首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The soil accumulation of metals and other elements as a result of human activities is a global concern. This investigation involves the use of commercially available extractions to estimate elemental abundance and availability. The need exists, especially in poor nations, to have cost-effective analytical capabilities to perform an initial screening of a soil resource to determine if a problem exists. Three extraction protocols are proposed: (i) an aqua regia digestion to estimate a baseline geochemistry, (ii) a pyrophosphate extraction to estimate elemental abundances associated with the soil organic fraction, and (iii) a water extraction to estimate the most available fraction. If the soil resource is impacted, then more refined and traditional methods are required to document the extent of impact for possible remediation. The three extraction protocols were applied to soils with little impact to illustrate the assessment potential for selected metals and p-block elements.  相似文献   

3.
Abstract

The kinetics and amount of phosphorus (P) release from five Italian soils with and without added P, were assessed by a successive soil ? extraction procedure using iron (Fe) oxide‐impregnated paper strips to characterize the residual effectiveness of added P. Following ? application to soils (0, 25, 50, and 100 mg kg‐1 soil), ? removed in the first extraction (strip ?), ? released in ten extractions (total P), and soil ? Sorption saturation (?saturat) increased for all soils. The rate of ? release decreased with successive strip extraction of soil [Strip P=a*(extraction number)b; R2 of 0.89–0.99], with the exponent b decreasing as the saturation of soil ? sorption capacity increased. Both initial ? and total ? released to strips increased with soil ? saturation.  相似文献   

4.
Abstract

Electrical conductivity (EC) methods were tested using combinations of surrogate irrigation (SI) waters, soil salinity levels, and soils ground or retaining aggregates. The EC varied in low-salinity soils saturated with SI; the sum of the baseline ECe and SI EC were not equal to the measured EC. The baseline ECe and the SI EC sum in the high‐salinity ground soils were not equal to the any measured ECs. Salt‐removal potential from gypsiferous soils was examined using multiple extractions from the same soil sample. Calcium concentrations remained consistent over 14 extractions, whereas Na concentrations decreased. The ECe decreased from more than 8 dS m?1 in the initial extraction, to approximately 4 dS m?1 by the 9th to 14th extraction. Multiple extraction data suggest that improved leaching will not lower soil ECs to less than approximately 4 dS m?1 because of gypsum and calcite reservoirs in the tested soils.  相似文献   

5.
Potassium (K) fixation and release in soil are important factors affecting K availability to plants and the utilization efficiency of K fertilizer. Three typical soils (red soil, yellow cinnamon soil, and alluvial soil) were collected from the middle and lower reaches of Yangtse River, China, to study the K-fixation and K-release characteristics of the normal and K-exhausted soil. Results showed that K fixation of added K in K-exhausted soils were significantly (P < 0.05) greater than that of the normal soils. There were significantly (P < 0.05) negative correlations among K-fixation capacity, concentration of soil-available K, and K+ saturation. Irrespective of soil K exhaustion, K fixation of added K was in the order of red soil > yellow cinnamon soil > alluvial soil, but the cumulative amount of K released from the three soils during successive extractions with 1.0 mol L?1 nitric acid (HNO3) was in the opposite order. The cumulative amounts of K released with 1.0 mol L?1 ammonium acetate (NH4OAc) and 1.0 mol L?1 HNO3 extraction increased with the increasing numbers of extractions. The K-releasing power of soil by successive extraction decreased gradually and finally became almost constant. The release of K was lower in K-exhausted soil than in normal soil. Overall, the information obtained in this study will be helpful in formulating more precise K fertilizer recommendations for certain soils.  相似文献   

6.
When enumerating Escherichia coli in serial dilution of soil using selective media, soils was found to exert an inhibitory effect on colony formation on the surface of the agar plates. The inhibitory effect did not appear to be due to either soil bacteria or soluble chemicals but to the soil particles themselves. No inhibition was observed when the cells were enumerated by the most probable number (MPN) method. Some alternative plating methods, such as pour-plating or overlaying, were effective in removing the inhibitory effect. Removal of soil particles by simple sedimentation was also effective in enhancing the enumeration efficiency. These observations would be practically important for enumerating bacteria in the soil environment.  相似文献   

7.
Abstract

Soil samples from different land use systems were collected before cropping (in spring) and after harvest (in fall) for organic phosphorus (P) extractions by 0.4M sodium hydroxide (NaOH) and characterization by 31P nuclear magnetic resonance spectroscopy. To prevent hydrolysis of organic P compounds prior to sample concentration, NaOH was removed from the NaOH soil extracts using a G‐25 Sephadex column. The 31P NMR spectra in the NaOH soil extracts showed the presence of glucose‐6 phosphate (up to 64%), glycerophosphate (up to 45%), nucleoside monophosphates (up to 91%), and polynucleotides (up to 58%) as the major forms of organic P in soils. The relative concentration of nucleoside monophosphates and polynucleotides decreased in some of the soils after harvest. The 31P NMR spectra of the extracts also revealed the presence of phosphoenolpyruvates, a previously unreported form of soil organic P.  相似文献   

8.
Abstract

Sequential extraction techniques have been used to make inferences about speciation of phosphorus (P) and to a lesser extent arsenic (As) in soils. However, sequential extraction studies on the less‐abundant group V element, antimony (Sb), are limited. In this work, a widely used P sequential extraction scheme was modified and used to extract P, As, and Sb from two acidic soils from the Macleay River floodplain, NSW, that were enriched with Sb (26.9 and 23.0 mg kg?1). An ammonium oxalate–oxalic acid step was included in the extraction sequence to dissolve the noncrystalline iron (Fe) and aluminium (Al) hydroxide phase. It extracted 30 to 47% of Sb, indicating the importance of this fraction, which may be mobilized in the floodplain by acid sulfate soil processes and periodic waterlogging. The original method overestimated P, As, and Sb in the residual fraction (30–71%). Relative efficiency values of extracts for P, As, and Sb were compared, and inferences about phase distributions were made. The results suggest some potential in using extractions to assess bioavailability of Sb in soil.  相似文献   

9.
The community structure of methanogenic archaea is relatively stable,i.e.,it is sustained at a high abundance with minimal changes in composition,in paddy field soils irrespective of submergence and drainage.In contrast,the abundance in non-methanogenic oxic soils is much lower than that in paddy field soils.This study aimed to describe methanogenic archaeal community development following the long-term submergence of non-methanogenic oxic upland field soils in pot and field experiments.In the pot experiment,a soil sample obtained from an upland field was incubated under submerged conditions for 275 d.Soil samples periodically collected were subjected to culture-dependent most probable number(MPN)enumeration,polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE)analysis of archaeal 16 S r RNA gene,and quantitative PCR analysis of the methyl-coenzyme M reductase alpha subunit gene(mcr A)of methanogenic archaea.The abundance of methanogenic archaea increased from 102 to 103 cells g-1 dry soil and 104 to 107 copies of mcr A gene g-1 dry soil after submergence.Although no methanogenic archaeon was detected prior to incubation by the DGGE analysis,members from Methanocellales,Methanosarcinaceae,and Methanosaetaceae proliferated in the soils,and the community structure was relatively stable once established.In the field experiment,the number of viable methanogenic archaea in a rice paddy field converted from meadow(reclaimed paddy field)was monitored by MPN enumeration over five annual cycles of field operations.Viability was also determined simultaneously in a paddy field where the plow layer soil from a farmer’s paddy field was dressed onto the meadow(dressed paddy field)and an upland crop field converted from the meadow(reclaimed upland field).The number of viable methanogenic archaea in the reclaimed paddy field was below the detection limit before the first cultivation of rice and in the reclaimed upland field.Then,the number gradually increased over five years and finally reached 103–104 cells g-1 dry soil,which was comparable to that in the dressed paddy field.These findings showed that the low abundance of autochthonous methanogenic archaea in the non-methanogenic oxic upland field soils steadily proliferated,and the community structure was developed following repeated and long-term submergence.These results suggest that habitats suitable for methanogenic archaea were established in soil following repeated and long-term submergence.  相似文献   

10.
Abstract

The chemical characterization of soil phosphorus (P) desorbed by anion and cation exchange membranes is of major importance to better understand which P forms are available to plants in short‐ and long‐term time periods. Two distinct soils, one acidic and one calcareous, were analyzed for P using two extraction procedures with mixed anion and cation exchange membranes. The short‐term (ST) experiment evaluated the effect of increasing the extraction periods up to 24 h, whereas the long‐term (LT) experiment consisted of a sequential extraction procedure using up to seven successive 24‐h extractions. In both experiments, the Chang and Jackson inorganic P fractionation methodology was carried out after each extraction treatment, and each treatment consisted of three replicates. Data were statistically analyzed by ANOVA and nonlinear regressions. In the ST experiment, increasing the extraction time increased the extracted P according to an asymptotic relationship (y=c?ab x ). Extracted P proceeded from the most labile fractions in the acidic soil. In calcareous soils, calcium phosphates may also contribute for extractable P. The LT experiment revealed that a single extraction, regardless of that extraction method, cannot predict the long‐term capacity of soils to supply P to the plants. An exponential relationship (P=a×n b ) was found between extracted P and the extraction number. Desorbed P proceeded from the most labile fractions in the acidic soil. However, in calcareous soils, some precaution is needed when considering the biological meaning of the results, because the occluded Fe phosphates also revealed significant decreases, probably due to the redox conditions in which these long extractions are performed.  相似文献   

11.
《Applied soil ecology》2011,47(3):450-456
Biochar holds promise as an amendment for soil quality improvement and sequestration of atmospheric carbon dioxide. However, knowledge of how biochar influences soil properties, especially soil microorganisms, is limited. Three separate studies were conducted, with two studies using Plantago lanceolata as the AMF hosting plant, and a third being conducted in the field. Each of the three studies employed a different soil type. Furthermore, a total of five different biochars, and ten different biochar application rates, were used across the three experiments. All experiments had the goal to examine biochar influences on arbuscular mycorrhizal fungal (AMF) abundance in roots and AMF abundance (hyphal lengths) in soils. AMF abundance was either decreased or remained unchanged across all biochar treatments. When AMF abundances decreased, significant changes in soil properties, primarily in soil P availability, were observed. Application of large quantities (2.0% and 4.0%, w/w) of a lodgepole pine biochar, led to significant declines in AMF abundance in roots of 58% and 73% respectively, but not in soils. These declines in AMF abundance were accompanied by significant declines (28% and 34%) in soil P availability. After addition of a peanut shell biochar produced at 360 °C, P increased by 101% while AMF root colonization and extraradical hyphal lengths deceased by 74% and 95% respectively. Field application of mango wood biochar at rates of 23.2 and 116.1 t C ha−1 increased P availabilities by 163% and 208% respectively and decreased AMF abundances in soils by 43% and 77%. These findings may have implications for soil management where the goal is to increase the services provided by AMF.  相似文献   

12.
In this study, we compared the differences of bacterial abundance and diversity between rhizosphere and surrounding bulk soils under soil salinization and petroleum contamination in the Yellow River Delta on a 110-km-distance scale. In comparison with bulk soils, rhizosphere soils were mainly characterized by lower salinity and higher water content in saline soils. For bacterial abundance, the numbers of total bacteria and hydrocarbon degraders were significantly higher in rhizosphere soils than those in bulk soils. Although there was no significant difference in total petroleum hydrocarbon (TPH) concentration between the two types of soils, TPH had distinctly different effects on bacterial abundance in rhizosphere and bulk soils. TPH concentration was the major determinant of total bacterial abundance and had positive effects on abundances of hydrocarbon degraders. However, the abundances of total bacteria and hydrocarbon degraders in bulk soils were primarily determined by soil salinity and water content. Great abundance of rhizosphere bacteria suggested that plant roots could alleviate the stresses from soil salinization and provide more favorable microhabitats for bacterial growth. TPH had positive effects on bacterial diversity of both rhizosphere and bulk soils. Our results support the view that petroleum in the environments functions as both toxic chemicals and carbon sources to soil bacteria. Great abundance and diversity of total bacteria in plant rhizospheres would potentially improve the roles of bacteria in maintaining ecosystem functioning in the degraded ecosystems. Our results would improve our understanding of the relationships between rhizosphere effects and multiple environmental stresses that control the development of bacterial community in fragile anthropologically-affected ecosystems.  相似文献   

13.
Abstract

Viruses are the most abundant biological entities in marine and freshwater environments. Many studies have shown the ecological importance of viruses in the primary production and microbial food web in aquatic environments. However, no studies have examined viral abundance in the floodwater of paddy fields. The present study surveyed the abundance of virus-like particles (VLPs) and bacteria in the floodwater of a Japanese paddy field under a long-term fertilizer trial since 1925 during the rice cultivation period. Virus-like particles and bacterial abundances in the floodwater ranged from 5.6 × 106 to 1.2 × 109 VLPs mL?1 and from 9.2 × 105 to 4.3 × 108 cells mL?1 with mean abundances of 1.5 × 108 VLPs mL?1 and 5.1 × 107 cells mL?1, respectively, and increased with an increase in the turbidity of the floodwater with suspended particles. The magnitude of seasonal variation was more than 50-fold for VLP abundance and 100-fold for bacterial abundance. The virus-to-bacterium ratios fluctuated over the rice cultivation period, ranging from 0.11 to 72 and their increase correlated with the decrease in bacterial abundance. Our results suggest that viral abundance in the floodwater of paddy fields is larger than in natural marine and freshwater environments.  相似文献   

14.
Addition of organic amendments can alleviate the level of aluminum (Al) phytotoxicity in acid soils by affecting the nature and quantity of Al species. This study evaluated the transformation of Al in an acidic sandy Alaquod soil amended with composts (10 and 50 g kg?1 soil of yard waste, yard + municipal waste, GreenEdge®, and synthetic humic acid) based on soil Al fractionation by single and sequential extractions. Though the organic compost amendments increased total Al in soil, they alleviated Al potential toxicity in acidic soil by increasing soil pH and converting exchangeable Al to organically bound and other noncrystalline fractions, stressing the benefits of amending composts to improve acid soil fertility. The single‐extraction method appears to be more reliable for exchangeable Al than sequential extraction because of the use of nonbuffered pH extract solution.  相似文献   

15.
Soil moisture and nitrogen (N) are two important factors influencing N2O emissions and the growth of microorganisms. Here, we carried out a microcosm experiment to evaluate effects of soil moisture level and N fertilizer type on N2O emissions and abundances and composition of associated microbial communities in the two typical arable soils. The abundances and community composition of functional microbes involved in nitrification and denitrification were determined via quantitative PCR (qPCR) and terminal restriction length fragment polymorphism (T-RFLP), respectively. Results showed that N2O production was higher at 90% water-filled pore (WFPS) than at 50% WFPS. The N2O emissions in the two soils amended with ammonium were higher than those amended with nitrate, especially at relatively high moisture level. In both soils, increased soil moisture stimulated the growth of ammonia-oxidizing bacteria (AOB) and nitrite reducer (nirK). Ammonium fertilizer treatment increased the population size of AOB and nirK genes in the alluvial soil, while reduced the abundances of ammonia-oxidizing archaea (AOA) and denitrifiers (nirK and nosZ) in the red soil. Nitrate addition had a negative effect on AOA abundance in the red soil. Total N2O emissions were positively correlated to AOB abundance, but not to other functional genes in the two soils. Changed soil moisture significantly affected AOA rather than AOB community composition in both soils. The way and extent of N fertilizers impacted on nitrifier and denitrifier community composition varied with N form and soil type. These results indicate that N2O emissions and the succession of nitrifying and denitrifying communities are selectively affected by soil moisture and N fertilizer form in the two contrasting types of soil.  相似文献   

16.
Abstract

Labile pools of Cu and Zn were measured on two calcareous soils from Saudi Arabia, using successive extraction with DTPA, and successive cropping followed by extraction with DTPA after cropping. The examined soils differed in their ability to supply Cu and Zn. The first DTPA extraction removed a major proportion of the labile pool, particularly in the sandy soil. The two soils showed a general decrease in extractable Cu and Zn with progressive extractions, with DTPA extractable Cu declining more rapidly than Zn. DTPA extractable Cu and Zn determined after cropping were highly correlated with DTPA extractable Cu and Zn values obtained after successive extractions. The results gave evidence on both the contribution of element dissolution from insoluble forms with progressive extraction or cropping, and the usefulness of the DTPA extractant for monitoring the availability of Cu and Zn in these calcareous soils.  相似文献   

17.
Dissolved organic matter(DOM) in soil plays an important role in the fate and transport of contaminants.It is typically composed of many compounds,but the effect of different extraction factors on the abundance of different DOM components is unknown.In this study,DOM was extracted from three soils(paddy field,vegetable field and forest soils) with various extraction time,liquid to solid ratios(LSRs),extractant types,and extractant concentrations.The LSR had a significant effect on DOM content,which increased by 0.5–4.0 times among the three soils when LSR increased from 2:1 to 10:1(P 0.05).Dissolved organic matter content increased by 4%–53% when extraction time increased from 10 to 300 min(P 0.05).Extractant concentration had different effects on DOM content depending on the extractant.Higher concentrations of KCl promoted DOM extraction,while higher concentrations of KH_2PO_4 inhibited DOM extraction.Therefore,grey relational analysis was used to further quantitatively evaluate the effect of extraction time,LSR,and extractant concentration on DOM,using KCl as an extractant.For the paddy field and forest soils,the impact of these three factors on DOM extraction efficiency was in the following order:KCl concentration LSR extraction time.However,the effect was different for the vegetable field soil:LSR extraction time KCl concentration.Taking all these factors into account,1.50 mol L~(-1) KCl and an LSR of 10:1 with a shaking time of 300 min was recommended as the most appropriate method for soil DOM extraction.  相似文献   

18.
We undertook what we believe to be a unique survey of the natural abundances of 13C and 15N in urban soils and plants in Karlsruhe (Germany), a European city of average size. We found broad patterns of these abundances in both soils and plants, which reflected geology and land use. In contrast with studies on smaller areas (showing the direct effect of human activities), our study first determined the extent to which the abundances correlated with land use or underlying geology and then assessed how we could further test such relationships. The spatial pattern of δ13C in surface soil correlated with that of the underlying parent material; construction activities superimposed a secondary signal. Maize cultivation was a source of less negative soil δ13C, whereas the C3 vegetation is a source of more negative soil δ13C. There was a footprint of less negative plant δ13C in the industrial and port areas; plant δ13C downwind of the city was less negative than upwind, which might relate to atmospheric pollution from the port area or to differences in soil properties. There was no significant effect of wind direction or geology on soil or plant δ15N, which was correlated mainly with land use. The largest soil δ15N was under agriculture and the smallest under woodland. The abundance of 15N in inner-urban soil and plants was intermediate between those of agriculture and forests. This study represents a major advance in the use of stable isotope geochemistry in understanding urban environments.  相似文献   

19.
A plot experiment was conducted to understand the response of the soil bacterial community to manure application rates and the relationship between the composition of bacterial community and soil chemical properties. The experiment involved gradients of manure combined with chemical fertilizer in red soils from granite, red sandstone and red clay between 2013 and 2015. The soil bacterial community composition was significantly affected by different manure rates. The relative abundances of Burkholderiaceae, Micrococcaceae and Streptomycetaceae were higher at low manure rates (1.75 to 3.5 t·ha?1·yr.?1), whereas the relative abundance of Xanthomonadaceae was higher at high manure rates (7 to 28 t·ha?1·yr.?1). Manure application increased the bacterial abundance but decreased the diversity when its rates were higher than 7, 14 and 14 t·ha?1·yr.?1 in soils from granite, red sandstone and red clay, respectively. Redundancy analysis revealed that soils from different parent materials had different bacterial communities with soil pH and available phosphorus (AP) being determinant factors. The peanut yields exhibited significantly positive correlations with the bacterial diversity in soil, implying the importance of bacterial diversity for soil productivity. Soil AP was correlated with bacterial diversity by parabolic equations and probably AP may be an indicator of declining bacterial diversity at high manure rates. The critical value were 39.71, 65.75 and 90.16 mg·kg?1 in soils from granite, red sandstone and red clay, respectively. This study suggests the importance of maintaining soil bacterial diversity under moderate and balanced applications of manure.  相似文献   

20.
不同浸提剂以及保存方法对土壤矿质氮测定的影响   总被引:4,自引:0,他引:4  
为探明影响土壤矿质氮测定的因素,从棕壤、潮土和黄棕壤3种类型土壤中各采集10个经不同施肥处理的土样,用连续流动注射分析仪测定经不同浸提剂以及不同保存方法处理后土样的NO3-N和NH4-N含量。结果表明:不论是棕壤、潮土还是黄棕壤,2 mol.L?1 KCl提取硝态氮的数量与0.01 mol.L?1 CaCl2提取的数量相关性均达到P<0.01水平;3种土壤各个土样硝态氮含量的测定值多表现为新鲜土<冷冻土<风干土;将鲜样浸提后作短时间的冷冻处理,其效果与鲜样24 h内的测定结果较接近;土样不同保存方式以及浸提液的保存时间对3种土壤NH4-N测定结果的影响规律不及NO3-N明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号