首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Backcross breeding programs have been used to transfer disease resistance and other traits from one forest tree species to another in order to meet restoration objectives. Evaluating the field performance of such material is critical for determining the success of breeding programs. In eastern North America, The American Chestnut Foundation has a backcross breeding program that uses Chinese chestnut (Castanea mollissima Blume) to introduce resistance of the fungal pathogen chestnut blight [Cryphonectria parasitica (Murr.) Barr.] to the native American chestnut [Castanea dentata (Marsh.) Borkh.]. We compared physiological and morphological characteristics among seedlings of American chestnut, Chinese chestnut, and BC1F3, BC2F3, and BC3F3 hybrid chestnuts during their fourth growing season after field-planting. American chestnut and the BC3F3 breeding generation displayed photosynthetic light-response curves that were similar to each other but different from Chinese chestnut. Rates of photosynthesis were higher for American chestnut and the BC3F3 breeding generation when compared to Chinese chestnut for light levels ≥800 μmol m?2 s?1 photosynthetic photon flux density and for maximum photosynthetic capacity. Leaf morphology variables were not different between American chestnut and any of the breeding generations, but leaf area (on a per leaf basis) of Chinese chestnut was lower than that of any other chestnut type. Our results suggest that backcross breeding can be used to transfer desirable traits for restoration of native species threatened by non-native pathogens.  相似文献   

2.
On-farm trials were conducted to assess the effects of four branch pruning levels on maize grain yield, tree growth and stem shape. The experimental plots consisted of Gmelina (Gmelina arborea R.Br.) trees planted at 1 × 10 m with maize intercropped in the 10 m-wide alleys between lines of trees. Pruning levels consisted of retaining a live crown ratio of 60–70% (T 1), 40–50% (T 2); 30–40% (T 3) and of 20–30% (T 4). At the end of the experiment, the total maize grain yield was highest under the high pruning intensity (T 4) (18.06 t ha−1) and lowest under T 1 (14.48 t ha−1). Maize grain yield under the pruning regime T 2 and T 3 were 16.08 and 17.21 t ha−1, respectively. Mean annual increment (MAI) in tree diameter was greater (5.0 cm year−1) under T 1 than those at T 4 (4.1 cm year−1). Pruning regimes T 2 and T 3 resulted in a MAI of 4.7 and 4.5 cm year−1, respectively. Financial analysis showed that maize-tree systems under T 4 were more profitable than under T 1 as long as the reduction of the average dbh at harvest were not greater than 1 cm. Pruning trees intensively also generated greater returns from labour than moderate pruning, as the greater maize grain yields under T 4 compensated for the cost of pruning and the lower timber yield. In the context of resource-poor farmers, intensive branch pruning was a practice that prolonged the period of profitable intercropping and was compatible with commercial timber production.  相似文献   

3.
用 BR、GA3 、PP3 3 3 、KH2 PO4 、H3 BO3 共 5种化学调节物质进行了叶面喷布试验 ,观察它们在板栗开花结果上的效应。结果表明 ,不同药剂、浓度及药剂组合对板栗母枝平均结果枝数、长度、每结果枝雌花序数 ,母枝平均雄花枝数 ,单果质量 ,三果率和空苞率的影响有明显的差异。综合考虑化学调节物质在提高板栗雌花量和果实产量 ,以及降低空苞率上的试验效果 ,最佳的化学处理为 BR0 .0 1mg· L-1 PP3 3 3 1g· L-1 KH2 PO4 7.5g· L-1 H3 BO3 5.0 g· L-1,可使板栗结果枝数目平均由 1.2个增加至 2 .833个 ,结果枝平均雌花数由 1.56 7个增加到 1.8个 ,平均空苞率由 30 .70 %降至 9.0 3%  相似文献   

4.
The effect of different planting densities (100,000 and 167,000 plants ha?1) and levels of nitrogen fertilization (0, 261, 521, and 782 kg N ha?1 year?1) on biomass production and chemical composition of Moringa oleifera was studied in a split-plot design with four randomized complete blocks over 2 years with eight cuts year?1 at the National Agrarian University farm in Managua, Nicaragua (12°09′30.65″N, 86°10′06.32″W, altitude 50 m above sea level). Density 167,000 plants ha?1 produced significantly higher total dry matter yield (TDMY) and fine fraction yield (FFDM), 21.2 and 19.2 ton ha?1 respectively, compared with 11.6 and 11 ton ha?1 for 100,000 plants ha?1. Growth rate in 167,000 plants ha?1 was higher than in 100,000 plants ha?1 (0.06 compared with 0.03 ton ha?1 day?1). Average plant height was 119 cm irrespective of planting density. Fertilization at the 521 and 782 kg N ha?1 year?1 levels produced the highest TDMY and FFDM in both years of the study and along all cuts. The interaction between cut and year was significant, with the highest TDMY and FFDM during the rainy season in the second year. Chemical composition of fractions showed no significant differences between planting densities. Significantly higher crude protein content was found in the coarse fraction at fertilizer levels 521 and 782 kg N ha?1 year?1 (87.9 and 93.7 g kg?1 DM) compared with lower levels. The results indicate that Moringa can maintain up to 27 ton ha?1 dry matter yield under dry tropical forest conditions over time at a planting density of 167,000 plants ha?1 if the soil is regularly supplied with N at a level of approximately 521 kg ha year?1 in conditions where phosphorus and potassium are not limiting.  相似文献   

5.
Crop and livestock production in the Guinea savanna zone of northern Ghana has been declining over the past years as a result of increasing pressure on land. To sustain soil productivity, pigeon pea(Cajanus cajan), a leguminous perennial crop was evaluated for its potential as a short duration fallow crop for fodder and grain, and maize (Zea mays)production. It involved comparing a natural fallow (i.e., control) and four improved fallows of pigeon pea pruned annually at 30 cm, 60 cm and 90 cm from the ground, and unpruned pigeon pea over a two-year period. After this time, the land was cleared manually and planted to maize. The highest mean annual biomass of pigeon pea over the two-year period of 6.1 t ha−1 dry matter (DM) was obtained by pruning at 60 cm. The highest leaf litter production and pigeon pea seed yield was obtained from the no pruning treatment. The mean maize grain yield from the improved fallow (3.02 t ha−1) in the first year after clearing was significantly (P < 0.05) greater than that of the natural fallow (1.54 t ha−1). Considering the biomass of pigeon pea from pruning, pigeon pea seed yield and maize grain yield after the pigeon pea, pruning pigeon pea at 60 cm is the most promising regime for crop-livestock production systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
India launched National Agroforestry Policy on 10th February, 2014 which has the potential to substantially reduce poverty in rural India and revive wood based industry, besides integrating food production with environmental services. The policy is not only crucial to India’s ambitious goal of achieving 33 per cent forest and tree cover but also to mitigate GHG emissions from agriculture sector. Dynamic CO2FIX-v3.1 model has been used to estimate the carbon sequestration potential (CSP) of existing agroforestry systems (AFS) for simulation period of 30 years in twenty six districts from ten selected states of India. The observed number of trees on farmers’ field in these districts varied from 1.81 to 204 per hectare with an average value of 19.44 trees per hectare. The biomass in the tree component varied from 0.58 to 48.50 Mg DM ha?1, whereas, the total biomass (tree and crop) ranged from 4.96 to 58.96 Mg DM ha?1. The soil organic carbon ranged from 4.28 to 24.13 Mg C ha?1. The average estimated carbon sequestration potential of the AFS, representing varying edapho-climatic conditions, on farmers field at country level was 0.21 Mg C ha?1yr?1. At national level, existing AFS are estimated to mitigate 109.34 million tons CO2 annually, which may offsets one-third (33 %) of the total GHG emissions from agriculture sector.  相似文献   

7.
Nitrogen (N)-fixing tree and crop intercropping systems can be a sustainable agricultural practice in sub-Saharan Africa and can also contribute to resolving climate change through enhancing soil carbon (C) sequestration. A study conducted by Makumba et al. (Agric Ecosyst Environ 118:237?C243, 2007) on the N-fixing tree gliricidia and maize intercropping system in southern Malawi provides a rare dataset of both sequestered soil C and C loss as soil carbon dioxide (CO2) emissions. However, no soil C gain and loss estimates were made so the study failed to show the net gain of soil C. Also absent from this study was potential benefit or negative impact related to the other greenhouse gas, nitrous oxide (N2O) and methane (CH4) emissions from the intercropping system. Using the data provided in Makumba et al. (Agric Ecosyst Environ 118:237?C243, 2007) a C loss as soil CO2 emissions (51.2?±?0.4?Mg?C?ha?1) was estimated, amounting to 67.4% of the sequestered soil C (76?±?8.6?Mg?C?ha?1 in 0?C2?m soil depth) for the first 7?years in the intercropping system. An annual net gain of soil C of 3.5?Mg?C?ha?1?year?1 was estimated from soil C sequestered and lost. Inclusion of the potential for N2O mitigation [0.12?C1.97?kg?N2O?CN?ha?1?year?1, 0.036?C0.59?Mg CO2 equivalents (eq.) ha?1?year?1] within this intercropping system mitigation as CO2 eq. basis was estimated to be 3.5?C4.1?Mg CO2 eq.?ha?1?year?1. These results suggest that reducing N2O emission can significantly increase the overall mitigation benefit from the intercropping system. However, significant uncertainties are associated with estimating the effect of intercropping on soil N2O and CH4 emissions. These results stress the importance of including consideration of quantifying soil CO2, N2O and CH4 emissions when quantifying the C sequestration potential in intercropping system.  相似文献   

8.

Faidherbia albida is one of the scattered trees commonly intercropped with most cereals in Ethiopia due to its positive impacts. The tree is pruned for various purposes including for fencing and fuelwood. In this study, the impact of pruning on water relations of F. albida and on understorey wheat productivity was investigated. The on-farm study was conducted in Ejerssa Joro, semi-arid Ethiopia. Six mature trees were selected; three were fully pruned and three were left unpruned. Sap flow and leaf water potential were measured on these trees. Crop gas exchange, aboveground biomass and grain yield were measured under and outside tree canopies. The highest and the lowest sap volumes, recorded from unpruned F. albida, during the dry period, were 153 L day?1 and 20 L day?1, respectively. The highest and the lowest sap volumes were 13.4 L day?1 and 0.04 L day?1 recorded during the wet period. Wheat CO2 assimilation was highest (7.8 µmolm?2 s?1) at 1 m distance and declined away from the tree trunk under unpruned trees. Aboveground biomass and grain yield under unpruned treatments were significantly (P?<?0.05) higher than outside of canopy of same tree and outside canopies of pruned trees. Pruning reduced aboveground biomass and grain yield by 30% and 27%, respectively; despite the higher water uptake by unpruned trees. We recommend that intensive pruning of F. albida be discouraged and propose further studies on optimal pruning for increased food production and provision of tree products to meet farmers’ needs.

  相似文献   

9.
During the spring of 2006, three willow varieties (SV1, SX67 and 9882-41) were established on marginal land in an agroforestry tree-intercropping arrangement where plots of short rotation willows were planted between rows (spaced 15?m apart) of 21-year-old mixed tree species. As a control, the same varieties were established on an adjacent piece of land without established trees (conventional willow system). This study investigated the magnitude of carbon pools, fine root and leaf biomass inputs and clone yields in both the tree-based intercropping (agroforestry) and conventional monocropping systems. Willow biomass yield was significantly higher in the agroforestry field (4.86?odt?ha?1?y?1) compared to the conventional field (3.02?odt?ha?1?y?1). In both fields, varieties SV1 and SX67 produced higher yields than the variety 9882-41. Willow fine root biomass in the top 20?cm of soil was significantly higher in the intercropping system (3,062?kg?ha?1) than in the conventional system (2,536?kg?ha?1). Differences in fine root biomass between clones were similar to that observed for differences in biomass yield: SV1?>?SX67?>?9882-41. Leaf input was higher in the intercropping system (1,961?kg?ha?1) than in the conventional system (1,673?kg?ha?1). Clonal differences in leaf inputs followed the same trends as those for root biomass and yield: SV1?>?SX67?>?9882-41. Soil organic carbon was significantly higher in the agroforestry field (1.94?%) than in the conventional field (1.82?%). A significant difference in soil organic carbon was found between the three clones: soils under clone 9882-41 had the lowest soil organic carbon at 1.80?%.  相似文献   

10.
This study evaluated the effects of site-specific, soil-testing-based fertiliser recommendations on maize yields using the transdisciplinary (TD) process. The TD process utilizes knowledge from science and practice. Farmers, extension officers, local financial institutions, and other practitioners collaborated with local scientists from the University of Eldoret in the process of financing, purchasing, and applying fertilisers in adequate amounts and composition. A total of 144 farmers participated in the study, which lasted for two seasons. The data sampling was based on a randomized 2?×?3?×?4?×?2 factorial complete block design, including the following factors: TD (non-participation vs participation in the TD process); ST (soil testing in the following categories: fertiliser application with no soil testing, fertiliser application following government recommendations, and application of site-specific, soil-testing-based fertiliser recommendations), and location (Kapyemit, Kipsomba, Ng’enyilel, and Ziwa). The “no soil testing” (ST1) category refers to farmers’ own practices at an average fertilisation of about 60?kg?N?ha?1 and 15?kg?P?ha?1. The government recommendation (ST2) calls for 75?kg?N?ha?1, 25?kg?P?ha?1, and 6?t?ha?1 manure, and site-specific fertiliser recommendations (ST3) were based on actual soil-testing results; generally, this resulted in the recommendation of 90?kg?N?ha?1, 30?kg?P?ha?1, 25 kg K ha?1, 2?t?ha?1 lime, and 1?t?ha?1 manure. Highly significant effects were seen where farmers participated in the TD process (TD) for soil testing (ST). The farmers’ yields in Uasin Gishu County of 4.5?t?ha?1 increased by approximately 1.5?t?ha?1 based on site-specific, soil-testing fertilisation recommendations and by approximately 1.0?t?ha?1 based on participation in the transdisciplinary process. However, as indicated by a significant interaction of the variables ST and TDand while there is a significant main effect of participating in a TD process—the latter increase occurs only if site-specific, soil-testing-based recommendations can be used in the transdisciplinary process with farmers.  相似文献   

11.
Available information is applied to formulate quantitative hypotheses on the impact of intercropping Leucaena hedgerows with maize upon the physical productivity of grain and fuelwood. Data would indicate that productivity of organic nitrogen (N) by Leucaena hedgerows cut approximately every 8 weeks at a height of 15–30 cm and planted at a distance between rows wider than 150 cm is 45 g m?1 yr?1. When soil-N availability is the limiting factor, utilization of Leucaena-N by the maize crop appears to be negatively related to baseline maize production. The grain: Leucaena-N ratio declines from 20:1, when maize productivity is in the order of 500 kg ha?1, to 3:1, when the 4000 kg level is achieved. Hedgerow N productivity, N utilization by the maize crop, and proportion of land planted to maize were used to derive yield estimates per area of intercropped land under different intercropping arrangement. It seems that the impact of hedge intercropping on maize productivity, although substantial, would be limited to systems where existing production levels of maize are lower than 1500 kg ha?1. As expected, production per hectare decreases as spacing between Leucaena hedgerows increases. For a 1000 kg ha?1 baseline, hypothetical increments expressed as percentage of baseline production range from 112% to 28% for between-hedgerow spacings of 1.5 and 6 m respectively. Information analyzed would indicate apotential for Leucaena hedgerow intercropping to increase maize productivity. Research required to substantiate the formulated hypotheses is discussed.  相似文献   

12.
A system where carbon sequestration was directly dependent upon biomass production in a plantation was modelled to assess whether economic breeding objectives for the genetic improvement of Eucalyptus globulus were sensitive to potential revenues from carbon sequestration. Carbon dioxide equivalent accumulation in the biomass (CO2e) of the Australian E. globulus plantation estate established between 2004 and 2012 was estimated. Total carbon dioxide equivalent (CO2e) accumulation was in the order of ~146 t CO2e ha?1, of which 62 t CO2e ha?1 were tradable in 2012 (the 1st Kyoto Protocol commitment period) and a further 30 t CO2e ha?1 were tradable in 2016 (a hypothetical second Kyoto protocol commitment period). The correlated response of breeding objectives with and without carbon revenues (ΔcG h 1) never fell below 0.86 in sensitivity analysis, and the mean was 0.93. Where economic breeding objectives for the genetic improvement of Eucalyptus globulus for pulpwood plantations are based on maximizing net present value by increasing biomass production, the consideration of carbon revenues in economic breeding objectives will have no significant effect on the relative economic weights of the key economic traits, wood basic density and standing volume at harvest.  相似文献   

13.
《Southern Forests》2013,75(3-4):163-171
The Loblolly pine (Pinus taeda L.) plantation area in north-east Uruguay was 108 000 ha in 2008. Recent industrial capacity developments have resulted in major structural changes. Silvicultural system selection depends on site productivity, costs, timber prices and public policies. This study aimed to assess economic returns for two silvicultural systems in north-east Uruguay, in scenarios with and without a plantation subsidy: System I, with a short, 12-year rotation, primarily for small logs; and System II, with a longer, 24-year rotation. For System I, the underbark volume was 198 m3 ha?1 (mean annual increment16.5 m3 ha?1 y?1) and land expectation value (LEV) at a 9.7% discount rate was US$561 ha?1 and US$442 ha?1, with and without subsidy, respectively. System II resulted in 318 m3 ha?1 underbark volume (13.2 m3 ha?1 y?1) and the LEV was US$860 ha?1 and US$771 ha?1, with and without subsidy, respectively. System I was more profitable than extensive cattle husbandry only when the distance to mill was equal to or less than 60 km and wood millyard prices were equal to or higher than US$27.8 m?3 and US$28.8 m?3 with and without subsidy, respectively. Values for System II, in which the main product was a mix of sawlog diameters, were positive and higher than those for System I, both with and without subsidy. If a company invested in forest plantations without due provision for early silvicultural treatments, such as pruning and precommercial thinning, a high risk of financial loss would ensue. Long-rotation sawtimber regimes similar to System II would be more profitable and offer a lower risk of financial losses. The results suggest subsidy withdrawal in Uruguay should not lead to changes in silvicultural systems; in fact, it rendered regimes designed for low-value wood, such as System I, even less advisable.  相似文献   

14.
This study examined the effect of alley cropping of Leucaena leucocephala and Faidherbia albida on wood biomass, maize grain yield and soil nitrogen status. The treatments were: trees planted alone at 1 × 5 m spacing; trees intercropped with maize and a sole maize crop. Mulch biomass averaged 6.18 and 0.97 t ha−1 for L. leucocephala and F. albida, respectively. Corresponding wood production was 1.71 and 1.11 t ha−1. Both total N and inorganic N (NO 3 –N plus 4 + –N) were higher under F. albida and lowest under L. leucocephala. Similarly, foliar N concentration in maize was higher in plots intercropped with F. albida and least in L. leucocephala intercropping. Maize grain yield was little affected by the tree intercrop as competition for resources was reduced through periodic pruning and clean weeding. There was no gain in maize grain yield due to the presence of L. leucocephala and F. albida. These results suggest that alley cropping in Gario is justified for wood production but not for increasing maize grain yield. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
A 5-year field trial was conducted on a laterite soil to evaluate the effects of organic and inorganic fertigations in arecanut sole and arecanut–cocoa land use systems at Vittal, India. Arecanut registered similar yield levels in sole and arecanut–cocoa cropping situations (3,022–3,117 kg ha?1). Fertigation of 75 % NPK, vermicompost extract (VCE) 20 % N and VCE (10 and 20 % N)+25 % NPK registered the same yield levels (3,029–3,375 kg ha?1). Dry bean yield of cocoa was at par with fertigation of 75 % NPK and 20 % N VCE + 25 % NPK (291–335 kg ha?1). Fertigation @ 75 % NPK increased the yield of cocoa by 52 % over VCE alone. The productivity per unit area (kg ha?1) was significant and higher by 12 % in arecanut–cocoa system (3,450) than arecanut sole (3,090). Productivity was similar to fertigation of 75 % NPK, 20 % N VCE and VCE (10 or 20 % N) + 25 % NPK (3,316–3,665 kg ha?1). Leaf nutrient status of arecanut and cocoa indicated lower levels of N and K and above normal levels of Ca, Mg and micronutrients. The results indicate that drip fertigation increases the productivity, but precision application of N and K is required for sustaining the yields.  相似文献   

16.
An experiment was conducted in Nobéré, Burkina Faso to assess the effect of shade of two indigenous fruit trees, Adansonia digitata (Baobab) and Parkia biglobosa (Néré), on a shade-tolerant crop called taro (Colocasia esculenta) in comparison with millet (Pennisetum glaucum) a shade-intolerant crop. Photosynthetically active radiation (PAR) and performance of crops under trees and in the open field were assessed during three cropping seasons. Millet performed better under baobab (806.1?±?121.48?kg?ha?1) compared to the control plot (595.8?±?83.43?kg?ha?1) and néré (320.2?±?59.91?kg?ha?1). In contrast, the yield of taro was higher under néré (4124.0?±?469.05?kg?ha?1) compared to the control plot (2336.9?±?617.04?kg?ha?1) and baobab (2738.3?±?595.61?kg?ha?1). There was a strong relationship between the amount of PAR intercepted by trees and crop yields under trees. As PAR decreased the yield of millet decreased whereas the yield of taro increased. Hence, it was concluded that parkland productivity could be enhanced by cropping taro under néré where light reduction was 83, 56 and 18% in zones A, B and C, respectively. An efficient association of baobab with crops could be the production of taro in zone A and millet in zones B and C where PAR reduction was 62, 38 and 15%, respectively.  相似文献   

17.
Tropical forests store a large part of the terrestrial carbon and play a key role in the global carbon (C) cycle. In parts of Southeast Asia, conversion of natural forest to cacao agroforestry systems is an important driver of deforestation, resulting in C losses from biomass and soil to the atmosphere. This case study from Sulawesi, Indonesia, compares natural forest with nearby shaded cacao agroforests for all major above and belowground biomass C pools (n = 6 plots) and net primary production (n = 3 plots). Total biomass (above- and belowground to 250 cm soil depth) in the forest (approx. 150 Mg C ha?1) was more than eight times higher than in the agroforest (19 Mg C ha?1). Total net primary production (NPP, above- and belowground) was larger in the forest than in the agroforest (approx. 29 vs. 20 Mg dry matter (DM) ha?1 year?1), while wood increment was twice as high in the forest (approx. 6 vs. 3 Mg DM ha?1 year?1). The SOC pools to 250 cm depth amounted to 134 and 78 Mg C ha?1 in the forest and agroforest stands, respectively. Replacement of tropical moist forest by cacao agroforest reduces the biomass C pool by approximately 130 Mg C ha?1; another 50 Mg C ha?1 may be released from the soil. Further, the replacement of forest by cacao agroforest also results in a 70–80 % decrease of the annual C sequestration potential due to a significantly smaller stem increment.  相似文献   

18.
Where there is limited availability of conventional fertilizers, the use of organic materials is considered a viable alternative to increase the productive capacity of soils. Many potential plant residues remain underutilized due to limited research on their use as a nutrient source. In this study, the nitrogen supplying capabilities of ten rarely-used leaf biomass sources (Acacia auriculiformis, Baphia nitida, Albizia zygia, Azadirachta indica, Senna siamea, Senna spectabilis, Tithonia diversifolia, Gliricidia sepium, Leucaena leucocephala and Zea mays) were tested based on their nutrient content, N mineralization patterns and effect on maize yield (in comparison with inorganic fertilizer). N mineralization was studied in the laboratory using an incubation experiment. Field trials were also established using a randomized complete block design. Plant residues were applied at 5 t dry matter ha?1 a week before planting maize while fertilizer was split-applied at 90 kg N ha?1 on designated plots. From the results on plant residue chemistry, most of the plant residues recorded relatively high N concentration (≥24.9 g kg?1) and low C/N ratio (≤20.1) although neither N content nor C/N ratio significantly (p > 0.05) affected their N mineralization patterns. Leaf biomass application of B. nitida, A. auriculiformis, A. zygia and maize stover resulted in an initial net N immobilization that lasted for 14 days. Application of all plant materials significantly increased the biological yield and N uptake of maize with G. sepium and T. diversifolia producing the greatest impact especially in the major rainy season. Relative to the control, total grain yield after four cropping seasons was comparable between inorganic fertilizer (9.2 t ha?1), G. sepium (8.8 t ha?1) and T. diversifolia (9.4 t ha?1) treatments. The results on maize biological yield were significantly correlated with the effects of the treatments on N uptake. The findings suggest that in locations where inorganic fertilizers are limited, leaf biomass from G. sepium and T. diversifolia could offer the most suitable option in comparison with the other species used in this study.  相似文献   

19.
This paper summarizes several studies on N recycling in a tropical silvopastoral system for assessing the ability of the system to increase soil fertility and insure sustainability. We analyzed the N2 fixation pattern of the woody legume component (Gliricidia sepium), estimated the recycling rate of the fixed N in the soil, and measured N outputs in tree pruning and cut grass (Dichanthium aristatum). With this information, we estimated the N balance of the silvopastoral system at the plot scale. The studies were conducted in an 11-year-old silvopastoral plot established by planting G. sepium cuttings at 0.3 m × 2 m spacing in natural grassland. The plot was managed as a cut-and-carry system where all the tree pruning residues (every 2-4 months) and cut grass (every 40-50 days) were removed and animals were excluded. No N fertilizer was applied. Dinitrogen fixation, as estimated by the 15N natural abundance method, ranged from 60-90% of the total N in aboveground tree biomass depending on season. On average, 76% of the N exports from the plot in tree pruning (194 kg [N] ha–1 yr–1) originated from N2 fixation. Grass production averaged 13 Mg ha–1 yr–1 and N export in cut grass was 195 kg [N] ha–1 yr–1. The total N fixed by G. sepium, as estimated from the tree and grass N exports and the increase in soil N content, was about 555 kg [N] ha–1 yr–1. Carbon sequestration averaged 1.9 Mg [C] ha–1 yr–1 and soil organic N in the 0-0.2 m layer increased at a rate of 166 kg [N] ha–1 yr–1, corresponding to 30% of N2 fixation by the tree. Nitrogen released in nodule turnover (10 kg [N] ha–1 yr–1) and litter decomposition (40 kg [N] ha–1 yr–1) contributed slightly to this increase, and most of the recycled N came from the turnover or the activity of other below-ground tree biomass than nodules. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
In tropical areas of Mexico, Leucaena leucocephala is widely used in silvopastoral systems. However, little information exists on other native woody species of high forage potential, such as Guazuma ulmifolia. The aim of this study was to evaluate the components of biomass, forage yield and quality, and availability of N in fodder banks of L. leucocephala, G. ulmifolia, and a mixture of both species during dry and rainy seasons, under sub-humid tropical conditions. The experimental unit was a 5 × 10 m plot, containing three rows with 2 m between rows; each row had 20 plant positions with 0.50 m between plants. Within each plant position there was either a single plant, in the case of pure-crop, or two plants, in the case of mixed of both species. A complete randomized block design with three repetitions was used. In both seasons, there were a significantly greater proportion of leaves in the G. ulmifolia fodder banks (71 %) and in mixed fodder banks (69 %) than in L. leucocephala fodder banks (64 %). Consequently, these systems had leaf-to-stem ratios of 2.4, 2.2 and 1.9, respectively. The forage yield of fodder banks was not influenced by season. The mixed fodder bank had greater forage yield (5.1 t DM ha?1) than the L. leucocephala fodder bank (3.4 t DM ha?1) in each season. Additionally, the mixed fodder bank accumulated more forage yield during the experimental period (10.2 t DM ha?1 year?1) than G. ulmifolia (9.0 t DM ha?1 year?1) or L. leucocephala (6.9 t DM ha?1 year?1). The concentrations of CP, C and C:N were not influenced by season. Forage NDF and ADF concentrations were greater in the rainy season (476 g kg?1 DM) compared with the dry season (325 g kg?1 DM). Mixed fodder banks had the greatest N yield (185.9 kg ha?1) and consequently the greatest availability of N (371.8 kg N ha?1 year?1). We conclude that mixed fodder banks of L. leucocephala and G. ulmifolia are a better option for improving productivity and forage quality in comparison with pure fodder banks in Yucatan, Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号