首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
单位面积麦穗数是估算小麦产量的重要指标,对于作物表型参数计算、产量预测和大田管理都具有重要的意义。目前的研究均未以单位面积麦穗图像为研究对象,为准确获取单位面积麦穗数,该研究提出了基于改进YOLOX的单位面积麦穗检测方法,利用采样框直接实现单位面积麦穗计数。首先,设计了一种简单的单位面积采样框,通过训练角点检测网络识别采样框,以提取单位面积小麦区域;其次,针对麦穗检测中存在的目标密集和相互遮挡问题,在麦穗检测网络的特征融合层,采用上下文信息进行特征重组的上采样方法(Content-Aware ReAssembly of Features,CARAFE)代替YOLOX-m模型中的上采样算法,同时结合迭代注意力特征融合模块(iterative Attentional Feature Fusion,iAFF),增加对麦穗空间信息和语义信息的提取。试验结果表明,改进的YOLOX-m模型明显改善了对密集麦穗和遮挡麦穗的检测效果,其精确率、召回率、平均精确度和F1值分别为96.83%、91.29%、92.29%和93.97%,与SSD、CenterNet和原YOLOX-m模型相比,平均精确度分别提升了10.26、8.2和1.14个百分点。该研究方法能够直接对复杂大田场景下的单位面积麦穗进行准确检测和计数,为实际生产小麦产量预测中的麦穗智能化计数提供了一种方法参考。  相似文献   

2.
针对现有目标检测算法检测茶叶杂质精度低、速度慢的问题,该研究提出了一种基于改进YOLOv5的茶叶杂质检测算法。采用K-Means聚类算法对杂质真实框聚类,以获取适合茶叶杂质特征的锚框尺寸;通过在主干特征提取网络CSPDarkNet中引入前馈卷积注意力机制(Convolutional Block Attention Module,CBAM),将茶叶杂质输入特征图依次经过通道注意力模块和空间注意力模块,获得特征图通道维度和空间维度的关键特征;在颈部网络中添加空间金字塔池化(Spatial Pyramid Pooling,SPP)模块,融合并提取不同感受野的关键特征信息;将普通卷积替换成深度可分离卷积,增大小目标预测特征图的置信度损失权重,构建了轻量化的改进YOLOv5网络结构模型;分别制作了铁观音茶叶中混合有稻谷、瓜子壳、竹片和茶梗4种杂质的数据集并进行茶叶杂质检测试验。结果表明,改进的YOLOv5比常规YOLOv5在茶叶杂质检测中具有更高的置信度分数,且定位更为准确,未出现漏检现象。改进YOLOv5的多类别平均精度(Mean Average Precision,mAP)和每秒传输帧数(Frame Per Second,FPS)达到96.05%和62帧/s,均优于主流的目标检测算法,验证了改进算法的高效性和鲁棒性。该研究成果可为提升茶叶制作过程中小目标杂质检测精度与检测速度奠定基础。  相似文献   

3.
基于小麦群体图像的田间麦穗计数及产量预测方法   总被引:4,自引:11,他引:4  
在田间小麦测产时,需人工获取田间单位面积内的麦穗数和穗粒数,耗时耗力。为了快速测量小麦田间单位面积内的产量,该文利用特定装置以田间麦穗倾斜的方式获取田间麦穗群体图像,通过转换图像颜色空间RGB→HSI,提取饱和度S分量图像,然后把饱和度S分量图像转换成二值图像,再经细窄部位粘连去除算法进行初步分割,再由边界和区域的特征参数判断出粘连的麦穗图像,并利用基于凹点检测匹配连线的方法实现粘连麦穗的分割,进而识别出图像中的麦穗数量;通过计算图像中每个麦穗的面积像素点数并由预测公式得到每个麦穗的籽粒数,进而计算出每幅图像上所有麦穗的预测籽粒数,然后计算出0.25 m2区域内对应的4幅图像上的预测籽粒数;同时根据籽粒千粒质量数据,计算得到该区域内的产量信息。该文在识别3个品种田间麦穗单幅图像中麦穗数量的平均识别精度为91.63%,籽粒数的平均预测精度为90.73%;对3个品种0.25 m2区域的小麦麦穗数量、总籽粒数及产量预测的平均精度为93.83%、93.43%、93.49%。运用该文方法可以实现小麦田间单位面积内的产量信息自动测量。  相似文献   

4.
现有的目标检测算法检测茶叶嫩芽的精度较低,为提高茶叶嫩芽的检测精度,该研究提出一种基于改进YOLOv5s网络模型的茶叶嫩芽检测算法。该算法将骨干特征提取网络中的空间金字塔池化结构(spatial pyramid pooling-fast,SPPF)替换为空洞空间卷积池化金字塔结构(atrous spatial pyramid pooling,ASPP),增强模型对不同分辨率下目标的识别能力;针对茶叶嫩芽的小目标特征,在颈部网络中引入可加权重的双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),提高特征融合的效率,同时在颈部网络中的每个集中综合卷积模块(concentrated-comprehensive convolution block,C3)后添加卷积注意力模块(convolutional block attention module,CBAM)来提高模型关注小目标特征的能力。试验结果表明,改进后获得的Tea-YOLOv5s比原模型的准确率(precision,P)、召回率(recall,R)和平均精度值(mean average precision,mAP)分别高出4.4、0.5和4个百分点,且模型鲁棒性强,在多个场景下茶叶嫩芽的检测中具有更高的置信度分数。改进后的模型可为茶叶的产量估计和茶叶采摘机器人的嫩芽识别奠定基础。  相似文献   

5.
在香菇栽培中,需要评估其生长发育状态,以便调控栽培环境和采取适当的栽培措施。针对香菇生育期子实体外观特征变化不显著,机器自动采收时部分成熟期香菇子实体易误检和漏检的问题,该研究提出了一种基于改进YOLOv5的香菇子实体生育期识别方法。首先替换YOLOv5模型中上采样模块,采用一种包含上采样预测模块和特征重组模块的轻量级上采样模块;其次在YOLOv5l模型中添加小目标检测层,增加模型对香菇子实体生育期特征信息的提取,提高模型区分香菇生育期和识别小香菇的能力。试验结果表明,改进的 YOLOv5l 模型具有较好的检测能力,平均帧率为 45.25 帧/s,平均精确度均值为92.70%,与SSD、Faster-RCNN、Mushroom-YOLO和YOLOv5相比平均精确度均值分别提升22.6、28.38、6.8和2.5个百分点。该研究方法能够满足对香菇子实体不同生育期识别的精度与速度要求,为香菇子实体生育期识别提供了一种方法参考。  相似文献   

6.
为实现花椒簇的快速准确检测,该研究提出了一种基于改进YOLOv5s的花椒簇检测模型。首先,使用MBConv(MobileNetV3 block convolution,MBConv)模块和基于ReLU的轻量级自注意力机制优化了EfficientViT网络,用其代替YOLOv5s的主干,减少模型的参数量、增强模型对重要特征的表达能力。其次,在模型的训练过程中采用了OTA(optimal transport assignment)标签分配策略,优化训练中的标签分配结果。最后,使用WIoU损失函数对原损失函数CIoU进行替换,提高锚框的质量。试验结果表明,改进YOLOv5s模型的平均准确度均值(mean average precision,mAP)为97.3%、参数量为5.9 M、检测速度为131.6帧/s。相较于YOLOv5s模型,mAP提升1.9个百分点、参数量降低15.7%、检测速度提高14.5%。结果表明,该研究提出的改进YOLOv5s模型准确度高、参数量低、检测速度快,可实现对花椒簇的有效检测。  相似文献   

7.
为解决莲田环境下不同成熟期莲蓬的视觉感知问题,该研究提出了一种改进YOLOv5s的莲蓬成熟期检测方法。首先,通过在主干特征网络中引入BoT(bottleneck transformer)自注意力机制模块,构建融合整体与局部混合特征的映射结构,增强不同成熟期莲蓬的区分度;其次,采用高效交并比损失函数EIoU(efficient IoU)提高了边界框回归定位精度,提升模型的检测精度;再者,采用K-means++聚类算法优化初始锚框尺寸的计算方法,提高网络的收敛速度。试验结果表明,改进后YOLOv5s模型在测试集下的精确率P、召回率R、平均精度均值mAP分别为98.95%、97.00%、98.30%,平均检测时间为6.4ms,模型尺寸为13.4M。与YOLOv3、 YOLOv3-tiny、 YOLOv4-tiny、 YOLOv5s、YOLOv7检测模型对比,平均精度均值mAP分别提升0.2、1.8、1.5、0.5、0.9个百分点。基于建立的模型,该研究搭建了莲蓬成熟期视觉检测试验平台,将改进YOLOv5s模型部署在移动控制器Raspberry Pi 4B中,对4种距离范围下获取的莲蓬场景图像...  相似文献   

8.
为提高小麦病害检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8的轻量化小麦病害检测方法。首先,使用PP-LCNet模型替换YOLOv8网络结构的骨干网络,并在骨干网络层引入深度可分离卷积(depthwise separable convolution, DepthSepConv)结构,减少模型参数量,提升模型检测性能;其次,在颈部网络部分添加全局注意力机制(global attention mechanism, GAM)模块,强化特征中语义信息和位置信息,提高模型特征融合能力;然后,引入轻量级通用上采样内容感知重组(content-aware reassembly of features,CARAFE)模块,提高模型对重要特征的提取能力;最后,使用Wise-IoU(weighted interpolation of sequential evidence for intersection over union)边界损失函数代替原损失函数,提升网络边界框回归性能和对小目标病害的检测效果。试验结果表明,对于大田环境下所采集的小麦病害数据集,改进后模型的参数量及...  相似文献   

9.
为解决自然环境中苹果叶片病害检测场景复杂、小目标病害检测难度高以及模型参数大无法在移动端和嵌入式设备部署等问题,提出一种基于YOLOv5s的苹果叶片小目标病害轻量化检测方法。该方法将YOLOv5s的骨干网络更改为ShuffleNet v2轻量化网络,引入CBAM(convolutional block attention module)注意力模块使模型关注苹果叶片小目标病害,添加改进RFB-s(receptive field block-s)支路获取多尺度特征,提高苹果叶片病害检测精度,并更改边界框回归损失函数为SIoU(scylla-intersection over union),增强病斑定位能力。试验表明改进后的YOLOv5s模型在IoU大于0.5时的平均精度均值(mean average precision,mAP0.5)和每秒传输帧数(frame per second,FPS)分别达到90.6%和175帧/s,对小目标的平均检测准确率为38.2%,与基准模型YOLOv5s相比,其mAP0.5提升了0.8个百分点,参数量减少了6.17 MB,计算量减少了13.8 G,对小目标的检测准确率提高了3个百分点。改进后的YOLOv5s目标检测模型与Faster R-CNN、SSD、YOLOv5m、YOLOv7、YOLOv8和YOLOv5s目标检测模型相比,具有最小的参数量和计算量,对小目标病害叶斑病和锈病的检测准确率分别提高了1.4、4.1、0.5、5.7、3.5、3.9和1.5、4.3、1.2、2.1、4、2.6个百分点,该方法为真实自然环境下苹果叶片病害尤其是小目标病害的轻量化检测提供参考依据。  相似文献   

10.
针对目前日光温室损伤程度的统计方法普遍依靠人工目视导致的检测效率低、耗时长、精确度低等问题,该研究提出了一种基于改进YOLOv5s的日光温室损伤等级遥感影像检测模型。首先,采用轻量级MobileNetV3作为主干特征提取网络,减少模型的参数量;其次,利用轻量级的内容感知重组特征嵌入模块(content aware reassembly feature embedding,CARAFE)更新模型的上采样操作,增强特征信息的表达能力,并引入显式视觉中心块(explicit visual center block,EVCBlock)替换和更新颈部层,进一步提升检测精度;最后将目标边界框的原始回归损失函数替换为EIoU(efficient intersection over union)损失函数,提高模型的检测准确率。试验结果表明,与基准模型相比,改进后模型的参数数量和每秒浮点运算次数分别减少了17.91和15.19个百分点,准确率和平均精度均值分别提升了0.4和0.8个百分点;经过实地调查,该模型的平均识别准确率为84.00%,优于Faster R-CNN、SSD、Centernet、YOLOv3等经典目标检测算法。日光温室损伤等级快速识别方法可以快速检测日光温室的数量、损伤等级等信息,减少设施农业管理中的人力成本,为现代化设施农业的建设、管理和改造升级提供信息支持。  相似文献   

11.
为了快速精准地识别复杂果园环境下的葡萄目标,该研究基于YOLOv5s提出一种改进的葡萄检测模型(MRWYOLOv5s)。首先,为了减少模型参数量,采用轻量型网络MobileNetv3作为特征提取网络,并在MobileNetv3的bneck结构中嵌入坐标注意力模块(coordinate attention,CA)以加强网络的特征提取能力;其次,在颈部网络中引入RepVGG Block,融合多分支特征提升模型的检测精度,并利用RepVGG Block的结构重参数化进一步加快模型的推理速度;最后,采用基于动态非单调聚焦机制的损失(wise intersection over union loss,WIoU Loss)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的MRW-YOLOv5s模型参数量仅为7.56 M,在测试集上的平均精度均值(mean average precision,mAP)达到97.74%,相较于原YOLOv5s模型提升了2.32个百分点,平均每幅图片的检测时间为10.03 ms,比原YOLOv5s模型减少了6.13 ms。与主流的目标检测模型S...  相似文献   

12.
气候条件对冬小麦穗粒数的影响研究   总被引:13,自引:0,他引:13  
长期定位试验研究气候条件对冬小麦穗粒数的影响结果表明 ,冬小麦穗粒数主要受返青后 5日滑动平均气温首次≥ 4℃之日~雌雄蕊原基分化时 (即拔节开始天数 )的影响 ,并受其至挑旗期平均最低气温和至抽穗期日照时数的制约。各因素对冬小麦穗粒数的影响大小依次为天数 >日照时数 >平均最低气温。冬小麦高产栽培还应协调好穗数、穗粒数和千粒重三者之间的关系  相似文献   

13.
为实现对猕猴桃花朵的快速准确检测,该研究提出了一种基于改进YOLOv5s的猕猴桃花朵检测模型YOLOv5s_S_N_CB_CA,并通过对比试验进行了精度验证。在YOLOv5s基础上引入C3HB模块和交叉注意力(criss-cross atte ntion,CCA)模块增强特征提取能力,结合样本切分和加入负样本处理方法进一步提升模型精度。改进模型的检测精确率为85.21%,召回率为90%,模型大小为14.6 MB,交并比(intersection over union,IoU)为0.5下的均值平均精度(mAP0.5)为92.45%,比仅进行样本缩放处理的原始YOLOv5s提高了31.91个百分点,检测速度为35.47帧/s,比原始YOLOv5s提高了34.15%。使用改进模型对自然环境下不同天气、晴天不同时段光照强度下的猕猴桃花朵进行检测,结果表明模型检测晴天、阴天下猕猴桃花朵的mAP0.5分别为91.96%、91.15%,比原始YOLOv5s分别高出2.55、2.25个百分点;检测晴天9:00-11:00、15:00-17:00光强下猕猴桃花...  相似文献   

14.
开展基于作物模型的大面积作物产量估测研究,可以为及时掌握全球重点地区农作物的生产情况提供数据支撑.该研究以大豆为监测作物,选取中国吉林省和美国爱荷华州作为研究区域,基于DSSAT作物估产模型中的SOYGRO大豆模型,利用分辨率为0.5°×0.5°的生育期气象要素以及500 m×500 m绿色叶绿素植被指数,进行遥感数据...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号