red shifts for an isotropic distribution of velocities. Such a distribution also yields a function N(z), the number of objects with red shift less than z which is not inconsistent with the present data. On the basis of two extreme assumptions concerning the origin of such rapidly moving sources, we computed curves of red shift plotted against magnitude. In particular, the curve obtained on the assumption that the quasars originated from an explosion in or nearby our own galaxy is in as good agreement with the observations as the curve of cosmological red shift plotted against magnitude.  相似文献   

6.
Supermassive black hole binaries may exist in the centers of active galactic nuclei such as quasars and radio galaxies, and mergers between galaxies may result in the formation of supermassive binaries during the course of galactic evolution. Using the very-long-baseline interferometer, we imaged the radio galaxy 3C 66B at radio frequencies and found that the unresolved radio core of 3C 66B shows well-defined elliptical motions with a period of 1.05 +/- 0.03 years, which provides a direct detection of a supermassive black hole binary.  相似文献   

7.
Several instances of multiple imaging of cosmologically distant sources by intervening galaxies and galaxy clusters have been discovered over the past decade. These "gravitational lenses" have distinctive optical properties. Pointlike sources such as quasars generally produce two or four images when lensed, whereas extended sources such as galaxies produce spectacular arcs and rings. The salient features of most of the observations can be reproduced with the use of simple elliptical lens models that approximate the lenses made by ellipsoidal mass distributions such as are common in the universe. In addition to illustrating simple optics in operation on a cosmological scale, multiple images and arcs provide useful probes of the lensing galaxies and clusters. Also, gravitational lenses can make magnified images of cosmologically distant sources and may eventually furnish important cosmographic data such as the Hubble constant.  相似文献   

8.
The optical double quasar 0957+561 has been interpreted as the gravitational double image of a single object. A radio map made with the Very Large Array of the National Radio Astronomy Observatory shows unresolved sources coincident With the optical images as well as a complex of related extended emission. Although the results cannot rule out the gravitational lens hypothesis, the complex radio structure is more easily interpreted as two separate quasars. The optical and radio properties of the two quasars are so similar that the two must have been formed at the same time with similar initial conditions.  相似文献   

9.
Rees MJ 《Science (New York, N.Y.)》1990,247(4944):817-823
The nuclei of some galaxies undergo violent activity, quasars being the most extreme instances of this phenomenon. Such activity is probably short-lived compared to galactic lifetimes, and was most prevalent when the universe was only about one-fifth of its present age. A massive black hole seems the inevitable end point of such activity, and dead quasars should greatly outnumber active ones. In recent years, studies of stellar motions in the cores of several nearby galaxies indicate the presence of central dark masses which could be black holes. This article discusses how such evidence might be corroborated, and the potential implications for our understanding of active galaxies and black holes.  相似文献   

10.
Gamma-ray bursts (GRBs) are sudden, intense flashes of gamma rays that, for a few blinding seconds, light up in an otherwise fairly dark gamma-ray sky. They are detected at the rate of about once a day, and while they are on, they outshine every other gamma-ray source in the sky, including the sun. Major advances have been made in the last 3 or 4 years, including the discovery of slowly fading x-ray, optical, and radio afterglows of GRBs, the identification of host galaxies at cosmological distances, and evidence showing that many GRBs are associated with star-forming regions and possibly supernovae. Progress has been made in understanding how the GRB and afterglow radiation arises in terms of a relativistic fireball shock model. These advances have opened new vistas and questions on the nature of the central engine, the identity of their progenitors, the effects of the environment, and their possible gravitational wave, cosmic ray, and neutrino luminosity. The debates on these issues indicate that GRBs remain among the most mysterious puzzles in astrophysics.  相似文献   

11.
Observations now require that there be a continuous supply of energy to the giant extragalactic radio sources. These observations also suggest that this energy input may be in the form of streams or jets of gas emanating from the centers of galaxies and quasi-stellar objects. Current data indicate that the large-scale jet structures are not moving with relativistic speeds, as previously proposed. Slow-moving jets, which possess turbulent interiors and are dominated by relatively cool gas, can account for the observed jet properties at optical and radio wavelengths. Extremely small-scale jets observed adjacent to the central energy source may or may not be in relativistic motion.  相似文献   

12.
The Very Large Array has been used to survey a small region of sky at a wavelength of 6 centimeters down to a completeness level of 60 microjanskys-about 100 times weaker than the faintest radio sources that have been detected with other instruments. The observed source count at flux densities below 100 millijanskys converges in a manner similar to the lower frequency counts, although there is some evidence for an excess of sources weaker than 100 microjanskys. The sources in the survey are preferentially identified with faint galaxies.  相似文献   

13.
Many galaxies have taken on their familiar appearance relatively recently. In the distant Universe, galaxy morphology deviates significantly (and systematically) from that of nearby galaxies at redshifts (z) as low as 0.3. This corresponds to a time approximately 3.5 x 10(9) years in the past, which is only approximately 25% of the present age of the Universe. Beyond z = 0.5 (5 x 10(9) years in the past), spiral arms are less well developed and more chaotic, and barred spiral galaxies may become rarer. At z = 1, around 30% of the galaxy population is sufficiently peculiar that classification on Hubble's traditional "tuning fork" system is meaningless. On the other hand, some characteristics of galaxies have not changed much over time. The space density of luminous disk galaxies has not changed significantly since z = 1, indicating that although the general appearance of these galaxies has continuously changed over time, their overall numbers have been conserved.  相似文献   

14.
High angular resolution images of extragalactic radio sources are being made with the Highly Advanced Laboratory for Communications and Astronomy (HALCA) satellite and ground-based radio telescopes as part of the Very Long Baseline Interferometry (VLBI) Space Observatory Programme (VSOP). VSOP observations at 1.6 and 5 gigahertz of the milli-arc-second-scale structure of radio quasars enable the quasar core size and the corresponding brightness temperature to be determined, and they enable the motions of jet components that are close to the core to be studied. Here, VSOP images of the gamma-ray source 1156+295, the quasar 1548+056, the ultraluminous quasar 0014+813, and the superluminal quasar 0212+735 are presented and discussed.  相似文献   

15.
16.
The Dark Age is the period between the time when the cosmic microwave background was emitted and the time when the evolution of structure in the universe led to the gravitational collapse of objects, in which the first stars were formed. The period of reionization started with the ionizing light from the first stars, and it ended when all the atoms in the intergalactic medium had been reionized. The most distant sources of light known at present are galaxies and quasars at redshift z congruent with 6, and their spectra indicate that the end of reionization was occurring just at that time. The Cold Dark Matter theory for structure formation predicts that the first sources formed much earlier.  相似文献   

17.
Relativistic outflows or "jets" are collimated streams of high-energy electrons that emit synchrotron radiation at radio wavelengths and have bulk velocities that are a substantial fraction of the speed of light. They trace the outflow of enormous amounts of energy and matter from a central supermassive black hole in distant radio galaxies. As Fender explains in this Perspective, much smaller, more local sources may also produce such jets. Data presented by Paredes et al. point toward association of one such source, a relatively faint x-ray binary, with a gamma-ray source. This and similar pairs may contribute substantially to the production of high-energy particles and photons within our galaxy.  相似文献   

18.
An orbiting spacecraft and ground observatories have been used to obtain interferometric observations of cosmic radio sources. The Tracking and Data Relay Satellite System (TDRSS) was used as the orbiting observatory in conjunction with two 64- meter radio telescopes at ground observatories, one in Australia and one in Japan. The quasars 1730-130 (NRAO 530), 1510-089, and 1741-038 were observed at a frequency of 2.3 gigahertz, and a maximum projected baseline of 1.4 earth diameters was achieved. All quasar observations for which valid data were acquired resulted in detected fringes. Many of the techniques proposed for a dedicated very long baseline interferometry observatory in space were used successfully in this experiment.  相似文献   

19.
In the current paradigm of cold dark matter cosmology, large-scale structures are assembling through hierarchical clustering of matter. In this process, an important role is played by megaparsec (Mpc)-scale cosmic shock waves, arising in gravity-driven supersonic flows of intergalactic matter onto dark matter-dominated collapsing structures such as pancakes, filaments, and clusters of galaxies. Here, we report Very Large Array telescope observations of giant ( approximately 2 Mpc by 1.6 Mpc), ring-shaped nonthermal radio-emitting structures, found at the outskirts of the rich cluster of galaxies Abell 3376. These structures may trace the elusive shock waves of cosmological large-scale matter flows, which are energetic enough to power them. These radio sources may also be the acceleration sites where magnetic shocks are possibly boosting cosmic-ray particles with energies of up to 10(18) to 10(19) electron volts.  相似文献   

20.
Of all the galaxies in the visible part of the universe, 500 million are seen through intervening galaxies. In some instances the foreground galaxy will act as a gravitational lens and produce distorted and (in brightness) greatly amplified images of the galaxy behind it; such images may simulate starlike superluminous objects such as quasars (quasi-stellar objects). The number of gravitational lenses is several times greater than the number of quasars yet observed. In other instances the superposition of the image upon a visible foreground galaxy may simulate morphological configurations resembling N-type, dumbbell, spiral, or barred-spiral galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号