首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The main objectives of this study were to estimate genetic and phenotypic parameters for growth traits and prolificacy in the Raeini Cashmere goat. Traits included, birth weight (BWT), weaning weight (WWT), 6-month weight (6WT), 9-month weight (9WT), 12-month weight (12WT), average daily gain from birth to weaning (ADG1), average daily gain from weaning to 6WT (ADG2), average daily gain from 6WT to 12WT (ADG3), survival rate (SR), litter size at birth (LSB) and litter size at weaning (LSW) and total litter weight at birth (LWB). Data were collected over a period of 28 years (1982-2009) at the experimental breeding station of Raeini goat, southeast of Iran. Genetic parameters were estimated with univariate models using restricted maximum likelihood (REML) procedures. In addition to an animal model, sire and threshold models, using a logit link function, were used for analyses of SR. Age of dam, birth of type, sex and of kidding had significant influence (p < 0.05 or 0.01) all the traits. Direct heritability estimates were low for prolificacy traits (0.04 ± 0.01 for LSB, 0.09 ± 0.02 for LSW, 0.16 ± 0.02 for LWB and 0.05 ± 0.02 for SR) and average daily gain (0.12 ± 0.03 for ADG1, 0.08 ± 0.02 for ADG2, and 0.07 ± 0.03 for ADG3) to moderate for production traits (0.22 ± 0.02 for BWT, 0.25 ± 0.02 for WWT, 0.29 ± 0.04 for 6WT, 0.30 ± 0.02 for 9WT, 0.32 ± 0.05 for 12WT). The estimates for the maternal additive genetic variance ratios were lower than direct heritability for BWT (0.17 ± 0.03) and WWT (0.07 ± 0.02).  相似文献   

2.
The study was conducted to evaluate reproductive performances and estimate genetic parameters for reproduction traits in Arsi-Bale goats. A total of 792 kidding records collected from 2001 to 2007 were used. Parity of dam, year, season and type of kidding were investigated as fixed effects by PROC GLM of SAS. Derivative-Free Restricted Maximum Likelihood (DFREML) method was used to estimate genetic parameters by fitting four animal models. Parity of dam and year of kidding influenced (P < 0.05) all the traits. The overall means for age at first kidding (AFK), kidding interval (KI), litter size at birth (LSB), litter size at weaning (LSW), litter weight at birth (LWB), litter weight at weaning (LWW), abortion and dystocia were 574.9 ± 8.3 days, 280.0 ± 13.7 days, 1.6 ± 0.03, 1.37 ± 0.03, 3.7 ± 0.08 kg, 9.11 ± 0.38 kg, 3.8% and 0.13%, respectively. The estimates of direct additive heritability for the traits, except for abortion and dystocia, under the best model (direct animal for AFK and repeatability model for other traits) were 0.245 ± 0.19, 0.060 ± 0.08, 0.074 ± 0.05, 0.006 ± 0.05, 0.125 ± 0.05, 0.053 ± 0.07, respectively, while the corresponding permanent environmental effects were 0.00 ± 0.00, 0.07 ± 0.07, 0.08 ± 0.05, 0.172 ± 0.06, 0.03 ± 0.04 and 0.07 ± 0.05, respectively. Repeatability estimates for KI, LSB, LSW, LWB and LWW were 0.13, 0.15, 0.18, 0.16 and 0.12, respectively. Genetic correlations between reproductive traits vary from medium to high. Arsi-Bale goats have good reproductive performance with low incidence of reproductive disorder. Except for AFK, other traits have low estimates of heritabilities with high genetic correlation among the traits. Repeated measures of the traits are needed before deciding to keep or cull the animal.  相似文献   

3.
Estimates of repeatability and heritability were obtained for the following productivity traits of ewes: litter weight at birth (LWB) and weaning (LWW), litter size at birth (LSB), litter size alive at birth (NBA), litter size at weaning (LSW), neonatal survival rate (SRB) and preweaning survival rate (SRW). Phenotypic and genetic correlations were estimated for litter traits. The data set contained 6,394 ewe breeding records from three state stations over 10 yr on 1,731 ewes that were the progeny of 488 sires among three breeds (Columbia, Suffolk and Targhee). Pooled intra-station estimates of repeatability ranged from .11 to .22 for LWB and LWW among the three breeds. For litter size at birth, number born alive and litter size at weaning these estimates varied from .09 to .17 and for the survival traits (SRB and SRW) the variation was from .11 to .20. Intra-station estimates of heritability for the three breeds varied from .12 to .28 for LWB and LWW, and for LSB, NBA and LSW estimates varied from .05 to .35. Heritability estimates for survival traits (SRB and SRW) were low, ranging from .00 to .14. Phenotypic correlations among LWB, LWW, NBA and LSW ranged from .35 to .92 among the breed-station subclasses, with higher correlations occurring where a part-whole relationship existed. The study suggests that selection of ewes with high litter size at birth or at weaning and(or) litter weight at birth or at weaning will genetically improve total litter weight at weaning per ewe lambing.  相似文献   

4.
We estimated genetic parameters in Landrace and Large White pig populations for litter traits at farrowing (total number born, number born alive, number stillborn, total litter weight at birth (LWB), and mean litter weight at birth) and those at weaning (litter size at weaning (LSW), total litter weight at weaning (LWW), mean litter weight at weaning (MWW), and survival rate from farrowing to weaning). We analyzed 65,579 records at farrowing and 6,306 at weaning for Landrace, and 52,557 and 5,360, respectively, for Large White. Single‐trait and two‐trait repeatability animal models were exploited to estimate heritability and genetic correlation respectively. Heritability estimates of LSW were 0.09 for Landrace and 0.08 for Large White. Genetic correlations of LSW with MWW were –0.43 for Landrace and –0.24 for Large White. Genetic correlations of LSW with LWW and LWB ranged from 0.5 to 0.6. The genetic correlation of MWW with LWW was positive, but that with LWB was negligible. The results indicate that utilizing LWW or LWB could improve LSW efficiently, despite the antagonistic genetic correlation between LSW and MWW.  相似文献   

5.
This study reports on the phenotypic and genetic (co)variance components for reproductive traits in Zandi sheep, using between 1,859 and 2,588 records obtained from 577 ewes. The data were collected from the Khojir Breeding Station of Zandi sheep in Tehran, Iran from 1994 to 2008. The basic traits were litter size at birth (LSB), litter size at weaning (LSW), litter mean weight per lamb born (LMWLB), and litter mean weight per lamb weaned (LMWLW), and the composite traits were total litter weight at birth (TLWB) and total litter weight at weaning (TLWW). Genetic analyses were carried out using the restricted maximum likelihood method that was explored by fitting the additive direct genetic effects and permanent environmental effects of the ewes as random effects and the ewe age at lambing and lambing year as fixed effects for all of the investigated traits. Akaike’s information criterion was used to choose the most appropriate model. LSB, LSW, LMWLB, LMWLW, TLWB, and TLWW direct heritability estimates were 0.07, 0.05, 0.12, 0.10, 0.08, and 0.14, respectively. The estimated fractions of variance due to the permanent environmental effects of the ewe ranged from 0.03 for LMWLB to 0.08 for LMWLW and TLWW. Corresponding repeatability estimates ranged from 0.10 for LSW to 0.22 for TLWW. Direct genetic correlations varied from ?0.61 for LSB–LMWLB to 0.88 for LSB–LSW and LSB–TLWB. Results indicate that genetic change depends not only on the heritability of traits, but also on the observed phenotypic variation; therefore, improvement of non-genetic factors should be included in the breeding programs.  相似文献   

6.
Genetic parameters for prolificacy traits for Columbia (COLU), Polypay (POLY), Rambouillet (RAMB), and Targhee (TARG) breeds of sheep were estimated with REML using animal models. Traits were number of live births (LAB), litter size at birth (LSB) and weaning (LSW), and litter weight weaned (LWW). Numbers of observations ranged from 5,140 to 7,095 for prolificacy traits and from 5,101 to 8,973 for litter weight weaned for the four breeds. For single-trait analyses, ewes were classified as young (1 yr old), middle-aged (2 and 3 yr old), or older (> 3 yr old). After single-trait analyses, three-trait analyses were done for each characteristic with traits defined by age class. Generally, heritability estimates from single-trait analyses were low and ranged from .01 to .17 for LAB and LSB and from .00 to .10 for LSW. Heritability estimates obtained for LWW ranged from low to moderate (.00 to .25) and were less for older ewes. Heritability estimates from the three-trait analyses were generally similar to estimates from single-trait analyses. Heritabilities for LAB and LSB were similar, and, for three-trait analyses, they ranged across age groups from .07 to .13 for COLU, .13 to .16 for POLY, .10 to .16 for RAMB, and .01 to .16 for TARG. Estimates for LSW from three-trait analyses ranged from .07 to .12 for COLU, .04 to .09 for POLY, .01 to .11 for RAMB, and .03 to .11 for TARG. For LWW, heritabilities ranged from .00 to .21 for COLU, .05 to .08 for POLY, .12 to .15 for RAMB, and .18 to .29 for TARG. Genetic correlations for LAB, LSB and LSW among age-defined traits ranged from .25 to 1.00. Genetic correlations for LAB and LSB between young and middle and between young and older age classes were less than .80 in COLU, POLY, and RAMB breeds. Only genetic correlations between middle and older age classes for these breeds were greater than .80. For TARG, genetic correlations among all age classes were greater than .80 (.88 to 1.00) for those traits. All genetic correlations among ages for LSW were greater than .80 for POLY and TARG. For RAMB, only the correlation between young and older age classes for LSW was less than .80 (.45). None was greater than .80 for COLU. For LWW, genetic correlations among all age classes in POLY and RAMB were greater than .80 (.82 to 1.00). For COLU, genetic correlation between young and middle was low (.07), between young and older was high (.88), and between middle and older classes was moderately high (.54). For TARG, genetic correlations were .49, .65, and .98 for young-middle, young-older, and middle-older age classes, respectively. Results indicate that more progress could be made in selection programs for prolificacy traits in some sheep breeds by considering age of ewe as a part of the trait rather than by simply adjusting for ages of ewes.  相似文献   

7.
A five-years crossing scheme involving the Spanish V line (V) and Saudi Gabali (S) rabbits was practiced to produce 14 genetic groups: V, S, 1/2V1/2S, 1/2S1/2V, 3/4V1/4S, 3/4S1/4V, (1/2V1/2S)2, (1/2S1/2V)2, (3/4V1/4S)2, (3/4S1/4V)2, ((3/4V1/4S)2)2, ((3/4S1/4V)2)2, Saudi 2 (a new synthetic line) and Saudi 3 (another new synthetic line). A total of 3496 litters from 1022 dams were used to evaluate litter size at birth (LSB) and weaning (LSW), litter weight at birth (LWB), litter weight at 21 d (LW21) and litter weight at weaning (LWW), pre-weaning litter mortality (PLM), milk yield at lactation intervals of 0–7 d (MY07), 0–21 d (MY021), 0–28 d (TMY) and milk conversion ratio as g of litter gain per g of milk suckled during 21 d of lactation (MCR021). A generalized least squares procedure was used to estimate additive and heterotic effects (direct, maternal, and grand-maternal).The comparison among V, S, Saudi 2 and Saudi 3 showed a complementarity between V and S. Line V was superior for LSB, LSW, LWB, PLM, MY07, MY021 and TMY, while line S was superior for the other traits (LW21, LWW and MCR021). Saudi 2 and Saudi 3 had the means equal to or higher than the founder lines (V or S) for all traits. Saudi 2 showed better values in litter size and pre-weaning litter mortality compared to Saudi 3 with no significant differences for the other traits. Concerning crossbreeding parameters, direct additive effects were significant for all traits, ranging between 12.3% and 31.8% relative to the average of the means of V and S. All estimates for direct heterosis except LWB and MCR021 were significant and ranged from 5.3% to 27.5%. No estimates for maternal additive effects and grand-maternal additive and heterotic effects were significant. Only estimates for maternal heterotic effects of LSB and LSW were significant (8.6% and 10.6%, respectively).  相似文献   

8.
The objective of this study was to estimate genetic parameters for reproductive traits in Shall sheep. Data included 1,316 records on reproductive performances of 395 Shall ewes from 41 sires and 136 dams which were collected from 2001 to 2007 in Shall breeding station in Qazvin province at the Northwest of Iran. Studied traits were litter size at birth (LSB), litter size at weaning (LSW), litter mean weight per lamb born (LMWLB), litter mean weight per lamb weaned (LMWLW), total litter weight at birth (TLWB), and total litter weight at weaning (TLWW). Test of significance to include fixed effects in the statistical model was performed using the general linear model procedure of SAS. The effects of lambing year and ewe age at lambing were significant (P?<?0.05). Genetic parameters were estimated using restricted maximum likelihood procedure, under repeatability animal models. Direct heritability estimates were 0.02, 0.01, 0.47, 0.40, 0.15, and 0.03 for LSB, LSW, LMWLB, LMWLW, TLWB, and TLWW, respectively, and corresponding repeatabilities were 0.02, 0.01, 0.73, 0.41, 0.27, and 0.03. Genetic correlation estimates between traits ranged from ?0.99 for LSW–LMWLW to 0.99 for LSB–TLWB, LSW–TLWB, and LSW–TLWW. Phenotypic correlations ranged from ?0.71 for LSB–LMWLW to 0.98 for LSB–TLWW and environmental correlations ranged from ?0.89 for LSB–LMWLW to 0.99 for LSB–TLWW. Results showed that the highest heritability estimates were for LMWLB and LMWLW suggesting that direct selection based on these traits could be effective. Also, strong positive genetic correlations of LMWLB and LMWLW with other traits may improve meat production efficiency in Shall sheep.  相似文献   

9.
Improvement in litter traits is the key to profitable pig farming that directly enhances the economic standing of the farmers in developing countries. The present study aimed to explore oestrogen receptor (ESR), epidermal growth factor (EGF), follicle-stimulating hormone beta subunit (FSHβ), prolactin receptor (PRLR) and retinol-binding protein 4 (RBP4) genes as possible candidate genetic markers for litter traits in indigenous pigs of India. The breeds included in the study were Ghungroo, Mali, Niang Megha and Tenyi Vo, and the reproductive traits considered were litter size at birth (LSB), number born alive (NBA), litter weight at birth (LWB), litter size at weaning (LSW) and litter weight at weaning (LWW) at their first parity. PCR-RFLP and primer-based mutation detection methods were used to identify polymorphism, and associations between the genotypes and the traits were analysed using a general linear model. The Ghungroo pigs recorded the best litter performances among the breeds (p < .05, LWB p < .01). Different alleles and genotypes of the genes under study were detected. Short interspersed nuclear element (SINE) −/− genotype of FSHβ revealed significantly higher litter traits (p < .05, LSB p < .01). The LWW was also found to be significantly influenced by ESR BB and AB, EGF AB and BB, and PRLR CC genotypes (p < .05). Although we did not find statistically significant and consistently superior litter traits with respect to different genotypes of other studied genes than genotype SINE −/− of the FSHβ, PRLR CC genotype demonstrated superior performances for all the litter traits. Our study revealed the FSHβ as a potential candidate genetic marker for litter traits in indigenous pig breeds of India.  相似文献   

10.
For the first time, the current study reports the genetic and phenotypic correlations between growth and reproductive traits in Zandi sheep. The data were comprised of 4,309 records of lamb growth traits from 1,378 dams and 273 sires plus 2,588 records of reproductive traits from 577 ewes. These data were extracted from available performance records at Khojir Breeding Station of Zandi sheep in Tehran, Iran, from 1993 to 2008. Correlations were estimated from two animal models in a bivariate analysis using restricted maximum likelihood procedure between lamb growth traits [birth weight (BW), weaning weight at 3 months of age (WW), as well as six-month weight (6 MW)] and ewe reproductive traits [litter size at birth (LSB), litter size at weaning (LSW), total litter weight at birth (TLWB), and total litter weight at weaning (TLWW)]. The genetic correlations between BW and reproductive traits varied from low to high ranges from 0.10 for BW–LSB to 0.86 for BW–TLWB. WW was moderately (0.37) to highly (0.96) correlated with all the reproductive traits. Moreover, the genetic correlations were observed between 6 MW and reproductive traits, varied from 0.19 to 0.95. Relationships between growth and reproductive traits ranged from 0.01 for BW–LSW to 0.28 for BW–TLWB in phenotypic effects. Results indicated that selection to improve WW would have high effect on genetic response in TLWW, and also, these results could be effective for all of the reproductive traits in Zandi sheep.  相似文献   

11.
The objective of this study was to estimate variance and covariance components, in Iranian Cashmere goats, for birth weight (BWT) and weaning weight (WWT) performances of kids and total weight of kids weaned (TWW) per doe joined at first (TWW1), second (TWW2) and third (TWW3) parities by REML procedures using univariate and multivariate animal models. The analysis was based on 2313 records of kids and 940 records of does. Through ignoring or including maternal additive genetic or maternal permanent environmental effects, four different models were fitted for BWT and WWT performances. For TWW performances only two models (without or with service sire effect) were used. Models were compared using likelihood ratio test. Direct additive genetic and maternal permanent environmental effects had significant influence on BWT and WWT performances. These effects accounted for 9.4% and 15.6%, and 13.9% and 6.7% of phenotypic variation, respectively. No significant effect of service sire was observed on TWW. The estimates of heritabilities were 0.072, 0.109 and 0.082 for TWW1, TWW2 and TWW3, respectively. Direct genetic correlations among all performances were positive and low (for BWT with TWW) to high (for BWT with WWT and WWT with TWW). The corresponding estimates for phenotypic and residual correlations were moderate and lower than genetic correlations. The high genetic correlation among WWT and TWW suggests that direct selection on TWW1 or indirect selection on WWT would increase total weight of kids weaned per doe joined.  相似文献   

12.
Market data on 1,315 rabbits from 201 litters from Californian (CAL), New Zealand White (NZW), CAL X NZW and NZW X CAL dams bred to CAL, NZW and Flemish Giant sires were subjected to multiple regression and path analyses. Market traits observed in litters at 56 d included average kit weight (A56W), litter size (LS56), total litter weight (L56W) and within-litter uniformity in individual weights (LCV). Preweaning variables as covariates included in the model were dam metabolic body weight (DMW), litter born (LSB), litter birth weight (LBW), milk yield from 1 to 21 d (MY) and feed intake from 1 to 28 d of the dam and litter (FI). Results from multiple regression analyses indicated linear and quadratic effects (P less than .20) due to LSB and MY for all four market characters. The LBW influenced (P less than .05) LS56 and L56W, and FI affected (P less than .05) LS56, L56W and LCV. Separate analyses were conducted involving 28-d weaning and feed intake variables as covariates: litter size weaned (LSW), litter weaning weight (LWW) and litter feed intake from 28 to 56 d (LFI). The three weaning covariates were important (P less than .05) for all market traits except LS56 (LWW was not significant). The most accurate regression equations were obtained from the weaning model for prediction of L56W and LS56 (R2 = .68 and .78). Path analyses revealed that preweaning covariates generally had direct rather than indirect effects on market traits. Both direct and indirect effects of weaning covariates were important for market traits. Results suggest that litter market traits of size and weight can be predicted with a reasonable degree of accuracy.  相似文献   

13.
The objective of this study was to investigate the possibility of modifying the growth trajectory in Raeini Cashmere goat breed. In total, 13,193 records on live body weight collected from 4788 Raeini Cashmere goats were used. According to Akanke’s information criterion (AIC), the sing-trait random regression model included fourth-order Legendre polynomial for direct and maternal genetic effect; maternal and individual permanent environmental effect was the best model for estimating (co)variance components. The matrices of eigenvectors for (co)variances between random regression coefficients of direct additive genetic were used to calculate eigenfunctions, and different eigenvector indices were also constructed. The obtained results showed that the first eigenvalue explained 79.90% of total genetic variance. Therefore, changing the body weights applying the first eigenfunction will be obtained rapidly. Selection based on the first eigenvector will cause favorable positive genetic gains for all body weight considered from birth to 12 months of age. For modifying the growth trajectory in Raeini Cashmere goat, the selection should be based on the second eigenfunction. The second eigenvalue accounted for 14.41% of total genetic variance for body weights that is low in comparison with genetic variance explained by the first eigenvalue. The complex patterns of genetic change in growth trajectory observed under the third and fourth eigenfunction and low amount of genetic variance explained by the third and fourth eigenvalues.  相似文献   

14.
This study was conducted in a four‐year rabbit project that aimed to develop a synthetic line named Moshtohor (M) by crossing Sinai Gabali breed (G) with the Spanish V‐line (V). The G, V, F1 (G × V), F2 (G × V)2 and M line were analysed. Traits of doe body weight at delivery (DBW), litter size at birth (LSB) and at weaning (LSW), milk production during the first, second, third and fourth week of lactation and total milk yield (TMY) were recorded. Data were analysed using a repeatability uni‐trait animal model to estimate the genetic parameters and estimable functions of genetic group effects. Based on them and the matrix of their variance–covariance, the crossbreeding parameters were also estimated. Estimates of heritabilities for all the studied traits were low ranging from 0.06 to 0.11 for DBW, LSB and LSW and from 0.0 to 0.06 for milk production traits. Permanent environmental effects were very low ranging from 0.0 to 0.10 for all the traits, except for DBW (0.41). Least square means of V line were superior (p < 0.05) in DBW (3253 versus 3037 g) and LSB (6.71 versus 6.28 young) relative to G breed. M line had superiority in LSB (6.94 young) compared with G breed. M line and G breed were better than V line for milk production traits (3415 and 3236 versus 2893 g for TMY). Significant effects of direct additive were observed for most traits studied (ranged from ?6.8 to 20.7%). Effects of individual heterosis for most milk production traits were significant and ranged from 2.1 to 13.9%, but they were not significant for DBW, LSB and LSW. On the opposite side, effects of maternal heterosis for all the traits were not significant.  相似文献   

15.
A total of 4007 lactation records from 1520 Saanen goats kidding from 1999 to 2006 and obtained from 10 herds in Guanajuato, Mexico, were analyzed to estimate the heritabilities, repeatabilities, as well as genetic, environmental and phenotypic correlations for milk yield (MILK), fat yield (FAT), protein yield (PROT), fat content (%FAT), protein content (%PROT) and age at fist kidding (AFK). A five-trait repeatability model was used to estimate (co)variances for milk traits, and a four-trait animal model for first lactation records was used to estimate (co)variances involving AFK. For MILK, FAT, PROT, %FAT, %PROT and AFK, heritability estimates were 0.17 ± 0.04, 0.19 ± 0.05, 0.17 ± 0.04, 0.32 ± 0.06, 0.38 ± 0.07 and 0.31 ± 0.09, respectively. Repeatabilities for MILK, FAT, PROT, %FAT and %PROT were 0.43 ± 0.02, 0.42 ± 0.02, 0.42 ±0.02, 0.64 ± 0.02, and 0.63 ± 0.02, respectively. The genetic correlations between MILK and FAT, and between MILK and PROT, were high and positive (0.72 ± 0.08 and 0.87 ± 0.04, respectively). Genetic correlations between MILK and %FAT, between MILK and %PROT and between MILK and AFK, were − 0.24 ± 0.16, − 0.30 ± 0.15 and − 0.18 ± 0.23, respectively. Genetic correlations between AFK and FAT and between AFK and PROT were − 0.09 ± 0.24 and − 0.17 ± 0.25, respectively; and genetic correlations between AFK and %FAT and between AFK and %PROT were 0.29 ± 0.35 and 0.14 ± 0.27, respectively. Selection for milk traits is possible using a repeatability animal model. Selection for milk production traits would probably not increase AFK, but more precise estimates of the genetic correlations are required. Selection to lower AFK is possible. These (co)variance estimates would make it possible to predict the selection responses from different economic indices in order to maximize the economic responses for the local markets.  相似文献   

16.
Performance of three tropical hair sheep breeds.   总被引:1,自引:0,他引:1  
The performance of three hair sheep breeds (Brazilian Somali, Morada Nova, and Santa Ines) was evaluated in the production environment of northeastern Brazil. Data from a total of 524 lambs sired by 21 rams and out of 190 ewes were analyzed. These data were collected from 1980 to 1983 at Sobral, Brazil from an experiment designed to compare performance of the three breeds. The traits included weights of lambs at birth, weaning, 8 mo, 10 mo, and yearling ages and ewe characters of weight at lambing (EWT), total lamb weight born (LWB), total lamb weight weaned (LWW), and prolificacy rate (PR). Differences (P < .01) among breeds were found for all characters. The Brazilian Somali, the smallest and slowest-gaining breed, was less sensitive to yearly variation than were the other breeds. The Santa Ines, the largest and fastest-gaining breed, was superior in LWB and LWW per ewe lambing. Averaged over the 4-yr period, the Morada Nova had the highest PR (1.82), and the Brazilian Somali and Santa Ines had similar PR (1.39 and 1.31, respectively). Environmental effects on PR due to yearly rainfall quantity and distribution pattern influenced lamb growth up to weaning and ewe reproduction performance. Breed x year (P < .05) interaction effects on PR were largely attributable to the Somali breed's exhibiting higher PR than the Santa Ines and Morada Nova breeds during the relatively wet years of 1981 and 1982.  相似文献   

17.
Effects of selection for reproductive traits were estimated using data from 3 pig lines derived from the same Large White population base. Two lines were selected for 6 generations on high ovulation rate at puberty (OR line) or high prenatal survival corrected for ovulation rate in the first 2 parities (PS line). The third line was an unselected control line. Genetic parameters for age and BW at puberty (AP and WP); number of piglets born alive, weaned, and nurtured (NBA, NW, and NN, respectively); proportions of stillbirth (PSB) and survival from birth to weaning (PSW); litter and average piglet BW at birth (LWB and AWB), at 21 d (LW21 and AW21), and at weaning (LWW and AWW) were estimated using REML methodology. Heritability estimates were 0.38 +/- 0.03, 0.46 +/- 0.03, 0.16 +/- 0.01, 0.08 +/- 0.01, 0.09 +/- 0.01, 0.04 +/- 0.01, 0.04 +/- 0.02, 0.19 +/- 0.02, 0.10 +/- 0.02, 0.10 +/- 0.02, 0.36 +/- 0.02, 0.27 +/- 0.01, and 0.24 +/- 0.01 for AP, WP, NBA, PSB, NW, NN, PSW, LWB, LW21, LWW, AWB, AW21, and AWW, respectively. The measures of litter size showed strong genetic correlations (r(a) >/= 0.95) and had antagonistic relations with PSB (r(a) = -0.59 to -0.75) and average piglet BW (r(a) = -0.19 to -0.46). They also had strong positive genetic correlations with prenatal survival (r(a) = 0.67 to 0.78) and moderate ones with ovulation rate (r(a) = 0.36 to 0.42). Correlations of litter size with PSW were negative at birth but positive at weaning. The OR and PS lines were negatively related to PSW and average piglet BW. Puberty traits had positive genetic correlations with OR and negative ones with PS. Genetic trends were estimated by computing differences between OR or PS and control lines at each generation using least squares and mixed model methodologies. Average genetic trends were computed by regressing line differences on generation number. Significant (P < 0.05) average genetic trends were obtained in OR and PS lines for AP (respectively, 2.1 +/- 0.9 and 3.2 +/- 1.0 d/generation) and WP (respectively, 2.0 +/- 0.5 and 1.8 +/- 0.5 d/generation) and in the PS line for NBA (0.22 +/- 0.10 piglet/generation). Tendencies (P < 0.10) were also observed for LWB (0.21 +/- 0.12 kg/generation) and AWW (-0.25 +/- 0.14 kg/generation) in the PS line. Selection on components of litter size can be used to improve litter size at birth, but result in undesirable trends for preweaning survival.  相似文献   

18.
Genetic parameters were estimated for 6-month weight (W6), 9-month weight (W9), 12-month weight (W12), average daily gain from birth to 6 months old (ADG6), and Kleiber ratio at 6 months (KL6) traits using 6,442 records obtained from a Raini Cashmere goat flock. The parameters were estimated using the restricted maximum likelihood procedure and applying four animal models excluding or including maternal additive genetic and permanent environmental effects. Heritability estimates for W6, W9, W12, ADG6, and KL6, under the most appropriate model were 0.028, 0.26, 0.29, 0.02, and 0.25, respectively. The estimates of genetic and phenotypic correlations among W6, W9, W12, and ADG6 were high and ranged from 0.73 to 0.99. The estimates of genetic and phenotypic correlations among KL6 and others traits were negative and low. Thus, these estimates of genetic parameters may provide a basis for deriving selection indices for postweaning growth traits also low genetic correlation between growth traits with KL6, it is possible to increase efficiency in Raini kids by multitrait selection.  相似文献   

19.
本文应用EXCEL2004软件和SAS6.12软件对辽宁绒山羊繁殖性状进行统计和分析,结果为:辽宁绒山羊的产羔数、产活羔数、断奶只数、断奶窝重、初生窝重、初生个体重、断奶个体重等主要繁殖性状的遗传力分别为0.147、0.126、0.182、0.250、0.318、0.384、0.369,说明除产羔数、产活羔数、断奶只数外,其他性状均属中等遗传力;繁殖性状中,产羔数、产活羔数、断奶只数、初生窝重、断奶窝重等性状的表型相关和遗传相关均为强正相关,窝性状与个体性状呈负遗传相关;初生个体重、断奶个体重与其他5个性状间呈弱正相关或弱负相关。  相似文献   

20.
Thirty-three adult Damascus does (29±1.1 kg BW) were fed 0.6 kg per head per day of a concentrate diet plus ad libitum rice straw (Oryza sativa, control, R), or green acacia (Acacia saligna, A) or berseem clover hay (Trifolium alexandrinum, B). All treatment groups had free access to underground saline water containing 3600 ppm TDS. The DM intake was lower (p<0.05) for the R group but did not differ between the other two groups. The DM intake of acacia was 0.64 kg per head per day (1.98% BW) during pregnancy and 0.93 kg per head per day (2.95% BW) during lactation. The drinking water differed (p<0.05) between the three dietary treatments; group B had the highest mean intake and group A had the lowest. The percentage kidding and the litter weight at birth did not differ significantly between the groups. However, the number of kids weaned/doe kidding and the weight of the kids weaned/doe kidding were significantly higher for group B. The mean body weight of the kids at birth and at weaning were significantly lower for group R. The total milk yield over 10 weeks and the milk composition (total solids, fat and protein percentages) were significantly different between the three groups; group B having the highest means and group R the lowest. These results suggest that supplemental feeding is required to enhance the productivity of goats in arid or semi-arid environments and Acacia saligna should not be used fresh in excessive quantities for extended periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号