首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although chemical and some soil physical properties have been studied under different land uses of the Lesser Himalayas of India, very limited information is available on soil biochemical properties. Hence we investigated phosphorus (P) fractions [total P (TP), inorganic P (Pi), organic P (Po), available P, microbial biomass P (MBP)], enzyme activities [dehydrogenase, phosphatases, phytase], phosphate solubilizing bacteria (PSB) and fungi (PSF), and their correlations of acid soils (0–15 and 15–30 cm depths) under different land uses (viz, organic farming, maize–wheat, apple orchard, undisturbed oak forest and uncultivated land of the Indian Himalayas). All land use systems differed significantly for the P fractions, except TP. The highest values for TP, Pi, available P and MBP were found in soils under oak forest and lowest in uncultivated land. However, Po content was highest in apple orchard. The organic farming (organic manures field under garden pea-french bean cropping system for > 10 years) maintained highest activities of dehydrogenase, acid phosphatase and alkaline phosphatase. The highest phytase activity and highest numbers of PSB (99 × 103 g?1 soil) and PSF (30 × 103 g?1 soil) were observed in the rhizosphere soils of oak forest. Significant relationships between soil P fractions and enzyme activities, except alkaline phosphatase, were recorded in surface soil layer. PSB and PSF population were also correlated significantly with P fractions and enzyme activities. This would lead us to understand the level of degradation of P pools due to cultivation over forest system and the suitable management practices needed for soil quality restoration.  相似文献   

2.
Greater organic matter inputs in agroforestry systems contribute to the long-term storage of carbon (C) in the soil, and the use of simulation models provides an opportunity to evaluate the dynamics of the long-term trends of soil organic carbon (SOC) stocks in these systems. The objective of this study was to apply the Century model to evaluate the long-term effect of agroforestry alley crop and sole crop land management practices on SOC stocks and soil C fractions. This study also evaluated the accuracy between measured field data obtained from a 19-year old tropical (TROP) and 13-year old temperate (TMPRT) alley crop and their respective sole cropping systems and simulated values of SOC. Results showed that upon initiation of the TROP and TMPRT alley cropping systems, levels of SOC increased steadily over a ~100 year period. However, the sole cropping systems in both tropical and temperate biomes showed a decline in SOC. The active and passive C fractions increased in the TROP agroforestry system, however, in the TMPRT agroforestry system the active and slow fractions increased. The input of organic matter in the TROP and TMPRT agroforestry systems were 83 and 34% greater, respectively, compared to the sole crops, which likely contributed to the increased SOC stock and the C fractions in the alley crops over the 100 year period. Century accurately evaluated levels of SOC in the TROP (r 2 = 0.94; RMSE = 226 g m−2) and TMPRT (r 2 = 0.94; RMSE = 261 g m−2) alley crops, and in the TROP (r 2 = 0.82; RMSE = 101 g m−2) and TMPRT (r 2 = 0.83; RMSE = 64 g m−2) sole crops. Century underestimated simulated values in the alley cropping systems compared to measured values due to the inability of the model to account for changes in soil bulk density with increasing organic matter inputs with tree age from prunings or litterfall.  相似文献   

3.
The hypothesis that agroforestry systems conserve P in forms that are more crop-available than those found in annual cropping systems was tested on two tropical sites: an Ultisol in Yurimagas, Peru, and a volcanically derived Inceptisol in Turrialba, Costa Rica. In both sites, the Hedley P fractions were compared in annual cropping, alley cropping, multistrata agroforestry and old forest systems. On the Ultisol, the effect of P fertilization on the soil P fractions was also examined. Under non-fertilized conditions, the multistrata and forest systems maintained more and a greater proportion of P in plant-available resin form than the annual or alley cropping systems. Greater resin P was associated with greater amounts and percentages of P in bicarbonate fractions and less P in residual fractions. The latter may be caused by greater and more temporally constant organic matter additions, less mineralization of labile soil organic matter fractions due to lower soil temperatures, and the long-term mobilization of residual P due to P immobilization in the biomass of the multistrata or forest systems. With P fertilization, resin P was related to inorganic P fractions. However, resin P increased even more when inorganic P fertilizers were combined with organic residue additions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The growing of tree crops along with the field crops is a common practice in foothills of lower Himalayas with the twin objective of checking soil erosion by water and covering the risk of crop failure due to frequently occurring droughts. A study was conducted to evaluate dry and water stable aggregates for their soil organic carbon (SOC) stocks under different tree-based cropping systems. The treatments consisted of three cropping systems viz. maize-wheat (sole crop), agroforestry and agrohorticulture (tree-based) in the similar soil texture and in 6 year old plantations. The soil samples were obtained from different layers (0–15, 15–30, 30–60, 60–90 and 90–120 cm) and analyzed for SOC. The undisturbed aggregate samples (as big clods) were collected from 0–15 and 15–30 cm soil layer for dry and wet aggregate stability. The data so obtained was analyzed by using CRD factorial deigns at LSD (P ≤ 0.05). The SOC concentration decreased with soil depth, the decrease was higher (89.6%) in soils under maize-wheat than in soils under agrohorticulture (81.3%) and agroforestry (77.8%). The mean SOC concentration decreased with the size of the dry stable aggregates (DSA) and water stable aggregates (WSA). In DSA, the mean SOC concentration was 58.06 and 24.2% higher in large and small macroaggregates than in microaggregates respectively; in WSA it was 295.6 and 226.08% higher in large and small macroaggregates than in microaggregates respectively in surface soil layer. The mean SOC concentration in surface soil was higher in DSA (0.79%) and WSA (0.63%) as compared to bulk soil (0.52%). The SOC concentration and stock being highest in soils under agroforestry resulted in higher SOC concentration in dry as well as WSA.  相似文献   

5.
Soil fertility decline caused by deforestation, soil degradation and low input use has become a primary factor limiting sustainable utilization of soil resources in cocoa agroforestry systems on acid soils in lowland humid Ghana. Changes in and responses of soil physico-chemical properties and soil quality to land-use change was investigated along a chronosequence of farm fields on a Ferric Lixisol in the Ashanti region of Ghana. Soil bulk density increased significantly only in the top 0–10 cm soil layer. Concentrations and stocks of soil organic carbon (SOC) and total N decreased significantly in the top 0–10 and 10–20 cm soil depths. By 30 years after forest conversion, cocoa system had re-accumulated up to 38.8 Mg C ha?1 or 85 % of initial forest carbon stock values. Total porosity (%) decreased significantly in shaded-cocoa fields in comparison with the natural semi-deciduous forest. An assessment of soil deterioration using degradation indices (DIs) revealed that total soil quality (0–20 cm) deteriorated significantly (DI = –60.6) in 3-year-old of cocoa system but improved in 15 and 30-year-old systems. Available P stocks declined consistently while soil exchangeable Ca, K and Mg stocks as well as cation exchange capacity (CEC) and base saturation remained more or less stable with a tendency to improve. The inclusion of leguminous shade trees during early plantation development, development of mechanisms for the integration of cover crops and enhancement of farmer capability in improved farm management are required to maintain high C and nutrient base, minimize soil quality degradation during plantation development phase and sustain long-term productivity.  相似文献   

6.
Poplar-based agroforestry systems are one of the most important farming systems on the temperate plains of China, but soil respiration in those systems has seldom been reported. In this study, poplar leaf litter and residues of the two main crops (wheat and peanut) grown in the agroforestry system were amended to form different litter mixing treatments in field experiments at two sites located in Jiangsu Province, China. We measured soil respiration and environmental factors in the different treatments. Soil respiration rates were increased by the addition of plant residues but were strongly influenced by residue quality. During the growing season, soil respiration was negatively related with C/N ratio, while positively related with the initial P concentration of residues (P < 0.05). Poplar leaf litter and crop residues showed non-additive effects on soil respiration when they were mixed. Both air and soil temperature at 10 cm depth explained more than 85 % of the variation of soil respiration at both sites with an exponential model. A significant linear relationship between soil respiration and soil water content at 10 cm depth (WS) was also observed. The percent of variation in soil respiration explained by a model based on air temperature and soil water content was greater than that explained by a model based on temperature alone. Thus, soil respiration in the studied poplar-based agroforestry systems was driven by both temperature and soil water content. Soil respiration was significantly different between the two sites that had different clay content and C/N ratios. Results from this study are important for us to understand how soil respiration responds to litter mixing or is influenced by biophysical factors in poplar-based agroforestry systems.  相似文献   

7.
The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0–50 cm depth were significantly higher in the low (91.8 ± 3.1 Mg C ha?1) and high (87.6 ± 3.3 Mg C ha?1) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0 ± 2.4 Mg C ha?1) and traditional agroforestry (68.4 ± 4.9 Mg C ha?1) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7 ± 2.3 Mg C ha?1 and between oil palm: 10.6 ± 0.5 Mg C ha?1) and the strip area (17.0 ± 1.4 Mg C ha?1) at 0–5 cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6–8.3 Mg C ha?1 year?1) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.  相似文献   

8.
Agroforestry systems may play an important role in mitigating climate change, having the ability to sequester atmospheric carbon dioxide (CO2) in plant parts and soil. A meta-analysis was carried out to investigate changes in soil organic carbon (SOC) stocks at 0–15, 0–30, 0–60, 0–100, and 0 ≥ 100 cm, after land conversion to agroforestry. Data was collected from 53 published studies. Results revealed a significant decrease in SOC stocks of 26 and 24% in the land-use change from forest to agroforestry at 0–15 and 0–30 cm respectively. The transition from agriculture to agroforestry significantly increased SOC stock of 26, 40, and 34% at 0–15, 0–30, and 0–100 cm respectively. The conversion from pasture/grassland to agroforestry produced significant SOC stock increases at 0–30 cm (9%) and 0–30 cm (10%). Switching from uncultivated/other land-uses to agroforestry increased SOC by 25% at 0–30 cm, while a decrease was observed at 0–60 cm (23%). Among agroforestry systems, significant SOC stocks increases were reported at various soil horizons and depths in the land-use change from agriculture to agrisilviculture and to silvopasture, pasture/grassland to agrosilvopastoral systems, forest to silvopasture, forest plantation to silvopasture, and uncultivated/other to agrisilviculture. On the other hand, significant decreases were observed in the transition from forest to agrisilviculture, agrosilvopastoral and silvopasture systems, and uncultivated/other to silvopasture. Overall, SOC stocks increased when land-use changed from less complex systems, such as agricultural systems. However, heterogeneity, inconsistencies in study design, lack of standardized sampling procedures, failure to report variance estimators, and lack of important explanatory variables, may have influenced the outcomes.  相似文献   

9.
Large amounts of plant litter deposited in cacao agroforestry systems play a key role in nutrient cycling. Organic matter, nitrogen and phosphorus cycling and microbial biomass were investigated in cacao agroforestry systems on Latosols and Cambisols in Bahia, Brazil. The objective of this study was to characterize the microbial C and N, mineralizable N and organic P in two soil orders under three types of cacao agroforestry systems and an adjacent natural forest in Bahia, Brazil and also to evaluate the relationship between P fractions, microbial biomass and mineralized N with other soil attributes. Overall, the average stocks of organic C, total N and total organic P across all systems for 0?C50?cm soil depth were 89,072, 8,838 and 790?kg?ha?1, respectively. At this soil depth the average stock of labile organic P was 55.5?kg?ha?1. For 0?C10?cm soil depth, there were large amounts of microbial biomass C (mean of 286?kg?ha?1), microbial biomass N (mean of 168?kg?ha?1) and mineralizable N (mean of 79?kg?ha?1). Organic P (total and labile) was negatively related to organic C, reflecting that the dynamics of organic P in these cacao agroforestry systems are not directly associated with organic C dynamics in soils, in contrast to the dynamics of N. Furthermore, the amounts of soil microbial biomass, mineralizable N, and organic P could be relevant for cacao nutrition, considering the low amount of N and P exported in cacao seeds.  相似文献   

10.
This study tested the hypothesis that incorporation of green leaf manure (GLM) from leguminous trees into agroforestry systems may provide a substitute for inorganic N fertilisers to enhance crop growth and yield. Temporal and spatial changes in soil nitrogen availability and use were monitored for various cropping systems in southern Malawi. These included Gliricidia sepium (Jacq.) Walp. trees intercropped with maize (Zea mays L.), with and without pigeonpea (Cajanus cajan L.), sole maize, sole pigeonpea, sole gliricidia and a maize + pigeonpea intercrop. Soil mineral N was determined before and during the 1997/1998, 1998/1999 and 1999/2000 cropping seasons. Total soil mineral N content (NO3 + NH4+) was greatest in the agroforestry systems (p<0.01). Pre-season soil mineral N content in the 0–20 cm horizon was greater in treatments containing trees (≤85 kg N ha−1) than in those without (<60 kg ha−1; p<0.01); however, soil mineral N content declined rapidly during the cropping season. Uptake of N was substantially greater in the agroforestry systems (200–270 kg N ha−1) than in the maize + pigeonpea and sole maize treatments (40–95 kg N ha−1; p<001). Accumulation of N by maize was greater in the agroforestry systems than in sole maize and maize + pigeonpea (p<0.01); grain accounted for 55% of N uptake by maize in the agroforestry systems, compared to 41–47% in sole maize and maize + pigeonpea. The agroforestry systems enhanced soil fertility because mineralisation of the applied GLM increased pre-season soil mineral N content. However, this could not be fully utilised as soil N declined rapidly at a time when maize was too small to act as a major sink for N. Methods for reducing losses of mineral N released from GLM are therefore required to enhance N availability during the later stages of the season when crop requirements are greatest. Soil mineral N levels and maize yields were similar in the gliricidia + maize and gliricidia + maize + pigeonpea treatments, implying that addition of pigeonpea to the tree-based system provided no additional improvement in soil fertility.  相似文献   

11.
Yemen is one of the world's least developed countries and experiences problems of scarcity of natural agricultural resources as well as soil erosion and degradation. Agroforestry systems (AFS) are being promoted as a more appropriate land use system than monocropping systems (MCS) worldwide. Unfortunately, long-term studies on agroforestry and other land use systems (LUS) do not exist in Yemen. Agroforestry in the Rima'a region has started to deteriorate and many farmers turned to (MCS). This study was conducted in the Rima'a Valley, near Alsharq town, Dhamar, Yemen. The study evaluates the soil nutrients, organic matter (OM), and other soil properties such as pH, bulk density, and porosity under AFS and compares it with soil under MCS. Standard procedures for soil sampling and analyzing were used to collect and analyze 36 composite samples from Site 1 and 36 composite samples from Site 2 from six cropping systems (treatments). The results showed that there were significant variations in relation to LUS. Agroforestry practices—mixed trees with coffee (S1), and Cordia africana L. with coffee (S2) have higher nitrogen concentration (0.17–0.26%) as compared to the Ziziphus spina-christi L. with maize (S3) and the monocropping maize (S5), (<0.16% in both Sites 1 and 2). Similar results were seen on the effect of the different LUS on the soil P, K, and OM contents at the two sites (p < .01). While soil N, P, and soil K were higher under agroforestry systems S1, and S2 in both sites, it was the lowest in S5 in both sites. It can be concluded that agroforestry has more favorable effects on soil fertility and other soil properties. The government should establish programs and campaigns to disseminate AFS technology and promote the importance of agroforestry in soil conservation.  相似文献   

12.
Carbon sequestration potential of agroforestry systems has attracted worldwide attention following the recognition of agroforestry as a greenhouse gas mitigation strategy. However, little is known about carbon stocks in poplar–maize intercropping systems in arid regions of China. This study was conducted in the temperate desert region of northwestern China, a region with large area of poplar–maize intercropping systems. The objective of this study was to assess biomass production and carbon stock under three poplar–maize intercropping systems (configuration A, 177 trees ha?1; configuration B, 231 trees ha?1; and configuration C, 269 trees ha?1). We observed a significant difference in the carbon stock of poplar trees between the three configurations, with the highest value of 36.46 t ha?1 in configuration C. The highest carbon stock of maize was achieved in configuration B, which was significantly higher than configuration A. The grain yield was highest in configuration A, but there was no significant difference from the other two configurations. In the soil system (0–100 cm depth), the total carbon stock was highest in configuration C (77.37 t ha?1). The results of this study suggest that configuration C is the optimum agroforestry system in terms of both economic benefits and carbon sequestration.  相似文献   

13.
Information concerning the classification of soils and their properties under cacao agroforestry systems of the Atlantic rain forest biome region in the Southeast of Bahia, Brazil is largely unknown. Soil and climatic conditions in this region are favorable for high soil carbon storage. This study is aimed to classify soils under cacao agroforestry and further, to quantify carbon stocks in these soil profiles. Soil classification was performed, and the amount of C stored was estimated, based on the thickness of the soil horizons, their bulk density, and total organic carbon stored. In the sites studied under cacao, four general classes of soils were identified: Ultisols, Oxisols, Alfisols, and Inceptisols. Carbon stocks in these soil profiles showed wide variation, ranging from 719.24 to 2089.93 Mg ha?1. Carbon stocks in soil surface and subsurface layers in different agroforestry systems with cacao (cacao cabruca, cacao?×?rubber tree, and cacao?×?erythrina) were comparable; however, total storage of organic C in these soils was higher than expected, compared to values reported for the International Soil Reference and Information Center (ISRIC), based on the FAO-UNESCO database, and were also higher than estimated regional soil data.  相似文献   

14.
In a transect study involving 15 mature seasonally dry tropical forests growing on uniform geological substrate in the Yucatan Peninsula, Mexico, we analyzed the influence of a large reduction in mean annual precipitation (1,036–537 mm year?1) on carbon (C) and nitrogen (N) pools in soils. We investigated the C content in organic soil and in active fraction pools (organic matter and microbial biomass) and analyzed the dependence of these pools on precipitation. Carbon (total, inorganic and organic, and in microbial biomass) and N (total) concentrations in bulk soil decreased as rainfall increased from <600 mm year?1 >1,000 mm year?1. Additionally, in all organic matter fractions, C and N concentrations generally decreased with greater precipitation. Soil average C mineralization decreased by 61 % from the wettest to the driest region. Reduced precipitation during the dry season increased microbial biomass C and water-extractable C concentrations and decreased the C concentration in organic matter fractions. No other significant changes were observed between seasons in C concentrations, N concentrations or C mineralization. Overall, we conclude that physical (macroclimate) and biological processes are more active in soils in the wettest region, resulting in a faster turnover of organic matter.  相似文献   

15.
Our understanding of the processes influencing the storage and dynamics of carbon (C) in soils under semi-arid agroforestry systems in Sub-Saharan Africa (SSA) is limited. This study evaluated soil C pools in woodlot species of Albizia lebbeck (L.) Benth., Leucaena leucocephala (Lam.) de Wit, Melia azedarach (L.), and Gmelina arborea Roxb.; and in farmland and Ngitili, a traditional silvopastoral system in northwestern Tanzania. Soil organic carbon (SOC) was analyzed in the whole soil to 1 m depth and to 0.4 m in macroaggregates (2000–250 μm), microaggregates (250–53 μm), and silt and clay-sized aggregates (<53 μm) to provide information of C dynamics and stabilization in various land uses. Synchrotron-based C K-edge x-ray absorption near-edge structure (XANES) spectroscopy was also used to study the influence of these land use systems on the soil organic matter (SOM) chemistry to understand the mechanisms of soil C changes. Whole soil C stocks in woodlots (43–67 Mg C ha?1) were similar to those in the reserved Ngitili systems (50–59 Mg C ha?1), indicating the ability of the planted woodlots on degraded lands to restore SOC levels similar to the natural woodlands. SOC in the woodlots were found to be associated more with the micro and silt-and clay-sized aggregates than with macroaggregates, reflecting higher stability of SOC in the woodlot systems. The continuous addition of litter in the woodlots preserved recalcitrant aromatic C compounds in the silt and clay-sized aggregates as revealed by the XANES C K-edge spectra. Therefore establishment of woodlots in semi-arid regions in Tanzania appear to make significant contributions to the long-term SOC stabilization in soil fractions.  相似文献   

16.
This study examined the hypothesis that incorporation of Gliricidia sepium (Jacq.) Walp.) (gliricidia), a fast-growing, nitrogen-fixing tree, into agroforestry systems in southern Malawi may be used to increase the input of organic fertilizer and reduce the need for expensive inorganic fertilizers. The productivity of maize (Zea mays L.), pigeonpea (Cajanus cajan L.) and gliricidia grown as sole stands or in mixed cropping systems was examined at Makoka Research Station (latitude 15° 30′ S, longitude 35° 15′ E) and a nearby farm site at Nazombe between 1996 and 2000. Treatments included gliricidia intercropped with maize, with or without pigeonpea, and sole stands of gliricidia, maize and pigeonpea. Trees in the agroforestry systems were pruned before and during the cropping season to provide green leaf manure. Maize yields and biomass production by each component were determined and fractional light interception was measured during the reproductive stage of maize. Substantial quantities of green leaf manure (2.4 to 9.0 Mg ha−1 year−1) were produced from the second or third year after tree establishment. Green leaf manure and fuelwood production were greatest when gliricidia was grown as unpruned sole woodlots (c. 8.0 and 22 Mg ha−1 year−1 respectively). Improvements in maize yield in the tree-based systems also became significant in the third year, when c. 3.0 Mg ha−1 of grain was obtained. Tree-based cropping systems were most productive and exhibited greater fractional light interception (c. 0.6 to 0.7) than cropping systems without trees (0.1 to 0.4). No beneficial influence of pigeonpea on maize performance was apparent either in the presence or absence of gliricidia at either site in most seasons. However, as unpruned gliricidia provided the greatest interception of incident solar radiation (>0.9), coppicing may be required to reduce shading when gliricidia is grown together with maize. As pigeonpea production was unaffected by the presence of gliricidia, agroforestry systems containing gliricidia might be used to replace traditional maize + pigeonpea systems in southern Malawi. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Ecosystem-level assessments of carbon (C) stocks of agroforestry systems are scarce. We quantified the ecosystem-level C stocks of one agroforestry-based oil palm production system (AFSP) and one agroforestry-based oil palm and cacao production system (AFSP+C) in eastern Amazonia. We quantified the stocks of C in four pools: aboveground live biomass, litter, roots, and soil. We evaluated the distribution of litter, roots, and soil C stocks in the oil palm management zones and in the area planted with cacao and other agroforestry species. The ecosystem-C stock was higher in AFSP+C (116.7 ± 1.5 Mg C ha?1) than in AFSP (99.1 ± 3.1 Mg C ha?1). The total litter-C stock was higher in AFSP+C (3.27 ± 0.01 Mg C ha?1) than in AFSP (2.26 ± 0.06 Mg C ha?1). Total root and soil C stocks (0–30 cm) did not differ between agroforestry systems. Ecosystem-C stocks varied between agroforestry systems due to differences in both aboveground and belowground stocks. In general, the belowground-C stocks varied spatially in response to the management in the oil palm and non-oil palm strips; these results have important implications for the monitoring of ecosystem-level C dynamics and the refinement of soil management.  相似文献   

18.
Agroforestry and organic systems have been used to reduce the negative effects that conventional coffee cultivation has on soils. In this work, 13C-CPMAS-NMR, Fourier transform infrared spectroscopy, elemental composition, classical humus fractionation and the soil fertility status were used to evaluate the impact of these three systems on a Latosol from the Brazilian Cerrado. Continuous input of tree residues promoted changes to the soil organic matter with increase in total organic carbon, humic acids (HA) and light organic matter, mainly in the topsoil. Available P and cation exchange capacity were also increased and the acidity status decreased in the agroforestry system. Moreover, HA from the agroforestry were enriched in O-alkyl C, O-di-alkyl C and alkyl C groups and the organic system resulted in HA richer in carboxyl groups. The conventional system resulted in greater aromatic and methoxyl participation, and lower phenol groups. HA from the agroforestry system were richer in easily degradable structures and the chemical fractionation demonstrated a decrease in both recalcitrant fractions, allowing for a more conservative and sustainable management of soil fertility. The modifications were not as evident in the organic system, probably due to the low organic fertilizer input.  相似文献   

19.
Agroforestry is an ancient practice widespread throughout Africa. However, the influence of Sahelian agroforestry systems on carbon storage in soil and biomass remains poorly understood. We evaluated the carbon storage potential of three agroforestry systems (fallow, parkland and rangeland) and five tree species (Faidherbia albida, Acacia raddiana, Neocarya macrophylla, Balanites aegyptiaca and Euphorbia balsamifera) growing on three different soils (clay, sandy loam and sandy) in the Niayes zone, Senegal. We calculated tree biomass carbon stocks using allometric equations and measured soil organic carbon (SOC) stocks at four depths (0–20, 20–50, 50–80 and 80–100 cm). F. albida and A. raddiana stored the highest amount of carbon in their biomass. Total biomass carbon stocks were greater in the fallow (40 Mg C ha?1) than in parkland (36 Mg C ha?1) and rangeland (29 Mg C ha?1). More SOC was stored in the clay soil than in the sandy loam and sandy soils. On average across soil texture, SOC stocks were greater in fallow (59 Mg C ha?1) than in rangeland (30 Mg C ha?1) and parkland (15 Mg C ha?1). Overall, the total amount of carbon stored in the soil + plant compartments was the highest in fallow (103 Mg C ha?1) followed by rangeland (68 Mg C ha?1) and parkland (52 Mg C ha?1). We conclude that in the Niayes zones of Senegal, fallow establishment should be encouraged and implemented on degraded lands to increase carbon storage and restore soil fertility.  相似文献   

20.
Little information is available on soil respiration and microbial biomass in soils under agroforestry systems. We measured soil respiration rate and microbial biomass under two age classes (young and old) of a pecan (Carya illinoinensis) — cotton (Gossypium hirsutum) alley cropping system, two age classes of pecan orchards, and a cotton monoculture on a well-drained, Redbay sandy loam (a fine-loamy, siliceous, thermic Rhodic Paleudult) in southern USA. Soil respiration was quantified monthly during the growing season from May to November 2001 using the soda-lime technique and was corrected based on infrared gas analyzer (IRGA) measurements. The overall soil respiration rates ranged from 177 to 776 mg CO2 m–2 h–1. During the growing season, soil respiration was higher in the old alley cropping system than in the young alley cropping system, the old pecan orchard, the young pecan orchard, and the monoculture. Microbial biomass C was higher in the old alley cropping system (375 mg C kg–1) and in the old pecan orchard (376 mg C kg–1) compared to the young alley cropping system (118 mg C kg–1), young pecan orchard (88 mg C kg–1), and the cotton monoculture (163 mg C kg–1). Soil respiration was correlated positively with soil temperature, microbial biomass, organic matter, and fine root biomass. The effect of alley cropping on soil properties during the brief history of alley cropping was not significant except in the old systems, where there was a trend of increasing soil respiration with short-term alley cropping. Over time, different land use and management practices influenced soil properties such as soil temperature, moisture, microbial biomass, organic matter, and fine root biomass, which in turn affected the magnitude of soil respiration. Our results suggest that trees in agroforestry systems have the potential to enhance soil fertility and sustainability of farmlands by improving soil microbial activity and accreting residual soil carbon.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号