首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of 4 years of simulated nitrogen (N) and sulfur (S) depositions on gross N transformations in a boreal forest soil in the Athabasca oil sands region (AOSR) in Alberta, Canada, were investigated using the 15N pool dilution method. Gross NH4+ transformation rates in the organic layer tended to decline (P < 0.10, marginal statistical significance, same below) in the order of control (CK, i.e., no N or S addition), +N (30 kg N ha−1 yr−1), +S (30 kg S ha−1 yr−1), and +NS treatments, with an opposite trend in the mineral soil. Gross NH4+ immobilization rates were generally higher than gross N mineralization rates across the treatments, suggesting that the studied soil still had potential for microbial immobilization of NH4+, even after 4 years of elevated levels of simulated N and S depositions. For both soil layers, N addition tended to increase (P < 0.10) the gross nitrification and NO3 immobilization rates. In contrast, S addition reduced (P < 0.001) and increased (P < 0.001) gross nitrification as well as tended (P < 0.10) to reduce and increase gross NO3 immobilization rates in the organic and mineral soils, respectively. Gross nitrification and gross NO3 immobilization rates were tightly coupled in both soil layers. The combination of rapid NH4+ cycling, negligible net nitrification rates and the small NO3 pool size after 4 years of elevated N and S depositions observed here suggest that the risk of NO3 leaching would be low in the studied boreal forest soil, consistent with N leaching measurements in other concurrent studies at the site that are reported elsewhere.  相似文献   

2.
Exotic species possess abilities to harm the ecosystems they invade. This study assesses the density, frequency and cover of exotic plants in roadside right-of-ways, logged areas and wildfire sites within mixedwood sections of the southern boreal forest of Saskatchewan. A total of 23 exotic species were observed including nine species of Gramineae, seven species of Leguminosae and five species of Compositae. Average density of exotic species in areas recently disturbed by timber harvesting or wildfire was 0.2 stems m−2 with a frequency of 72%. Exotic species adapted for wind dispersal were best represented including common dandelion (Taraxacum officinale), perennial sow thistle (Sonchus arvensis) and annual hawksbeard (Crepis tectorum). Only two exotic species, T. officinale and Canada bluegrass (Poa compressa), were observed in mature forest; both occurred with a frequency of 13% and an average density of 0.002 stems m−2. A total of 22 exotic species was found in the right-of-ways quadrats with an average density of 117 stems m−2 and a frequency of 94%. The most frequently observed exotic species in the roadside right-of-way areas were T. officinale, alsike clover (Trifolium hybridum), S. arvensis, creeping red fescue (Festuca rubra) and smooth brome grass (Bromus inermis). These species are either common agricultural weeds or were part of the original seed mixture used to establish a plant cover in the roadside right-of-ways.  相似文献   

3.
Numerous efforts have been invested in designing and configuring residual forest stands in Canadian boreal forest to preserve their overall biodiversity. Now that several landscapes have been partially logged, the next issue in forest management involves the planning of residual forest stand harvesting without compromising wildlife populations. Residual stands can be cut when adjacent regeneration reaches 3 m in height according to current regulations in several Canadian provinces (e.g., Québec, Ontario, Alberta, and British-Columbia). However, little is known on whether such regenerating habitat (RE-3m) can maintain wildlife communities similar to those found in unharvested mature forest (CO). We estimated the relative abundance of small mammals and forest birds in RE-3m and CO habitats and characterized landscape and stand structures. These variables were then compared between the two contrasting successional stages and were used to build habitat use models (HUMs) for 21 species. CO and RE-3m differed with regard to several landscape characteristics and stand structure variables as a result of logging. Snowshoe Hare, Northern Flicker, Alder Flycatcher, Ruby-crowned Kinglet, White-throated Sparrow and Magnolia Warbler were more abundant in RE-3m than CO, while Red-backed Vole, Brown Creeper and Golden-crowned Kinglet exhibited lower abundances in RE-3m. No significant differences in abundance were observed for the 12 other species. Species HUMs were highly significant and explained between 64.3 and 99.1% of the total variability in abundance. Following variance partitioning, stand structure variables accounted for most of the explained variability (54.2%) while landscape characteristics accounted for only 28.7%. No difference in species richness was observed but community evenness was greater in CO than RE-3m. Our results suggest that current regulations may threaten the maintenance of 3 out of 21 censused species for which abundances were significantly lower in regenerating 3 m tall stands. As stand structure explained a large amount of variability in abundance, it should be considered during timber harvest planning in both mature and regenerating stands. Until we know more on whether the current regulations are suitable for maintaining overall biodiversity, our results suggest that some mature forest stands should be maintained within managed landscapes for a complete logging rotation period.  相似文献   

4.
Large cavity-nesting birds depend on large-diameter trees for suitable nest sites. The increased spatial extent of commercial timber harvesting is modifying forest structure across the land base and may thus compromise the availability of large trees at the landscape scale. In this study, our objectives were to (1) characterize the availability of large living and dead trees in old-growth stands dominated by different tree species and surficial deposits that encompass the range of natural cover types of eastern Québec's boreal forest; (2) analyze the distribution of trees among decay-classes; and (3) compare the availability of large trees in unharvested, remnant, and harvested stands for the entire range of decay-classes. A total of 116 line transects were distributed across unharvested forests, remnant linear forests, and cutblocks in cutover areas. Unharvested forest stands (black spruce [Picea mariana], balsam fir [Abies balsamea]–black spruce, balsam fir–white spruce [Picea glauca] and balsam fir) reflected a gradient of balsam fir dominance. The remnant forests selected were isolated for 5–15 years. Analyses were performed at two diameter cut-off values. Trees with DBH ≥20 cm were considered for availability of total trees whereas trees with DBH ≥30 cm were considered for availability of large trees. Forest stands comprised high proportions of standing dead trees (33% of all stems, 8% were large dead stems). Availability of total and large standing trees increased with the dominance of balsam fir in stands. Forest stands located on thick surficial deposits showed higher densities of large dead trees for every stand type suggesting a higher productivity on those sites. Availability of stems according to decay-classes showed a dome-shaped distribution with higher densities of snags in intermediate decay stages. However, for large stems, black spruce stands showed a significantly lower availability that was consistent across all decay-classes. In linear remnant forests, pure balsam fir stands were absent. Remnant stands thus showed a much lower availability in large trees when compared with unharvested balsam fir stands. Clearcuts had the lowest densities of dead trees across sampled stands. Current even-aged management practices clearly affect availability and recruitment of large trees, therefore forest-dwelling wildlife relying on these structures for breeding is likely to be affected by large-scale harvesting in coniferous boreal forests.  相似文献   

5.
The contributions of nitrification and denitrification to N2O and N2 emissions from four forest soils on northern slop of Changbai Mountain were measured with acetylene inhibition methods. In incubation experiments, 0.06% and 3% C2H2 were used to inhibit nitrification and denitrification in these soils, respectively. Both nitrification and denitification existed in these soils except tundra soil, where only denitrification was found. The annually averaged rates of nitrification and denitrification in mountain dark brown forest soil were much higher than that in other three soils. In mountain brown coniferous soil, contributions of different processes to gaseous nitrogen emissions were Denitrification N2O>nitrification N2O>Denitrification N2. The same sequence exists in mountain soddy soil as that in the mountain brown coniferous soil. The sequence in mountain tundra soil was Denitrification N2O>Denitrification N2. Foundation item: This paper was supported by the National Natural Science Foundation of China (No.49701016) and the “Hundred Scientists” Project of Chinese Academy of Sciences. Biography: XU Hui (1967-), male, Ph. Doctor, associate research fellow in Laboratory of Ecological Process of Trace Substance in Terrestrial Ecosystem, Institute of Applied Ecology, Chinese Academy of sciences, Shenyang 110015, P. R. China. Responsible editor: Song Funan  相似文献   

6.
The fate of high and equally distributed ammonium and nitrate deposition was followed in a 72-year-old roofed Norway spruce forest at Solling in central Germany by separately adding 15NH4+ and 15NO3 to throughfall water since November 2001. The objective was to quantify the retention of atmospheric ammonium and nitrate in different ecosystem compartments as well as the leaching loss from the forest ecosystem. δ15N excess in tree tissues (needles, twigs, branches and bole woods) decreased with increased tissue age. Clear 15N signals in old tree tissues indicated that the added 15N was not only assimilated to newly produced tree tissues but also retranslocated to old ones. During a period of over 3-year 15N addition, 30% of 15NH4+ and 36% of 15NO3 were found in tree compartments. For both 15N tracers, 15% of added 15N was found in needles, followed by woody tissues (twigs, branches and boles, 7–13%) and live fine roots (7%). The recovery of 15NH4+ and 15NO3 in the live fine roots differed with soil depth. The recovery of 15NH4+ tended to be higher in the live fine roots in the organic layer than in the upper mineral soil. In the live fine roots in deeper soil, the recovery of 15NO3 tended to be higher than that of 15NH4+. Soil retained the largest proportion of 15N, accounting for 71% of 15NH4+ and 42% of 15NO3. Most of 15NH4+ was recovered in the organic layer (65%) and the recovery decreased with soil depth. Conversely, only 8% of 15NO3 was found in the organic layer and 34% of 15NO3 was evenly distributed throughout the mineral soil layers. Nitrate leaching accounted for 3% of 15NH4+ and 19% of 15NO3. Only less than 1% of the both added 15N was leached as DON. These results suggested that trees had a high contribution to the retention of atmospheric N and soil retention capacity determined the loss of atmospheric N by nitrate leaching.  相似文献   

7.
Postfire tree species compositions are predicted to be the same prior to fire according to the direct regeneration hypothesis (DRH). We studied 94 upland boreal forest stands between 5 and 18 years after fire in Ontario, Canada. Postfire species-specific regeneration density was positively related to prefire stand basal area for Pinus banksiana, Populus spp., Betula papyrifera and Picea mariana, but not for Picea glauca and Abies balsamea. In addition, seedling density of Populus spp., B. papyrifera, P. mariana, P. glauca and A. balsamea were positively affected by build up index and, except Populus spp., their density increased with age of burn. To facilitate testing the DRH, we introduced a term called compositional difference (CD) that is the difference in a species relative percentage between the postfire and prefire stand. The testable null hypothesis is CD = 0 for a given species. CD was not different from 0 for P. banksiana, was 19.8% for Populus spp., 10.4% for B. papyrifera, −17.9% for P. mariana, −14.6% for P. glauca, and −14.9% for A. balsamea, indicating fire increases broadleaves at the expenses of mid- and late-successional coniferous species. Compositional increases of Populus spp. and B. papyrifera in postfire stands occurred mostly where these species were a minor component prior to fire. In conclusion, the DRH was supported by the specific positive relationships between postfire regeneration densities and prefire basal area for P. banksiana, Populus spp., B. papyrifera and P. mariana. However, if the DRH is used for predicting postfire composition, P. banksiana is the only species that had the same composition between postfire and prefire stands. Nevertheless, CD for P. banksiana was negatively related to its prefire composition. Similarly, CD for other species was negatively related to their prefire compositions with varying effects of build up index and age of burn. Our results suggest, if fire occurrences increase with global change, the boreal landscape will be more dominated by hardwoods and mixtures of conifers and hardwoods.  相似文献   

8.
The increasing commercial interest and advancing exploitation of new remote territories of the boreal forest require deeper knowledge of the productivity of these ecosystems. Canadian boreal forests are commonly assumed to be evenly aged, but recent studies show that frequent small-scale disturbances can lead to uneven-aged class distributions. However, how age distribution affects tree growth and stand productivity at high latitudes remains an unanswered question. Dynamics of tree growth in even- and uneven-aged stands at the limit of the closed black spruce (Picea mariana) forest in Quebec (Canada) were assessed on 18 plots with ages ranging from 77 to 340 years. Height, diameter and age of all trees were measured. Stem analysis was performed on the 10 dominant trees of each plot by measuring tree-ring widths on discs collected each meter from the stem, and the growth dynamics in height, diameter and volume were estimated according to tree age. Although growth followed a sigmoid pattern with similar shapes and asymptotes in even- and uneven-aged stands, trees in the latter showed curves more flattened and with increases delayed in time. Growth rates in even-aged plots were at least twice those of uneven-aged plots. The vigorous growth rates occurred earlier in trees of even-aged plots with a culmination of the mean annual increment in height, diameter and volume estimated at 40–80 years, 90–110 years earlier than in uneven-aged plots. Stand volume ranged between 30 and 238 m3 ha−1 with 75% of stands showing values lower than 120 m3 ha−1 and higher volumes occurring at greater dominant heights and stand densities. Results demonstrated the different growth dynamics of black spruce in single- and multi-cohort stands and suggested the need for information on the stand structure when estimating the effective or potential growth performance for forest management of this species.  相似文献   

9.
North American jack pine (Pinus banksiana Lamb.) stands are generally characterized by an even-aged structure resulting from high intensity fires (HIF). However, non-lethal fires of moderate intensity (MIF), which leave behind surviving trees, have also been reported. The objectives of this study were two-fold: (1) assess the concurrent dynamics of live trees, understory vegetation and different types of coarse woody debris (CWD) during succession after HIF; and (2) document how MIF affects stand structure component dynamics compared to HIF. Stands affected by both HIF and MIF were selected. Tree characteristics and age structure, understory biomass, and CWD volume were assessed. Our results suggest that the structural succession of jack pine stands following HIF comprises three stages: young stands (<48 years), premature and mature stands (58–100 years) and old stands (>118 years). Canopy openness and jack pine density significantly decreased with time since HIF, while black spruce density and CWD volume significantly increased. The highest structural diversity was measured in the premature and mature stands. Compared to HIF, MIF increased mean jack pine basal area, decreased average stand density, delayed the replacement of jack pine by black spruce replacement in the canopy, decreased CWD volume, and significantly increased bryophytes mass. MIF increased the diversity of live trees and generally decreased CWD structural diversity. The study confirms the diversity of natural disturbance magnitude and successional processes thereby initiated. Thereafter, it appeared to be relevant for adjustment of disturbance emulating forest-management systems.  相似文献   

10.
In nutrient poor environments, such as boreal forests, many of the most important interactions between plants take place belowground. Here, we report the results of two approaches to obtain estimates of the lateral spread of tree roots.  相似文献   

11.
Land-use and land cover strongly influence carbon (C) storage and distribution within ecosystems. We studied the effects of land-use on: (i) above- and belowground biomass C, (ii) soil organic C (SOC) in bulk soil, coarse- (250–2000 μm), medium- (53–250 μm) and fine-size fractions (<53 μm), and (iii) 13C and 15N abundance in plant litter, bulk soil, coarse-, and medium- and fine-size fractions in the 0–50 cm soil layer in Linaria AB, Canada between May and October of 2006. Five adjacent land-uses were sampled: (i) agriculture since 1930s, (ii) 2-year-old hybrid poplar (Populusdeltoides × Populus × petrowskyana var. Walker) plantation, (iii) 9-year-old Walker hybrid poplar plantation, (iv) grassland since 1997, and (v) an 80-year-old native aspen (Populus tremuloides Michx.) stand. Total ecosystem C stock in the native aspen stand (223 Mg C ha−1) was similar to that of the 9-year-old hybrid poplar plantation (174 Mg C ha−1) but was significantly greater than in the agriculture (132 Mg C ha−1), 2-year-old hybrid poplar plantation (110 Mg C ha−1), and grassland (121 Mg C ha−1). Differences in ecosystem C stocks between the land-uses were primarily the result of different plant biomass as SOC in the 0–50 cm soil layer was unaffected by land-use change. The general trend for C stocks in soil particle-size fractions decreased in the order of: fine > medium > coarse for all land-uses, except in the native aspen stand where C was uniformly distributed among soil particle-size fractions. The C stock in the coarse-size fraction was most affected by land-use change whilst the fine fractions the least. Enrichment of the natural abundances of 13C and 15N across the land-uses since time of disturbance, i.e., from agriculture to 2- and then 9-year-old hybrid poplar plantations or to grassland, suggests shifts from more labile forms of C to more humified forms of C following those land-use changes.  相似文献   

12.
The sustainability of plantation forests is closely dependent on soil nitrogen availability in short-rotation forests established on low-fertility soils. Planting an understorey of nitrogen-fixing trees might be an attractive option for maintaining the N fertility of soils. The development of mono-specific stands of Acacia mangium (100A:0E) and Eucalyptus grandis (0A:100E) was compared with mixed-species plantations, where A. mangium was planted in a mixture at a density of 50% of that of E. grandis (50A:100E). N2 fixation by A. mangium was quantified in 100A:0E and 50A:100E at age 18 and 30 months by the 15N natural abundance method and in 50A:100E at age 30 months by the 15N dilution method. The consistency of results obtained by isotopic methods was checked against observations of nodulation, Specific Acetylene Reduction Activity (SARA), as well as the dynamics of N accumulation within both species. The different tree components (leaves, branches, stems, stumps, coarse roots, medium-sized roots and fine roots) were sampled on 5–10 trees per species for each age. Litter fall was assessed up to 30 months after planting and used to estimate fine root mortality. Higher N concentrations in A. mangium tree components than in E. grandis might be a result of N2 fixation. However, no evidence of N transfer from A. mangium to E. grandis was found. SARA values were not significantly different in 100A:0E and 50A:100E but the biomass of nodules was 20–30 times higher in 100A:0E than in 50A:100E. At age 18 months, higher δ15N values found in A. mangium tree components than in E. grandis components prevented reliable estimations of the percentage of N derived from atmospheric fixation (%Ndfa). At age 30 months, %Ndfa estimated by natural abundance and by 15N dilution amounted to 10–20 and 60%, respectively. The amount of N derived from N2 fixation in the standing biomass was estimated at 62 kg N ha−1 in 100A:0E and 3 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 16 kg N ha−1 in 50A:100E by the 15N dilution method. The total amount of atmospheric N2 fixed since planting (including fine root mortality and litter fall) was estimated at 66 kg N ha−1 in 100A:0E and 7 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 31 kg N ha−1 in 50A:100E by the 15N dilution method. The most reliable estimation of N2 fixation was likely to be achieved using the 15N dilution method and sampling the whole plant.  相似文献   

13.
Overstory mortality, understory tree recruitment, and vegetation development were assessed in trembling aspen (Populus tremuloides Michx.) stands following two recent episodes of forest tent caterpillar defoliation (Malacosoma disstria Hbn.) in northeastern Ontario. The results suggest that poplar (aspen and balsam poplar (Populus balsamifera L.)) mortality increased with consecutive years of insect defoliation occurring from the mid-1980s to mid-2000s and the proportion of poplars in the overstory, but decreased with improved pre-defoliation tree vigour (DBH increment). The first outbreak, which lasted from the mid-1980s to early 1990s, was more severe in terms of insect defoliation and contributed more to poplar mortality and decline. The decline began in the late 1990s and peaked in early 2000s. Poplar regeneration and understory shrubs responded rapidly to foliage loss to insect defoliation and mortality of overstory poplars. The regenerated poplars were able to maintain their growth under developing shrubs and residual overstory canopy and numbers were sufficient to compensate for the poplar trees lost to insect infestation. The defoliation-induced overstory decline will accelerate the transition of aspen stands to conifer dominance through enhanced conifer recruitment and growth, and reduced hardwood overstory in aspen-dominated stands, while hardwood dominance will persist in pure aspen stands. From a timber supply perspective, the decline caused by forest tent caterpillar defoliation could delay the availability of aspen stands for harvesting by 40–50 years.  相似文献   

14.
Nitrogen (N) deposition in the tropics is predicted to increase drastically in the next decades. The sparse information on N cycling in tropical forests revealed that the soil N status of an ecosystem is the key to analyze its reactions to projected increase in N input. Our study was aimed at (1) comparing the soil N availability of forest sites across an Ecuadorian Andosol toposequence by quantifying gross rates of soil N cycling in situ, and (2) determining the factors controlling the differences in soil N cycling across sites. The toposequence was represented by five old-growth forest sites with elevations ranging from 300 m to 1500 m. Our results provide general insights into the role of elevation-mediated factors (i.e. degree of soil development and temperature) in driving patterns of soil N cycling. Gross rates of N transformations, microbial N turnover time, and δ15N signatures in soil and leaf litter decreased with increasing elevation, signifying a decreasing N availability across the toposequence. This was paralleled by a decreasing degree of soil development with increasing elevation, as indicated by declining clay contents, total C, total N, effective cation exchange capacity and increasing base saturation. Soil N-cycling rates and δ15N signatures were highly correlated with mean annual temperature but not with mean annual rainfall and soil moisture which did not systematically vary across the toposequence. Microbial immobilization was the largest fate of produced NH4+ across all sites, and nitrification activity was only 5–11% of gross NH4+ production. We observed a fast reaction of NO3 to organic N and its role for N retention deserves further attention. If projected increase in N deposition will occur, the timing and magnitude of gaseous N losses may follow the pattern of N availability across this Andosol toposequence.  相似文献   

15.
To understand soil N2O fluxes from temperate forests in a climate-sensitive transitional zone,N2O emissions from three temperate forest types(Pinus tabulaeformis,PTT;Pinus armandii,PAT;and Quercus aliena var.acuteserrata,QAT)were monitored using the static closed-chamber method from June 2013 to May 2015 in the Huoditang Forest region of the Qinling Mountains,China.The results showed that these three forest types acted as N2O sources,releasing a mean combined level of 1.35±0.56 kg N2O ha^-1 a^-1,ranging from0.98±0.37 kg N2O ha^-1 a^-1 in PAT to 1.67±0.41 kg N2O ha^-1 a^-1 in QAT.N2O emission fluctuated seasonally,with highest levels during the summer for all three forest types.N2O flux had a significantly positive correlation with soil temperature at a depth of 5 cm or in the water-filled pore space,where the correlation was stronger for temperature than for the water-filled pore space.N2O flux was positively correlated with available soil nitrogen in QAT and PAT.Our results indicate that N2O flux is mainly controlled by soil temperature in the temperate forest in the Qinling Mountains.  相似文献   

16.
Abstract

Commercial thinning has recently been applied in the boreal forest of Quebec (Canada) to increase the volume growth of the residual trees. We aimed to discover if the growth response influences the transversal tracheid dimension of thinned black spruce (Picea mariana (Mill.) B.S.P.) and Jack pine (Pinus banksiana Lamb.) stands at 0.2 m stem height. All 20 studied stands have shown a significant growth response after the treatment (p<0.0001), especially trees with the lowest radial growth before thinning in comparison with the stand mean. Growing conditions met by suppressed trees before thinning might favour them in the competition for light, water and biomass production after the treatment. Trees with a positive growth response did not significantly modify their measured transversal tracheid dimension except for trees which increased twofold their ring-width after thinning. In this case, lumen area and radial cell diameter extended significantly. However individuals with a growth decrease after thinning registered significantly lower values in their ring width, earlywood and latewood cell numbers (p<0.0001) in both species.  相似文献   

17.
Nitrate, ammonium, total dissolved nitrogen (TDN), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and flux were measured for one year in bulk deposition and throughfall from three stand types (upland deciduous, upland conifer and wetland conifer) on the Boreal Plain, Canada. Annual (November 2006 to October 2007 water year) flux rates in bulk deposition were 80, 216, 114 and 410 mg N m−2 for nitrate, ammonium, DON and TDN, respectively, and 3.5 g C m−2 for DOC. The nitrate and ammonium flux in throughfall were approximately 50% of the flux in bulk deposition, while TDN flux in throughfall was 60–74% of the flux in bulk deposition. The DOC flux in throughfall was approximately 2 times greater than DOC flux in bulk deposition, while there was no detectable difference in DON flux. The forest canopy generally had the most impact on throughfall chemistry during the active growing season as compared with the dormant season, although DOC concentrations in throughfall of deciduous stands was highest during autumn. For the upland stands, TDN flow-weighted mean concentrations in the snowpack were not detectably different from the concentrations in throughfall and bulk deposition throughout the rest of the year. However, ammonium concentrations were lower and DON concentrations were higher in the snowpack than in either throughfall or bulk deposition for the other seasons, suggesting some transformation of ammonium to DON within the snowpack.  相似文献   

18.
We considered whether ecological restoration using high diversity of native tree species serves to restore nitrogen dynamics in the Brazilian Atlantic Forest. We measured δ15N and N content in green foliage and soil; vegetation N:P ratio; and soil N mineralization in a preserved natural forest and restored forests of ages 21 and 52 years. Green foliage δ15N values, N content, N:P ratio, inorganic N and net mineralization and nitrification rates were all higher, the older the forest. Our findings indicate that the recuperation of N cycling has not been achieved yet in the restored forests even after 52 years, but show that they are following a trajectory of development that is characterized by their N cycling intensity becoming similar to a natural mature forest of the same original forest formation. This study demonstrated that some young restored forests are more limited by N compared to mature natural forests. We document that the recuperation of N cycling in tropical forests can be achieved through ecological restoration actions.  相似文献   

19.
Soil N transformation was investigated using15N dilution method along a slope on a conifer plantation forest. Although there was no significant difference in the net N mineralization rates by laboratory incubation, net nitrification rates increased downslope. Gross N transformation by15N dilution method showed a distinct difference not only on the rates, but also on the main process between the lower and the upper of the slope. Half of minelarized N was immobilized and the other half was left in NH 4 + pool at the upper part of the slope, while all of mineralized N was used for immobilization or nitrification and NH 4 + pool decreased at the lower of the slope. Soil N transformations were classified into two groups: one was shown below 773 m and the other was shown above 782 m. The incubation with nitrification inhibitor showed that nitrification was mainly conducted by autotrophs irrespective of the position of the slope. Microbial biomass and microbial C/N were similar among the sites. However, the gross mineralization rate was higher below 773 m than above 782 m under similar respiration rates. This suggests that the substrate quality may be one of the controlling factors for soil N transformation. Extractable organic C/N was similar to microbial C/N at the lower of the slope. It indicated that the substrate was more decomposable below 773 m. It is considered that soil N transformation is affected by topographical gradient of moisture and nutrient which makes plant growth and decomposition rate different.  相似文献   

20.
Recently, symptoms of decline have been widely observed in Yezo spruce (Picea jezoensis) and Todo fir (Abies sachalinensis) in Hokkaido. In order to clarify the mechanism of decline, the water status of Yezo spruce and Todo fir trees in the Tokyo University Forest in Hokkaido were investigated. The decline is observed mainly in stands damaged by Typhoon XV of 1981 (D-stands), but is not observed in undamaged stands (C-stands). Sampled trees in both types of stands were selected, the severity of their decline estimated, diurnal water potentials measured and water relation parameters such as water potential at turgor-loss point ( ) and osmotic potential at full saturation ( ) were estimated by pressure-volume analysis. The diurnal trends of leaf water potential and midday water potential ( ) of the sample trees were clearly different between the D-stands and the C-stand. Water stress in trees was much more severe in the D-stands than in the C-stand. and of the declining trees were lower in the D-stands than in the C-stand. However, and were not significantly different between declining trees and healthy-looking trees in D-stands. It was concluded that stand-level water stress, induced by the destruction of the canopy by the typhoon, was associated with the decline symptoms. The measurement of water relation parameters proved to be useful for diagnosis and prediction of decline at a stand level in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号