首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Context

Multi-scale approaches to habitat modeling have been shown to provide more accurate understanding and predictions of species-habitat associations. It remains however unexplored how spatial and temporal variations in habitat use may affect multi-scale habitat modeling.

Objectives

We aimed at assessing how seasonal and temporal differences in species habitat use and distribution impact operational scales, variable influence, habitat suitability spatial patterns, and performance of multi-scale models.

Methods

We evaluated the environmental factors driving brown bear habitat relationships in the Cantabrian Range (Spain) based on species presence records (ground observations) for the period 2000–2010, LiDAR data on forest structure, and seasonal estimates of foraging resources. We separately developed multi-scale habitat models for (i) each season (spring, summer, fall and winter) (ii) two sub-periods with different population status: 2000–2004 (with brown bear distribution restricted to the main population nuclei) and 2005–2010 (with expanding bear population and range); and (iii) the entire 2000–2010 period.

Results

Scales of effect remained considerably stable across seasonal and temporal variations, but not the influence of certain environmental variables. The predictive ability of multi-scale models was lower in the seasons or periods in which populations used larger areas and a broader variety of environmental conditions. Seasonal estimates of foraging resources, together with LiDAR data, appeared to improve the performance of multi-scale habitat models.

Conclusions

We highlight that the understanding of multi-scale behavioral responses of species to spatial patterns that continually shift over time may be essential to unravel habitat relationships and produce reliable estimates of species distributions.
  相似文献   

2.
3.

Context

The umbrella approach applied to landscape connectivity is based on the principle that the conservation or restoration of the dispersal habitats for some species also can facilitate the movement of others. Species traits alone do not seem to be enough to identify good connectivity umbrella species, showing the need to investigate the influence of additional factors on this property.

Objectives

We test whether the potential of a species as a connectivity umbrella can be influenced by landscape composition and configuration.

Methods

We simulated movement routes for eight hypothetical species in artificial patchy landscapes with different levels of fragmentation, habitat amount and matrix permeability. We determined the effectiveness of the connectivity umbrella of the virtual species using pairwise intersections of important habitats for their movements in all landscapes.

Results

The connectivity umbrella performance of all species was affected by the interaction of fragmentation level and habitat amount. In general, species performance increased with decreasing fragmentation and increasing habitat amount. In most landscapes and considering the same dispersal threshold, species able to move more easily through the matrix showed higher umbrella performance than those for which the matrix offered greater resistance.

Conclusions

The connectivity umbrella is not a static feature that depends only on the species traits, but rather a dynamic property that also varies according to the landscape attributes. Therefore, we do not recommend spatial transferability of the connectivity umbrella species identified in a landscape to others that have divergent levels of fragmentation and habitat quantity.
  相似文献   

4.
The spatial distribution of non-native, invasive plants on the landscape is strongly influenced by human action. People introduce non-native species to new landscapes and regions (propagule pressure) as well as increase ecosystem invasibility through disturbance of native ecosystems. However, the relative importance of different landscape drivers of invasion may vary with landscape context (i.e., the types and amounts of surrounding land cover and land use). If so, data collected in one context may not be appropriate for predicting invasion risk across a broader landscape. To test whether independent occurrence datasets suggest similar landscape drivers of invasion, we compared landscape models based on data compiled by the Invasive Plant Atlas of New England (IPANE), which are contributed opportunistically by trained citizen scientists, to models based on Forest Stewardship plans (FSPs), which are located in privately owned and relatively undisturbed forests. We evaluated 16 landscape variables related to propagule pressure and/or disturbance for significant predictors of invasive plant presence based on presence/absence and count regression models. Presence and richness of invasive plants within FSPs was most influenced by proportion of open land and proximity to residential areas, which are both sources of propagules in forest interiors. In contrast, IPANE invasive plant presence and richness for the same area was influenced by distance to roads and streams. These results suggest that landscape drivers of invasion vary considerably depending on landscape context, and the choice of occurrence dataset will strongly influence model results.  相似文献   

5.
Socioeconomic changes in many areas in the tropics have led to increasing urbanization, abandonment of agriculture, and forest re-growth. Although these patterns are well documented, few studies have examined the drivers leading to landscape-level forest recovery and the resulting spatial structure of secondary forests. Land cover transitions from agricultural lands to secondary forest in the island of Puerto Rico have been ongoing since the 1940s. This study is a glimpse into this landscape level trend from 1991 to 2000. First, we relied on Landsat images to characterize changes in the landscape structure for forest, urban, and agricultural land classes. We found that although forest cover has increased in this period, forest has become increasingly fragmented while the area of urban cover has spread faster and become more clustered. Second, we used logistic regression to assess the relationship between the transition to forest and 21 biophysical, socioeconomic, and landscape variables. We found that the percentage of forest cover within a 100 m radius of a point, distance to primary roads and nature reserves, slope, and aspect are the most important predictors of forest recovery. The resulting model predicts the spatial pattern of forest recovery with accuracy (AUC-ROC = 0.798). Together, our results suggest that forest recovery in Puerto Rico has slowed down and that increasing pressure from urbanization may be critical in determining future landscape level forest recovery. These results are relevant to other areas in the tropics that are undergoing rapid economic development.  相似文献   

6.
Increasing fertiliser use in agricultural landscapes is likely to threaten the viability of remnant native vegetation in many parts of the world. Australia’s prime grain production landscapes have nutrient poor soils, which formerly supported semi-arid woodland. The ecological function and capacity for regeneration of these remnants may be particularly susceptible to nutrient enrichment. The key sources of nutrients are wind and water deposition from crop fertilisation, and manure and feed from sheep. We hypothesised that these sources would result in unequal deposition of nutrients within and among remnant vegetation patches. We surveyed soil nutrients (Total N, Available P and K, C:N ratio, and soil pH) in the edges and interiors of 60 remnant woodland patches of various sizes, and in adjacent cultivated paddocks. Nutrient load was negatively correlated with remnant size and patterns were particularly strong for available P. Small remnant patches (<3 ha) were accumulation zones for nutrients, with levels comparable or higher than within crop lands. The patterns are consistent with the hypothesis that small remnants are strongly enriched as a result of being used for livestock shelter. In larger remnants, the primary cause of enrichment is consistent with edge accumulation of nutrients due to wind and water movement. In large patches, remnant edges, particularly the windward edge, were elevated compared to interiors of large patches. In these semi-arid crop lands, current trends in intensification of cropping and a shift away from livestock may reduce the input of nutrients to small patches but increase the nutrient threat to larger remnants.  相似文献   

7.
Gustafson  Eric J. 《Landscape Ecology》2019,34(9):2065-2072
Landscape Ecology - Landscape ecology was founded on the idea that there is a reciprocal relationship between spatial pattern and ecological processes. I provide a retrospective look at how the...  相似文献   

8.
Li  Li  Fassnacht  Fabian Ewald  Bürgi  Matthias 《Landscape Ecology》2021,36(8):2277-2293
Landscape Ecology - Landscape ecology thinking and social–ecological system (SES) thinking investigate human–environment relationships from the perspective of ‘space’ and...  相似文献   

9.
We argue for the landscape ecology community to adopt the study of poverty and the ecology of landscapes as a Grand Challenge Topic. We present five areas of possible research foci that we believe that landscape ecologists can join with other social and environmental scientists to increase scientific understanding of this pressing issue: (1) scale and poverty; (2) landscape structure and human well-being; (3) social and ecological processes linked to spatial patterns in landscapes; (4) conservation and poverty, and (5) applying the landscape ecologist’s toolkit. A brief set of recommendations for landscape ecologists is also presented. These include the need to utilize broad frameworks that integrate social and ecological variables, build capacity to do this kind of work through the development of strong collaborations of researchers in developed and developing countries, create databases in international locations where extreme poverty exists, and create a new generation of researchers capable of addressing this pressing social and environmental issue.  相似文献   

10.
Context

Functional connectivity of semiaquatic species is poorly studied despite that freshwater ecosystems are amongst the most threatened worldwide due to habitat deterioration. The Neotropical otter, Lontra longicaudis, is a threatened species that represents a good model to evaluate the effect of landscape-riverscape features on genetic structure and gene flow of freshwater species.

Objectives

We aimed to assess the spatial genetic structure of L. longicaudis and to evaluate the landscape-riverscape attributes that shape its genetic structure and gene flow at local sites (habitat patches) and between sites (landscape matrix).

Methods

We conducted the study in three basins located in Veracruz, Mexico, which have a high degree of ecosystem deterioration. We used a non-invasive genetic sampling and a landscape genetics individual-based approach to test the effect stream hierarchical structure, isolation-by-distance, and isolation-by-resistance on genetic structure and gene flow.

Results

We found genetic structure that corresponded to the latitudinal and altitudinal heterogeneity of the landscape and riverscape, as well as to the hierarchical structure of the streams. Open areas and steep slopes were the variables affecting genetic structure at local sites, whereas areas with suitable habitat conditions, higher ecosystem integrity and larger streams enhanced gene flow between sites.

Conclusions

The landscape-riverscape characteristics that maintain functional connectivity of L. longicaudis differed between the upper, middle, and lower basins. Our results have important implications for the conservation of the species, including the maintenance of larger suitable areas in Actopan and the necessity to improve connectivity in Jamapa, through the establishment of biological corridors.

  相似文献   

11.
12.

Context

Resilience in fire-prone forests is strongly affected by landscape burn-severity patterns, in part by governing propagule availability around stand-replacing patches in which all or most vegetation is killed. However, little is known about drivers of landscape patterns of stand-replacing fire, or whether such patterns are changing during an era of increased wildfire activity.

Objectives

(a) Identify key direct/indirect drivers of landscape patterns of stand-replacing fire (e.g., size, shape of patches), (b) test for temporal trends in these patterns, and (c) anticipate thresholds beyond which landscape patterns of burn severity may change fundamentally.

Methods

We applied structural equation modeling to satellite burn-severity maps of fires in the US Northern Rocky Mountains (1984–2010) to test for direct and indirect (via influence on fire size and proportion stand-replacing) effects of climate/weather, vegetation, and topography on landscape patterns of stand-replacing fire. We also tested for temporal trends in landscape patterns.

Results

Landscape patterns of stand-replacing fire were strongly controlled by fire size and proportion stand-replacing, which were, in turn, controlled by climate/weather and vegetation/topography, respectively. From 1984 to 2010, the proportion of stand-replacing fire within burn perimeters increased from 0.22 to 0.27. Trends for other landscape metrics were not significant, but may respond to further increases proportion stand-replacing fire.

Conclusions

Fires from 1984 to 2010 exhibited tremendous heterogeneity in landscape patterns of stand-replacing fire, likely promoting resilience in burned areas. If trends continue on the current trajectory, however, fires may produce larger and simpler shaped patches of stand-replacing fire with more burned area far from seed sources.
  相似文献   

13.
This paper examines the relation between visitor behaviour and certain features of a number of major green spaces in the city of Granada, south-eastern Spain, focussing on key urban, ecological and landscape-related issues. Information on user profiles and numbers, the various uses made of these areas, their design, plant species richness and local urban and sociological background, was collected by means of in situ observation in a total of ten urban green spaces with surface areas of over 5000 m2. Findings indicated that these spaces were used largely for purposes directly related to well-being: recreational and sporting activities, socialising, or simply relaxing. Interestingly, the most common activities in each space were governed by features intrinsic to the space itself: accessibility, design, maintenance and plant richness and distribution, all of which affected the health-related attributes and aesthetic value of the space. The study also highlighted a number of serious deficiencies in certain green spaces, which will need to be addressed in future action plans and replanning projects as an essential step in ensuring that they meet the real needs and expectations of the target population. The information provided by this research may prove particularly valuable for improving the systemic functions of green spaces in Mediterranean cities sharing similar bioclimatic and sociological features, and for ensuring that they fulfil the role assigned to green spaces in sustainable cities.  相似文献   

14.
15.
16.
Urban areas are particularly vulnerable to climate change due to the Urban Heat Island (UHI) effect, which can be mitigated by urban vegetation through shading and evapotranspiration. Nevertheless, there is still a lack of spatially explicit information on the cooling capacity of green infrastructure for most Latin American cities. In this study, we employed Land Surface Temperature (LST) of the Neotropical Mexican city of Xalapa to (1) analyze its Surface UHI (SUHI) compared to its peri and extra-urban areas, (2) to assess the cooling capacity of urban green spaces larger than 1 ha, and (3) to evaluate the role of green spaces’ size, shape and their surrounding tree cover percentage (Tc) on green spaces cooling range. We evaluated the cooling range of green spaces and their relationships with green spaces metrics and Tc via a linear mixed-effect model and identified threshold values for the variables at 25 m, 50 m, 100 m, and 200 m from the borders of green spaces through Classification and Regression Trees. Xalapa exhibits a SUHI of 1.70 °C compared to its peri-urban area and 4.95 °C to the extra-urban area. Green spaces > 2 ha mitigated heat at ~2 °C and the cooling range was influenced by the size of green spaces ≥ 2.8 ha and Tc > 21% at 50 m and only by Tc surrounding the green spaces at 100 m and 200 m. This shows that the size threshold of urban green spaces should be complemented with the presence of Tc starting at least 50 m to maximize the cooling capacity provided by the green infrastructure. Planning agendas should account for the interaction between the size of green spaces and the cumulative cooling effect of scattered vegetation inside urban areas towards compact green cities to cope with urban warming.  相似文献   

17.
《Scientia Horticulturae》1986,29(4):347-358
In the subtropical banana-growing areas of South Africa, there is a pronounced and consistent tendency for fruit to be oversupplied in the spring (September–November) and undersupplied in the autumn (March–May). Under identical soil, planting material and general management conditions, a crop-timing trial with ‘Williams’ banana was established at Burgershall Research Station, Eastern Transvaal, to compare the effects of planting date (September, December, March), time of first sucker selection (5 and 10 months after planting) and density (1666 and 1250 plants ha−1) on yield and harvest season over 3 crop cycles.Cumulating the yield/ha/annum for the plant crop and first ratoon cycles, there was a small but significant decrease (4%) as planting date was delayed from September to December, and a larger significant reduction in yield (18%) with delay from December to March planting. While cumulative yield/ha/annum for plant crop plus first ratoon increased significantly (19%) at the higher density of 1666 plants ha−1, no differences occurred as a result of sucker selection treatment.March-planted bananas were harvested during the undesirable spring period, and this effect was largely carried over into the first ratoon and second ratoon cycles. December planting was optimal and September planting intermediate from a crop-timing viewpoint. Cumulating all 3 crop cycles, 50% of the total bunch harvest could be timed during the autumn from December planting at a density of 1666 plants ha−1. From September planting, the proportion of autumn-harvested fruit could also be increased by delaying the selection of the first ratoon sucker until at least 10 months after planting. Results demonstrated the in-field potential for overcoming the natural banana shortage in South Africa during autumn.  相似文献   

18.
City edges have been associated with waste and wastelands for centuries. Refuse dumps have frequently been located at the outskirts of the city, and the metaphor of ‘wasteland’ has been used to depict landscapes at the urban fringe. In this paper, the relationship between actual waste dumps and metaphorical wastelands is brought forward to facilitate an analysis of landscape transformations at the city edge and to reveal the neglect of transient landscapes within spatial planning. In the first part of the paper the interactions between dumps and ‘wastelands’ at the city edge are discussed. In the second part, a case study at the edge of Malmö (in southern Sweden) is presented as an illustration of the transformative city edge and in particular the invisibility of this landscape in local planning. Major landscape transformations during the 20th century are examined along with representations of the area within spatial planning. The primary sources of information have been the archives of the local and regional waste management divisions, local planning documents and field studies. The case study illustrates how the present fringe landscape is constantly camouflaged by a green future; it is always about to be transformed, and therefore ignored. Consequently, an everyday landscape, with hazardous waste as well as places of great potential for recreation, has been disregarded for decades. The paper concludes with a discussion emphasising the importance to unveil such utopian representations, and the need to highlight the present day situation at the city edge.  相似文献   

19.
Reintroduction projects represent viable options for animal conservation. They allow the establishment of new local populations and may contribute to recreating functional networks within a metapopulation. In the latter case, landscape connectivity may be a major determinant of the phase of spread of the reintroduced populations. Here, we deal with an example of a red deer (Cervus elaphus) translocation planned to enable the connection among existing isolated populations of the species in the Italian Alps. Our aim was to assess whether the analysis of landscape suitability and the simulation of dispersal of released individuals could shed light on the actual process of population spread. For these purposes, we adopted a modelling approach using radiotracking data to develop a habitat suitability map. On the basis of this map, we simulated the dispersal of the animals after release and we then compared the simulation results with the outcome of null models and with the observed population redistribution. The results suggest that the spread of the subpopulation was easier north-westward than southward. Taking into account landscape suitability, our simulations produced a reliable estimate of the ease of colonization of the valleys neighbouring the release-site and they allowed the identification and validation of a potential pathway for animal dispersal. The suitability model based on the monitoring of individuals in the earliest phase of establishment shed light on the spread of the population and on its potential connections with other deer subpopulations.  相似文献   

20.
Habitat availability—or how much habitat species can reach at the landscape scale—depends primarily on the percentage of native cover. However, attributes of landscape configuration such as the number, size and isolation of habitat patches may have complementary effects on habitat availability, with implications for the management of landscapes. Here, we determined whether, and at which percentages of native cover, the number, size and isolation of patches contribute for habitat availability. We quantified habitat availability in 325 landscapes spread across the state of Rio de Janeiro, in the Atlantic Forest hotspot, with either high (>50 %), intermediate (50–30 %), low (30–10 %) or very low (<10 %) percentage of native cover, and for six hypothetical species differing in inter-patch dispersal ability. Above 50 % of native cover, the percentage of cover per se was the only determinant of habitat availability, but below 50 % the attributes of landscape configuration also contributed for habitat availability. The number of patches had a negative effect on habitat availability in landscapes with 50–10 % of native cover, whereas patch size had a positive effect in landscapes with <10 % of native cover. The different species generally responded to the same set of landscape attributes, although to different extents, potentially facilitating decision making for conservation. In landscapes with >50 % of native cover, conservation actions are probably sufficient to guarantee habitat availability, whereas in the remaining landscapes additional restoration efforts are needed, especially to reconnect and/or enlarge remaining habitat patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号