首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis that temporal separation of resource use between trees and crops minimises competition for wa ter in agroforestry systems during the cropping period and increases utilisation of annual rainfall was tested at Machakos in semi-arid Kenya. Four popular tree species were chosen to provide a range of leafing phenologies. These included Melia volkensii, which sheds its leaves twice a year, Senna spectabilis and Gliricidia sepium, which shed their leaves during the long dry season, and the evergreen Croton megalocarpus. All four species retained their foliage during the long rains, offering little scope for temporal separation of resource use. Maize (Zea mays) yields were reduced by 50–70% in the agroforestry treatments. Reductions in crop yield were strongly correlated with tree growth (r 2 =0.94) and available soil moisture (r 2 =0.88). G. sepium remained leafless for much of the short rains despite the presence of available soil water, and was least competitive with the bean crops (Phaseolus vulgaris) grown at this time. Reductions in crop yield in the agroforestry treatments were closely correlated with tree growth (r 2 =0.99) and available moisture (r 2 =0.79) during the 1996/97 short rains (158 mm), but not during the much wetter 1997/98 season (608 mm). Shading by trees or shade nets reduced crop yield, in contrast to previous studies in the semi-arid tropics. Low off-season rainfall during the study period (9% of annual rainfall compared to the long-term average of 20%) limited the potential for temporal separation of growing periods. Where the prospects for temporal or spatial separation in resource use are limited, shoot and/or root pruning may be necessary to manage competition between trees and crops. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Fodder trees are integral part of farming system in the hills of Nepal, but designed agroforestry interventions targeted to particular trees and crops are not widely available. This paper examines the joint productivity of an agroforestry practice in which Raikhanim (Ficus semicordata) is planted in a maize (Zea mays) and finger-millet (Eleusine coracana) cropping system at Keware Bhanjyang of the western mid-hills of Nepal. Raikhanim seedlings were planted in a row on terrace risers 2, 4 and 6 m apart in ordinary farming conditions, in a randomized block design with three replications. Maize and finger-millet were grown on the terraces as intercrops with a control plot without trees on risers in each replicate. Growth parameters of Raikhanim—height, diameter at 30 cm above ground (D30) and survival rate—were recorded annually in December until trees were lopped for fodder biomass, and crop yields were measured to determine tree-crop interaction effects. Tree height and D30 differed significantly between spacings until trees reached the lopping stage 3½ years after planting, with the highest growth in 4 m spacing. Tree lopping checked the height growth but the diameter growth continued to increase and differed among spacings after lopping. Fodder biomass increased with tree age and was highest under 4 m spacing (7.294 t/ha) followed by 6 m (5.256 t/ha) and 2 m (3.84 t/ha). Finger-millet yield in the experimental plots decreased with tree age due to shading effects, while maize yield was not substantially affected. Among spacings, control plots produced the highest finger-millet yield (1,624 kg/ha) while the 6 m spacing produced the highest maize yield (2,463 kg/ha). It is concluded that planting Raikhanim at 6 m intervals will produce additional fodder without significant effect on maize yield and only a moderate effect on finger-millet yield. The agroforestry practice of planting fodder trees on under-utilised terrace risers is a viable option for mid-hill farmers for simultaneous production of fodder and cereal crops while sustaining the hill farming system.  相似文献   

3.
Greater organic matter inputs in agroforestry systems contribute to the long-term storage of carbon (C) in the soil, and the use of simulation models provides an opportunity to evaluate the dynamics of the long-term trends of soil organic carbon (SOC) stocks in these systems. The objective of this study was to apply the Century model to evaluate the long-term effect of agroforestry alley crop and sole crop land management practices on SOC stocks and soil C fractions. This study also evaluated the accuracy between measured field data obtained from a 19-year old tropical (TROP) and 13-year old temperate (TMPRT) alley crop and their respective sole cropping systems and simulated values of SOC. Results showed that upon initiation of the TROP and TMPRT alley cropping systems, levels of SOC increased steadily over a ~100 year period. However, the sole cropping systems in both tropical and temperate biomes showed a decline in SOC. The active and passive C fractions increased in the TROP agroforestry system, however, in the TMPRT agroforestry system the active and slow fractions increased. The input of organic matter in the TROP and TMPRT agroforestry systems were 83 and 34% greater, respectively, compared to the sole crops, which likely contributed to the increased SOC stock and the C fractions in the alley crops over the 100 year period. Century accurately evaluated levels of SOC in the TROP (r 2 = 0.94; RMSE = 226 g m−2) and TMPRT (r 2 = 0.94; RMSE = 261 g m−2) alley crops, and in the TROP (r 2 = 0.82; RMSE = 101 g m−2) and TMPRT (r 2 = 0.83; RMSE = 64 g m−2) sole crops. Century underestimated simulated values in the alley cropping systems compared to measured values due to the inability of the model to account for changes in soil bulk density with increasing organic matter inputs with tree age from prunings or litterfall.  相似文献   

4.
Effects of tree shading on crop within agroforestry system in the oasis regions or under irrigation agriculture are poorly understood. Objective was to determine maize yield variation and its reasons when tall Poplar trees (Populus gansuensis) were grown in western and eastern margins of the crop field in Hexi Corridor desert oasis in northwestern China. Maize growing among the 50 m alley space were divided into five regions, including shading region in western side (W-S), non-shading region in western side (W-NS), middle region (M), shading region in eastern side (E-S) and non-shading region in eastern side (E-NS), for all measurements. Measurements of leaf area expansion were carried from seeding to flowering stage, photosynthetic physiological parameters and microclimate characteristics were measured at booting stage, grain yield and other harvest parameters were obtained at harvest time. We found that tree shading reduced the crop yield by 27 and 22% in western and eastern regions, respectively, and also, mean crop yield for western side was 23% lower than eastern side. The direct reason of yield variation was transpiration rate (E) variation at booting stage, that is, maize which had higher daily mean E would obtained higher yield. Moreover, changes of incident photosynthetically active radiation (PARi), air temperature (T a) and CO2 concentration (C a) were the basic reasons of yield variation among different regions. Because higher PARi, higher T a and lower C a, which caused by the tree shading, would all led to higher E and finally higher crop yield.  相似文献   

5.
The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0–50 cm depth were significantly higher in the low (91.8 ± 3.1 Mg C ha?1) and high (87.6 ± 3.3 Mg C ha?1) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0 ± 2.4 Mg C ha?1) and traditional agroforestry (68.4 ± 4.9 Mg C ha?1) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7 ± 2.3 Mg C ha?1 and between oil palm: 10.6 ± 0.5 Mg C ha?1) and the strip area (17.0 ± 1.4 Mg C ha?1) at 0–5 cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6–8.3 Mg C ha?1 year?1) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.  相似文献   

6.
A 26 years old agroforestry plantation consisting of four multipurpose tree species (MPTs) (Michelia oblonga Wall, Parkia roxburghii G. Don, Alnus nepalensis D. Don, and Pinus kesiya Royle ex-Gordon) maintained at ICAR Research Complex, Umiam, Meghalaya, India were compared with a control plot (without tree plantation) for soil fertility status and CO2 efflux. The presence of trees improved all the physico-chemical and microbial biomass parameters studied in this experiment. Relative to control, soils under MPTs showed significant increases of 17 % soil organic carbon, 26 % available nitrogen (AN), 28 % phosphorus (AP), 50 % potassium (AK), 65 % mean weight diameter (MWD) of aggregates, 21 % moisture and 34 % soil microbial biomass carbon (MBC) while reducing the mean bulk density (7 %). However, these parameters significantly differed among the tree species i.e., soils under A. nepalensis and M. oblonga had higher values of these attributes except bulk density, than under other species. Irrespective of treatments, the values of all these attributes were higher in surface soils while bulk density was highest in subsurface (60–75 cm). Cumulative CO2 efflux under MPTs was significantly higher (15 %) and ranged from 1.71 g 100 g?1 (M. oblonga) to 2.01 g 100 g?1 (A. nepalensis) compared to control at 150 days of incubation. In all the treatments, increment in temperature increased the oxidation of soil organic matter, thereby increased the cumulative CO2 efflux from soils. Of the tree species, with increment in temperature, A. nepalensis recorded more CO2 efflux (2.50 g 100 g?1) than other MPTs but the per cent increase was more in control plot. P. kesiya and A. nepalensis recorded highest activation energy (59.1 and 39 kJ mol?1, respectively). Net organic carbon sequestered in soil was highest under A. nepalensis (25.7 g kg?1) followed by M. oblonga (19.3 g kg?1), whereas control showed the lowest values. Amount of net carbon stored in the soil had significant and positive correlation with MBC (r = 0.706**), MWD (r = 0.636*), and AN (r = 0.825**).  相似文献   

7.
Field experiments were conducted on a tropical Alfisol at Ibadan, Nigeria, to evaluate the effects on soil moisture and crop yields of three agroforestry systems. Effects of agroforestry treatments involving two perennial shrubs (Leucaena leucocephala and Gliricidia sepium), each at 2-m and 4-m row spacings, were compared with no-till and plow-till systems of seedbed preparation. Measurements were made for soil properties, runoff and erosion, nutrient losses in runoff, and crop growth and yield for a uniform maize (Zea mays) and cowpea (Vigna unguiculata) rotation. All of the six plots, each measuring 70 × 10m, were established on a natural slope of about 7%. Alterations in soil properties and effects on crop growth were evaluated for six consecutive years from 1982 through 1987.Seed germination and seedling establishment of Leucaena hedgerows were satisfactory while establishment of Gliricidia from stem cuttings was unsatisfactory. Maize germination and crop stand were normal while that of cowpea were suppressed by both Leucaena and Gliricidia. Maize growth and yield were suppressed only in the vicinity of hedgerows. Maize grain yield in agroforestry systems averaged about 10 percent lower than that of the control. In contrast with maize, agroforestry systems drastically suppressed cowpea grain yield. The average cowpea yield in agroforestry systems was 30 to 50% of the control. Regardless of the mangement system, grain yields declined over time at the rate of 340 and 96 kg ha–1yr–1 for maize and cowpea, respectively.Hedgerows of Leucaena and Gliricidia acted as windbreaks. Consequently, soil moisture content in the top 0–5 cm layer in agroforestry systems was generally higher than that in the control during both wet and dry seasons.  相似文献   

8.
Increasingly, plantations for food, fiber and wood, are necessary to provide a growing world population. Agroforestry systems become more and more important, however these systems usually develop in marginal conditions, limited land, restricted funding, occasional technical support and above this, there is limited documentation and evaluation of innovated traditional systems in indigenous and small-scale contexts, which challenge forest scientists. The aim of this research was to assess the quality of trees in plots managed by Mayan indigenous farmers who planted agroforestry systems with fine wood species to increase the value of land and labor in localities with highly-marginal social conditions in Northern Chiapas, México. Twenty oldest plots were selected within a group of previously established plots (eight with improved fallow, six with shaded coffee and six with maize crop associated to trees) where forest inventories were carried out in nested 100 and 1000 m2-circular plots. In all plots tree diameter, height, quality indicators and the incidence of the pest Hypsipyla grandella were measured. Trees in the maize-associated-to-trees system are favored by the practices applied to annual crop during the first 3rd–5th years, a period in which they are free from the interference of other trees and benefit from favorable light conditions, weeding and a higher intensive care from the farmer while shaded coffee and improved fallow have higher tree densities and a more closed canopy condition than maize associated to trees. In consequence, maize associated to trees shows 68.1 % stems with good form; shaded coffee and improved fallow averaged 40.5 and 39.7 % of good quality stems, respectively; improved fallow exhibited a greater number of suppressed trees than shaded coffee and maize associated to trees (p < 0.0001). In addition, maize associated to trees showed the highest proportion of trees with commercial value with 56.9 %, followed by improved fallow with 28.2 %, and shaded coffee with 11.8 % (p < 0.0001); the rest were trees with domestic uses. However, maize associated to trees significantly result with high incidence of H. grandella probably due to the crown exposure. Timber volume averaged 92.9 ± 68.9 m3 for improved fallow, 77.3 ± 24.8 m3 for shaded coffee, and 52.5 ± 39.7 m3 for maize associated to trees. The value of the fine wood represents increment in income, variety of products and self-employment for households. Nonetheless, improved fallow and coffee plantations might benefit from the elimination of competitors from larger trees to favor promising immature ones and pruning, while maize crop associated to trees might benefit from opportune pruning for controlling the stem borer as well as tree replacement to achieve long term replacement and harvesting.  相似文献   

9.
Enset (Ensete ventricosum), commonly known as false banana, is a large thick, single-stemmed, perennial herbaceous banana-like plant growing in the wild of sub-Sahara Africa, Madagascar and parts of Asia. In Ethiopia it has been domesticated and serves as a food plant. While the productivity and management of enset for food (pseudostem and corm) has been studied, little attention has been given to total biomass production and associated carbon sequestration. The objective of this study was to develop and evaluate allometric models for estimating above and belowground biomass and organic matter contents of enset grown in indigenous agroforestry systems in Rift Valley escarpment of south-eastern Ethiopia. Biomass harvesting of 40 plants was carried out at altitudes from 1900 to 2400 m.a.s.l. The mean plant dry weight was 9.4 ± 0.84 kg and organic matter content 94 %. Pseudostem biomass accounted for highest (64 %) of total biomass, followed by corm (24 %) and foliage (12 %). Basal diameter (d 10) was the best predictor variable for total and all biomass components (Spearman r = 0.775–0.980, p < 0.01). The power model using d 10 and height (H) (Y = 0.0007d 10 2.571 H 0.101; R 2 = 0.91) was found to be the best performing model (highest ranking over six good-of-fit statistics) for predicting total biomass. Model performance decreased in the order pseudostem > corm > foliage biomass. The models presented can be used to accurately predict biomass and organic matter of enset in the agroforestry systems of Rift Valley escarpments Ethiopia.  相似文献   

10.
Shade trees play an important role within agroforestry systems by influencing radiation and wind regimes as well as nutrient and hydrological cycling. However, there is a lack of quantitative assessments of their functions. One of the reasons is the rare information on structural characteristics of shade tree species. Therefore, the aim of this study is to provide basic information on the structure of frequently used shade tree species for the implementation of models simulating the ecosystem processes in agroforestry systems. The investigation of the shade trees was conducted at two cacao agroforestry sites on Sulawesi, Indonesia. The measurements of the main structural parameters: diameter at breast height, tree height, trunk height, crown length and crown radius were carried out for the shade tree species Aleurites moluccana, Cocos nucifera and Gliricidia sepium. For data collection, the National Forest Inventory Field Manual Template by FAO (2004) was applied. Based on this information allometric functions were derived for the correspondent shade tree species. The best significant relationships were obtained for the height-crown length relationship of the dicotyledonous tree species’ A. moluccana and G. sepium with a coefficient of determination r² = 0.925 and r² = 0.738, respectively, and the height-crown length relationship of the monocotyledonous palm C. nucifera with r² = 0.663. The transferability tests ‘analysis of covariance’ and ‘homogeneity of slopes’ have shown that the obtained allometric functions are also applicable to other cacao agroforestry systems of the region.  相似文献   

11.
Phosphorus (P) in soil exists both in organic and inorganic forms and their relative abundance could determine P supplying capacity of soil. Differential input of exogenous and plant-mediated phosphorus and carbon in soil under different land-uses could influence P availability and fertilizer P management. While the effect of land-use on soil organic carbon (SOC) is fairly well-documented, its effect on soil P fractions is relatively less known. We investigated the effect of different land-uses including rice–wheat, maize–wheat, cotton–wheat cropping systems and poplar-based agroforestry systems on soil P fractions and organic carbon accrual in soils. Total P concentration was the highest under agroforestry (569 mg P kg?1) and the lowest under maize–wheat (449 mg P kg?1) cropping systems. On the contrary, soils under rice–wheat had significantly higher available P concentration than the agroforestry systems, probably because of higher fertilizer P application in rice–wheat and prevailing wetland conditions during rice growth. In soils under sole cropping systems viz. rice–wheat, maize–wheat and cotton–wheat, inorganic P was the dominant fraction and accounted for 92.2–94.6% of total P. However, the soils under agroforestry had smaller proportion (73%) of total P existing as inorganic P. Among soil P fractions, water soluble inorganic P (0.13–0.26%) represented the smallest proportion inorganic P in soils under different land-uses. Agroforestry showed significantly (p < 0.05) higher concentrations of SOC than the other land-uses. Soil organic C was significantly correlated with soil P fractions. It was concluded that poplar-based agroforestry systems besides leading to C accrual in soil result in build-up of organic P and the P supplying capacity of soil.  相似文献   

12.
We usually have only limited knowledge about the economic consequences of land-use decisions, thus they are uncertain. We analyze the implications of this uncertainty on conservation payments (CP) to preserve wildlife-friendly shade coffee production in southwest Ecuador, when conversion to maize is the most profitable alternative. Our objective is twofold: First, we analyze the consequences of applying Stochastic Dominance (SD) to derive CP, an approach making only minimal assumptions about the preferences of farmers. Second, we investigate the effects of land-use diversification to reduce CP by allowing for shade coffee on part of a landholding, and maize production on what remains. CP derived by SD turned out to be at least twice the amount calculated by an alternative method which maximizes a concave utility function—US$ 166 to US$ 294 ha?1 year?1 instead of US$ 86 ha?1 year?1. Given this result, we doubt that the assumptions underlying SD are reasonable for farmers, who are known to be risk-averse. Allowing for land-use diversification has a significant impact on CP. The optimal portfolio share of shade coffee is 27 % and for maize 73 % for moderately risk-averse farmers—without any CP. A larger share of shade coffee is preferable for strongly risk-averse farmers—51 and 49 % maize. The amount of CP necessary to encourage the expansion of shade coffee to 75 % is US$ 40 ha?1 year?1 (for moderately risk-averse) and US$ 19 ha?1 year?1 (for strongly risk-averse farmers). Stimulating diversification may thus help to significantly reduce CP necessary to preserve less profitable agroforestry options.  相似文献   

13.
This study tested the hypothesis that incorporation of green leaf manure (GLM) from leguminous trees into agroforestry systems may provide a substitute for inorganic N fertilisers to enhance crop growth and yield. Temporal and spatial changes in soil nitrogen availability and use were monitored for various cropping systems in southern Malawi. These included Gliricidia sepium (Jacq.) Walp. trees intercropped with maize (Zea mays L.), with and without pigeonpea (Cajanus cajan L.), sole maize, sole pigeonpea, sole gliricidia and a maize + pigeonpea intercrop. Soil mineral N was determined before and during the 1997/1998, 1998/1999 and 1999/2000 cropping seasons. Total soil mineral N content (NO3 + NH4+) was greatest in the agroforestry systems (p<0.01). Pre-season soil mineral N content in the 0–20 cm horizon was greater in treatments containing trees (≤85 kg N ha−1) than in those without (<60 kg ha−1; p<0.01); however, soil mineral N content declined rapidly during the cropping season. Uptake of N was substantially greater in the agroforestry systems (200–270 kg N ha−1) than in the maize + pigeonpea and sole maize treatments (40–95 kg N ha−1; p<001). Accumulation of N by maize was greater in the agroforestry systems than in sole maize and maize + pigeonpea (p<0.01); grain accounted for 55% of N uptake by maize in the agroforestry systems, compared to 41–47% in sole maize and maize + pigeonpea. The agroforestry systems enhanced soil fertility because mineralisation of the applied GLM increased pre-season soil mineral N content. However, this could not be fully utilised as soil N declined rapidly at a time when maize was too small to act as a major sink for N. Methods for reducing losses of mineral N released from GLM are therefore required to enhance N availability during the later stages of the season when crop requirements are greatest. Soil mineral N levels and maize yields were similar in the gliricidia + maize and gliricidia + maize + pigeonpea treatments, implying that addition of pigeonpea to the tree-based system provided no additional improvement in soil fertility.  相似文献   

14.
We investigated the effect of small-scale overstory gaps on the ecophysiology and growth of Quercus ithaburensis saplings. The study aim was to characterize how changes in daily exposure to direct beam radiation affect photosynthetic performance in the short term and growth and biomass partitioning in the long term. Using individual net-houses, the following treatments were applied: (a) Unshaded (daily irradiance = 100 %), (b) shading net with no gap (Shade-daily irradiance = 6 %), (c) shading net with 1 h gap allowing direct beam radiation (11:00 am–12:00 pm, Shade+1-irradiance = 20 %), (d) shading net with 3 h gap (11:00 am–2:00 pm, Shade+3-irradiance = 44 %). The experiment was performed in an irrigated field. We measured growth, biomass allocation, leaf traits, daily courses of leaf gas exchange and water potential. Oak dry-weight increased while height to dry-weight ratio and specific leaf area decreased with increasing daily exposure to direct beam radiation. Leaf chlorophyll content was less affected. Higher net carbon assimilation rates (A), stomatal conductance (gs) and A/gs were associated with higher instantaneous photosynthetic photon flux density (PPFD) throughout the entire experimental PPFD range. However, during gap-hours, while exposed to saturating radiation levels of similar level (ca. 1,800 µmol photon m?2 s?1), A in the Shade+1 oaks was about half that of the Shade+3 oaks and nearly one-third that of the Unshaded oaks. Patterns of gs, intercellular CO2 (Ci) and quantum efficiency of photosystem II pointed towards the possibility of a metabolic limitation. In conclusion, oaks benefited significantly from small scale overstory gaps though their capacity to utilize transient saturating radiation levels decreased with decreasing gap duration.  相似文献   

15.
We analyzed the growth and photosynthetic responses of Canarium pimela K. D. Koenig (Chinese black olive) and Nephelium topengii (Merr.) H. S. Lo. (Hainan shaozi) to a light gradient to recommend better procedures for optimizing seedling establishment and growth of both species in restoration and agroforestry practices. One-month-old seedlings were exposed to four irradiance levels (46, 13, 2 and 0.2 % full sunlight) inside shade cloth covered shadehouses for 1 year. With decreased sunlight both species displayed trends of decreased relative growth rate (RGR) and leaf area (LA), and increased specific leaf area and leaf area ratio (LAR). The mean values of light-saturated net photosynthetic rate (Pmax) in 46 and 0.2 % full sunlight were 10.11 and 3.44 μmol CO2 m?2 s?1 for C. pimela and 6.26 and 3.47 μmol CO2 m?2 s?1 for N. topengii, respectively. C. pimela had higher RGR in 46 and 13 % full sunlight than in 2 and 0.2 % full sunlight. Differences in growth rates can be explained by the different values of LA, LAR and leaf mass ratio, as well as by the different values of photosynthetic saturation irradiance and net photosynthetic rate (Pmax) between the two species. Both morphological and physiological responses to shading indicate N. topengii could be rated as “very shade-tolerant,” while C. pimela could be rated as “intermediately shade-tolerant”.  相似文献   

16.
To assess possible new agroforestry scenarios the tree–soil–crop interaction model in agroforestry systems (WaNuLCAS 3.01) was used based on-site specific data collected from Tabango (Central Philippines). Three native timber trees (Shorea contorta Vid., Pterocarpus indicus Juss., and Vitex parviflora Willd.) and one widely spread exotic specie (Swietenia macrophylla King.) were simulated under different intercrop scenarios with maize (Zea mays L.) and subsequently compared. Model simulation results quantified and explained trade-off between tree and crop. For example, higher tree densities will lead to a loss of crop yield that is approximately proportional to the gain in wood volume. However, beside this trade-off effect, there is considerable scope for tree intercropping advantage under a fertilization scenario, with systems that yield about 50% of the maximum tree biomass still allowing 70% of monoculture maize yield. Maximum tree yield can still be obtained at about 20% of the potential crop yield but intermediate tree population densities (400 trees ha−1) and the resulting larger stem diameters may be preferable over the larger total tree biomass obtained at higher tree densities. Another advantage from intercropping systems is that trees directly benefit from the inputs (i.e., fertilizer) that are applied to the crops. The three native trees species studied have different performance in relation to productivity but are similar to (or even better than) S. macrophylla.  相似文献   

17.
The Indo-gangetic plains (IGP) in India occupies 13 % of the total geographical area and produces 50 % of total food grain to feed 40 % population of the country. Dynamic CO2FIX model v3.1 has been used to assess the baseline (2011) carbon and to estimate the carbon sequestration potential (CSP) of agroforestry systems (AFS) for a simulation period of 30 years in three districts viz. Ludhiana (upper IGP in Punjab), Sultanpur (middle IGP in Uttar Pradesh) and Uttar Dinajpur (lower IGP in West Bengal) respectively. The estimated numbers of trees existing in farmer’s field on per hectare basis in these districts were 37.95, 6.14 and 6.20, respectively. The baseline standing biomass in the tree components varied from 2.45 to 2.88 Mg DM ha?1 and the total biomass (tree + crop) from 11.14 to 25.97 Mg DM ha?1 in the three districts. The soil organic carbon in the baseline ranged from 8.13 to 9.12 Mg C ha?1 and is expected to increase from 8.63 to 24.51 Mg C ha?1. The CSP of existing AFS (for 30 years simulation) has been estimated to the tune of 0.111, 0.126 and 0.551 Mg C ha?1 year?1 for Sultanpur, Dinajpur and Ludhiana districts, respectively. CSP of AFS increases with increasing tree density per hectare. Site specific climatic parameters like monthly temperature, annual precipitation and evapotranspiration also moderates the CSP of AFS. The preliminary estimates of the area under AFS’s were 2.06 % (3,256 ha), 2.08 % (6,440 ha) and 12.69 % (38,860 ha) in Sultanpur, Dinajpur and Ludhiana respectively.  相似文献   

18.
Modern alley cropping designs, with trees aligned in rows and adapted to operating farming machinery, have been suggested for Europe. This paper explores the potential for adoption of cork oak (Quercus suber L.) agroforestry in Portugal and estimates the potential carbon sequestration. Spatial modeling and Portuguese datasets were used to estimate target areas where cork oak could grow on farmland. Different implementation scenarios were then modeled for this area assuming a modern silvoarable agroforestry system (113 trees ha?1 thinned at year 20 for establishing 50 trees ha?1). The YieldSAFE process-based model was used to predict the biomass and carbon yield of cork oak under low and high soil water holding capacity levels. Approximately 353,000 ha are available in Portugal for new cork oak alley cropping. Assuming implementation rates between 10 % of the area with low soil water capacity (60 mm: 15 cm depth, coarse texture) and 70 % of the area with high soil water holding capacity (1,228 mm: 200 cm depth, very fine texture), then carbon sequestration could be 5 × 106 and 123 × 106 Mg CO2 respectively. Due to higher yields on more productive land, scenarios of limited implementation in high productivity locations can sequester similar amounts of carbon as wide implementation on low productivity land, suggesting that a priori land classification assessments can improve the targeting of land and financial incentives for carbon sequestration.  相似文献   

19.
Adoption of temperate agroforestry practices generally remains limited despite considerable advances in basic science. This study builds on temperate agroforestry adoption research by empirically testing a statistical model of interest in native fruit and nut tree riparian buffers using technology and agroforestry adoption theory. Data were collected in three watersheds in Virginia’s ridge and valley region and used to test hypothesized predictors of interest in planting these buffers. Confirmatory factor analysis was used to verify independence of underlying latent measures. Multiple linear regression was used to model interest using the Universal Theory of Acceptance and Use of Technology (UTAUT). A second model that added agroforestry-specific predictors from Pattanayak et al. (Agrofor Syst 57:173–186, 2003) to UTAUT was tested and compared with the first. The first model was robust (Adj R 2 = 0.49) but was improved by adding agroforestry specific predictors (Adj R 2 = 0.57). Model generalizability was confirmed using double cross validation and normality indices. Social influence, risk expectancy, planting experience, performance expectancy, parcel size, and the interaction of gender and risk were significant in the final model. In addition, socioeconomic variables were used to characterize landowners according to their level of interest. Respondents with greater interest were newer owners that have higher incomes and are less active in farming. The result implies that future agroforesters may in large part consist of owners that have recently acquired land and manage their property more extensively with higher discretionary income and multiple objectives in mind.  相似文献   

20.
In southern Benin, West Africa, two alley cropping systems were studied from 1986 to 1992. Yield development was followed in a maize and cassava crop rotation vs. intercropping system, with alleys of Leucaena leucocephala (Lam.) de Wit and Cajanus cajan (L.) Millsp. vs. a no-tree control, with and without NPK fertiliser. Without alleys, NPK fertilisation maintained high yield levels of 2–3 t maize dry grain plus 4–6 t ha–1 cassava root DM in intercropping, 3–4 t ha–1 maize and 6–10 t ha–1 cassava in solercropping. Without NPK, final yields seemed to stabilise at about 1 t maize plus 2 t cassava in intercropping and twice as much in each solecrop. Alley cropping induced significant yield increases by about 50% with both tree species in unfertilised, intercropped maize, and with Cajanus in fertilised, solecropped cassava. In monetary terms, the NPK-fertiliser response of stabilised yields was significant for all treatments except the solecropped Leucaena alleys. It is concluded that on Ultisols with low nutrient status in the upper rooting zone, alley cropping with low-competitive tree species may improve food crop yields but the greatest monetary output is achieved by intercropping with mineral fertiliser independent of the presence or absence of an agroforestry component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号