首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant breeding is a powerful tool for improving nitrogen (N) uptake efficiency and thus reducing the environmental impact relating to crop production. This study evaluated the environmental impact of current barley production systems in two Swedish agricultural areas (South and East) compared with scenarios with improved N uptake efficiency at two levels, in which the fraction of mineral N available for daily crop uptake was increased by 50 and 100%. Life cycle assessment (LCA) methodology was used to quantify energy use, global warming potential (GWP) and acidification and eutrophication potentials along the production chain for spring barley with differing N uptake efficiency, but similar N application rate. The functional unit, to which all energy use and emissions were related, was 1 Mg barley grain. Energy use, GWP and acidification proved to be higher for the East production system, mainly due to lower yield, while eutrophication was higher for South. The two impacts most affected by improved N uptake efficiency were eutrophication and GWP, with GWP decreasing due to a combination of higher yield, soil carbon sequestration and lower indirect emissions of N2O due to lower N leaching. Accounting for land savings due to increased yield, reducing the pressure to transform land elsewhere, would further lower the carbon footprint. Potential eutrophication per Mg grain was reduced by 15% in the production system with the highest N uptake efficiency in southern Sweden. Crops with improved N uptake efficiency can thus be an important complementary measure for reducing N losses to water, provided that the N application rate does not increase. However, incentives for farmers to maintain or even lower the N application rate might be required. Using simulation modelling is a promising approach for assessment of expected effects of improved crop varieties when no long-term experimental data are available. However, advanced crop models are required to better reflect the effect of plant breeding on e.g. expected yield. Future model development should involve expertise in plant breeding, plant physiology and dynamic crop and soil modelling.  相似文献   

2.
华北地区有机及常规草莓生产对环境影响的生命周期评价   总被引:1,自引:0,他引:1  
有机农业与农产品质量安全和生态环境安全密切相关,其环境影响效应也越来越受到人们的广泛关注,系统全面评价有机农产品生产过程对环境的影响,对促进有机农业健康发展具有重要应用价值。本研究采用生命周期评价方法(Life Cycle Assessment, LCA),分析和比较了山东省淄博市博山区有机草莓和北京市昌平区常规草莓生产过程及其对环境的影响。研究结果表明,在各项环境影响指标中,常规草莓生产带来的全球变暖、环境酸化、富营养化和土壤毒性的潜在环境影响分别是全球人均基准值的 3.45%、 2.11%、 27.09%和 280.16%,而有机草莓生产带来的全球变暖、环境酸化、富营养化和土壤毒性的潜在环境影响分别是全球人均基准值的 1.22%、 0.44%、 15.17%和 202.76%,均低于常规草莓。常规草莓生产中生命周期环境影响较大的是富营养化、水体毒性和土壤毒性,造成常规草莓水体毒性危害严重的原因是种植阶段农药残留迁移至水体所致,而土壤毒性是由于化肥和有机肥所携带的重金属残留所致。有机草莓生产中生命周期环境影响较大的是富营养化和土壤毒性,主要是由于有机草莓农作阶段施肥过程中的磷流失和重金属残留所引起的。总体上看,有机草莓生命周期环境影响综合指数为 0.22,而常规草莓为 0.43,说明常规草莓对环境的负面影响明显高于有机草莓。因此,施用生物源农药与优质有机肥是控制草莓生命周期负面环境影响的关键措施。  相似文献   

3.
The environmental impact of crop production is mainly related to fossil fuels consumption and to fertilisers application. Emissions arising from the spreading of organic and mineral fertilisers are important contributors for impact categories such as eutrophication and acidification. The choice of the fertilisers and of the spreading techniques as well as the crop residues management can deeply affect the environmental impact related to crop cultivation.In this study, seven scenarios describing fertilising schemes characterised by different organic and mineral fertilisers and by different mechanisation were compared. The aim is to evaluate, using the Life Cycle Assessment (LCA) method, how the environmental performances of grain maize production were affected by these different fertilisers schemes. The study was carried out considering a cradle to farm gate perspective and 1 t grain maize was selected as functional unit. Inventory data were collected on a farm located in Po Valley (Northern Italy) during year 2013 and were processed using the composite method recommended by the International Reference Life Cycle Data System (ILCD). The compared scenarios involved organic and mineral fertiliser distribution and were: pig slurry incorporation after >3 days after spreading (BS), fast pig slurry incorporation within 2 h from spreading (AS1), direct soil injection of pig slurry (AS2), pig slurry incorporation (after >3 days) with straw collection (AS3), digestate spreading instead of pig slurry (after >3 days) (AS4), only mineral fertilisers (i.e. urea and superphosphate) distribution (AS5) and only mineral fertilisers (i.e. calcium ammonium nitrate and superphosphate) distribution (AS6).The results were not univocal, since climate and soil conditions as well as physical and chemical fertiliser characteristics differently affected the environmental load, especially for particulate matter formation, terrestrial acidification and terrestrial eutrophication impact categories. AS1 and AS2 showed the most beneficial results for these impact categories (between ↙67% and ↙73% respect to worst scenario). AS6, on the opposite, showed the highest environmental impact for those impact categories mainly affected by energy and fossil fuel consumption (climate change, ozone depletion, human toxicity with carcinogenic effect, particulate matter, freshwater eutrophication, freshwater ecotoxicity and mineral, fossil and renewable resources depletion), categories on which AS3 and AS4 were the best solutions. AS3 was the most impacting for terrestrial acidification and eutrophicationA sensitivity analysis was carried out varying grain maize yield (mostly affected: marine eutrophication) and ammonia volatilisation losses due to organic fertilisers (mainly affected: terrestrial acidification and eutrophication).The achieved results can be useful for the development of ⬓spreading rules⬽ that drive the application of organic fertilisers in agricultural areas where there is an intense livestock activity.  相似文献   

4.
Perennial rhizomatous grasses (PRGs) tend to have a high yield combined with a low environmental impact. Cultivation in marginal or poorly cultivated land is recommended in order not to compromise food security and to overcome land use controversies. However, the environmental impacts of using different types of soil are still unclear. We thus assessed the environmental impact of two giant reed (GR) systems cultivated in a fertile soil (FS) and in a marginal soil (MS) through a cradle-to-plant gate LCA. We analyzed energy balance, GHG emissions (including LUC, not including iLUC), and the main impacts on air, water and soil quality. In both systems the annualized soil carbon sequestration was more than twofold the total GHG emitted, equal to −6464 kg CO2eq ha−1 in FS and −5757 kg CO2eq ha−1 in MS. Overall, soil characteristics affected not only GR yield level, but also its environmental impact, which seems to be higher in the MS system both on a hectare and tonne basis. The production of GR biomass in marginal soil could thus lead to higher environmental impacts and a more extensive land requirement.  相似文献   

5.
《Soil Technology》1988,1(4):393-412
The one-dimensional quantitative model MANRUU has been developed for the purpose of physical planning on a national level to calculate the overproduction of nitrogen and phosphorus in animal manure per municipality. MANRUU calculates total manure production per municipality from input data on animal-specific manure production (kg N, P2O5 per year), fertilizer use and the number of animals of various categories. Data on crop-specific fertilizer demand and on acreage of all crops grown are used to calculate the maximum amount of manure per municipality applicable from an environmental point of view.The two-dimensional model WATRUU calculates mean concentrations of nitrate and ortho-phosphate in shallow groundwater for catchment areas. It uses the output of the model MANRUU and realistic assumptions on conversion processes of nitrate and phosphate. By using watersheds, an indication can be given of the flow direction and spatial effects of the polluted shallow groundwater. The results of the calculations are displayed as maps, based on input data for 1983. Computed mean nitrate concentrations are up to 16 times in excess of the EC-standards for drinking water. Phosphate saturation down to the groundwater level is expected to occur in the soil of 145,000 ha of farming land within 25 years when no preventative measures are taken.The model results were compared with data from a detailed study of the quality of the top groundwater layer in the entire Province of Utrecht. The comparison was found to be reliable at a confidence level of 95%.  相似文献   

6.
Summary Digitaria eriantha is a subtropical grass which is widely sown as a pasture species in South Africa and cultivars have recently been released in Australia. The species is variable in seed production and in other agronomic attributes. This paper describes a breeding program designed to combine the seed production of cv. Premier with the high productivity in winter-spring of an almost sterile genotype.Hybrids between the two accessions were either triploid and sterile, or diploid with low fertility. The F2 to F5 generations were selected intensively for fertility and, at two contrasting sites, for spring productivity, with both maternal and paternal selection. The F6 generation was grown as replicated swards and yield in spring, and fertility, were used for selection of elite F5 plants to comprise the parents of a new cultivar (cv. Advance).In evaluation trials, spring dry matter production of Advance averaged 40% higher than that of Premier. On average, seed production of Advance was 11% lower than that of Premier and botanical fertility was consistently about half that of Premier. Experimental yields of cleaned seed of Advance were up to 138 kg/ha. In commerce, seed yields of Advance are likely to be lower than those of Premier unless higher inflorescence densities than Premier can be achieved.  相似文献   

7.
Intensification of cropping systems in recent decades has increased their productivity but affected air, soil and water quality. These harmful environmental impacts are exacerbated in Maize Monoculture (MM) and hasten the need for solutions to overcome the trade off between crop yield and environmental impacts. In a three-year cropping systems experiment, a conventional intensive maize monoculture (MMConv), with a winter bare fallow, deep soil tillage, non-limiting irrigation was compared to three Low Input Cropping Systems (LI-CS) designed as alternatives to the conventional system. They were managed with decision-rules implemented to reach specific objectives of input reduction. The LI-CS designed with Integrated Weed Management (IWM) techniques and other sustainable cropping practices, were:(i) MMLI—an IWM Low Input MM; (ii) MMCT—a Conservation Tillage combined with cover crop MM; and (iii) Maize-MSW—an IWM maize grown in rotation with soybean and wheat. A comprehensive multi-criteria assessment was carried out to quantify the agronomic, economic, social, and environmental performances of each system. A canonical discriminant analysis of performance metrics revealed large differences between the four systems. Yields were significantly higher in MMConv (11.0 Mg ha−1) and MMLI (10.3 Mg ha−1) than in Maize-MSW (8.6 Mg ha−1) and MMCT (7.8 Mg ha−1). MMCT had the largest weed infestation (density and biomass) despite the greatest use of herbicides. The Herbicide Treatment Frequency Index (HTFI), used to indicate differences in herbicide use, revealed that the MMLI (HTFI = 1.0) and Maize-MSW (1.1) halved the herbicide use as compared to the MMConv (2.1), despite having similar weed abundance levels. The LI-CS, especially MMCT, produced high biomass winter cover crops and then less nitrogen fertilization was required as compared to MMConv. Gross margins in the MMLI (1254 € ha−1) and MMConv (1252 € ha−1) were higher than the MMCT (637 € ha−1) and Maize-MSW (928 € ha−1). MMLI and MMConv had similar labour requirements. Water drainage, pesticide leaching, energy use, and estimated greenhouse gas emissions were higher in MMConv than in the LI-CS in most years. Results from this research show good potential for the MMLI to reduce the environmental impacts of MMConv while maintaining its economic and social performance.  相似文献   

8.
The interest in producing ethanol from maize has increased during recent years. However, the potential for maize-ethanol production is restricted to the extent of the feedstock production and the feedstock collection radius around an ethanol processing plant. The harvested acreage of maize in Alabama, Florida and Georgia has varied from 115,000 ha to 1.4 million ha during the last 50 years. One basic criterion for a sustainable production of renewable bio-ethanol is a positive net energy yield (NEY), i.e. more energy must be produced than the non-renewable energy that is used in the energy production chain, including the feedstock production and transportation and the biofuel processing. The goal of this study was to evaluate the potential to produce renewable energy the form of maize-ethanol in a region with typical southeastern USA maize cropping conditions. Two maize production acreages, which represent current and historical large acreages, and two feedstock collection radii of 100 and 200 km around an ethanol plant in southwest Georgia were evaluated. Maize growth and yield were simulated with the Cropping System Model (CSM)-CERES-Maize model to account for climate and soil variability. The simulations included weather data for 68 years. The potential ethanol production and NEY were calculated based on the simulated yields and energy requirements for the production. The ethanol production potential was 30–40 times greater for the large production acreage than for the small acreage. The average NEY across all simulated years was positive for all evaluated production acreages and collection radii. However, it was negative for the large production acreage under certain weather conditions. This study showed the potential to provide for an increase in renewable ethanol production from maize in the southeastern USA to meet the demand of the ethanol processing infrastructure.  相似文献   

9.
This paper reviews the knowledge on effects of climate change on agricultural productivity in Europe and the consequences for policy and research. Warming is expected to lead to a northward expansion of suitable cropping areas and a reduction of the growing period of determinate crops (e.g. cereals), but an increase for indeterminate crops (e.g. root crops). Increasing atmospheric CO2 concentrations will directly enhance plant productivity and also increase resource use efficiencies.

In northern areas climate change may produce positive effects on agriculture through introduction of new crop species and varieties, higher crop production and expansion of suitable areas for crop cultivation. Disadvantages may be an increase in the need for plant protection, the risk of nutrient leaching and the turnover of soil organic matter. In southern areas the disadvantages will predominate. The possible increase in water shortage and extreme weather events may cause lower harvestable yields, higher yield variability and a reduction in suitable areas for traditional crops. These effects may reinforce the current trends of intensification of agriculture in northern and western Europe and extensification in the Mediterranean and southeastern parts of Europe.

Policy will have to support the adaptation of European agriculture to climate change by encouraging the flexibility of land use, crop production, farming systems etc. In doing so, it is necessary to consider the multifunctional role of agriculture, and to strike a variable balance between economic, environmental and social functions in different European regions. Policy will also need to be concerned with agricultural strategies to mitigate climate change through a reduction in emissions of methane and nitrous oxide, an increase in carbon sequestration in agricultural soils and the growing of energy crops to substitute fossil energy use. The policies to support adaptation and mitigation to climate change will need to be linked closely to the development of agri-environmental schemes in the European Union Common Agricultural Policy.

Research will have further to deal with the effect on secondary factors of agricultural production, on the quality of crop and animal production, of changes in frequency of isolated and extreme weather events on agricultural production, and the interaction with the surrounding natural ecosystems. There is also a need to study combined effects of adaptation and mitigation strategies, and include assessments of the consequences on current efforts in agricultural policy to develop a sustainable agriculture that also preserves environmental and social values in the rural society.  相似文献   


10.
Field studies on nitrogen dynamics after cultivation of grain legumes Field trials were conducted in order to study the nitrogen dynamics in soil after cultivation of grain legumes and to investigate the possibility of reduction of nitrate leaching due to catch crops or suitable following crops. Accordingly, in 1989/90 soil samples were taken on 12 farms at depths of 0–80 cm in 4 week intervals and analysed for NO3-N. Furthermore, Brassica napus and Sinapis alba were sown after grain legumes on two farms, and at the experimental station Roggenstein field trials were carried out with different catch crops (Sinapis alba, Raphanus sativus, Lolium multiflorum and Pisum sativum) after grain peas. Considerable amounts of nitrogen (100–150 kg N/ha) in the form of crop residues (straw and grains) were left on the fields cultivated with grain legumes. After harvesting, nitrate content in the soil layer 0–80 cm was on grain legume fields almost twice as high as on fields cultivated with winter wheat. During autumn, the soil nitrate contents increased remarkably. In the soil layer 0–80 cm the maximum values rose to 140 kg N/ha after peas, to 120 kg N/ha after faba beans and only to 65 kg N/ha after winter wheat. The more intensive N-mineralization after peas compared to faba beans is due to a lower C/N-ratio of crop residues and an earlier harvest time of 2-3 weeks of peas. In winter extremely high N-leaching was measured on fallow land after cultivation of grain legumes. Cultivation of catch crops makes it possible to retain up to 110 kg N/ha in plant material. Raphanus sativus and Sinapis alba are most suitable for this purpose due to their high N-uptake even when they are sown late. Ploughing up catch crops in autumn results in a fast mineralization of their immobilized nitrogen. This implies the risk of N-leaching into deeper soil layers during winter, depending on the amount of rainfall and water capacity of the soil. Particularly on soils with low water capacity, early N-mineralization needs to be prevented by cultivating catch crops which freeze off or survive in winter. Cultivation of Brassica napus (winter form) after grain legumes leads to an extensive uptake of soil nitrate before the beginning of the seepage period, and therefore almost excludes enhanced N-leaching.  相似文献   

11.
The studies on anthropogenic climate change performed in the last decade over Europe show consistent projections of increases in temperature and different patterns of precipitation with widespread increases in northern Europe and decreases over parts of southern and eastern Europe. In many countries and in recent years there is a tendency towards cereal grain yield stagnation and increased yield variability. Some of these trends may have been influenced by the recent climatic changes over Europe.A set of qualitative and quantitative questionnaires on perceived risks and foreseen impacts of climate and climate change on agriculture in Europe was distributed to agro-climatic and agronomy experts in 26 countries. Europe was divided into 13 Environmental Zones (EZ). In total, we had 50 individual responses for specific EZ. The questionnaires provided both country and EZ specific information on the: (1) main vulnerabilities of crops and cropping systems under present climate; (2) estimates of climate change impacts on the production of nine selected crops; (3) possible adaptation options as well as (4) adaptation observed so far. In addition we focused on the overall awareness and presence of warning and decision support systems with relevance for adaptation to climate change.The results show that farmers across Europe are currently adapting to climate change, in particular in terms of changing timing of cultivation and selecting other crop species and cultivars. The responses in the questionnaires show a surprisingly high proportion of negative expectations concerning the impacts of climate change on crops and crop production throughout Europe, even in the cool temperate northern European countries.The expected impacts, both positive and negative, are just as large in northern Europe as in the Mediterranean countries, and this is largely linked with the possibilities for effective adaptation to maintain current yields. The most negative effects were found for the continental climate in the Pannonian zone, which includes Hungary, Serbia, Bulgaria and Romania. This region will suffer from increased incidents of heat waves and droughts without possibilities for effectively shifting crop cultivation to other parts of the years. A wide range of adaptation options exists in most European regions to mitigate many of the negative impacts of climate change on crop production in Europe. However, considering all effects of climate change and possibilties for adaptation, impacts are still mostly negative in wide regions across Europe.  相似文献   

12.
The suitability of the Life Cycle Assessment (LCA) methodology to analyse the environmental impact of agricultural production is investigated. The first part of an LCA is an inventory of all the resources used and emissions released due to the system under investigation. In the following step, i.e. the Life Cycle Impact Assessment the inventory data were analysed and aggregated in order to finally get one index representing the total environmental burden. For the Life Cycle Impact Assessment (LCIA) the Eco-indicator 95 method has been chosen, because this is a well-documented and regularly applied impact assessment method. The resulting index is called Eco-indicator value. The higher the Eco-indicator value the stronger is the total environmental impact of an analysed system. A sugar beet field experiment conducted in northeastern Germany was chosen as an example for the analysis. In this experiment three different nitrogen fertilisers (calcium ammonium nitrate=CAN, urea ammonium nitrate solution=UAN, urea) were used at optimum N rates. The obtained Eco-indicator values were clearly different for the N fertilisers used in the sugar beet trial. The highest value was observed for the system where urea was used as N source. The lowest Eco-indicator value has been calculated for the CAN system. The differences are mainly due to different ammonia volatilisation after application of the N fertilisers. For all the systems the environmental effects of acidification and eutrophication contributed most to the total Eco-indicator value. The results show that the LCA methodology is basically suitable to assess the environmental impact associated with agricultural production. A comparative analysis of the system, contribution to global warming, acidification, eutrophication and summer smog is possible. However, some important environmental issues are missing in the Eco-indicator 95 method (e.g. the use of resources and land).  相似文献   

13.
Australian farming systems have an enduring history of crop–livestock integration which emerged in the face of high climate variability, infertile soils and variable landscapes. Ley farming systems with phases of shorter annual legume pasture phases with cereal crops predominate but, emerging sustainability issues and the need to manage risk is driving ongoing innovation in crop–livestock integration. We discuss the recent evolution of selected innovations that integrate crop and livestock production and their impacts on farm productivity, sustainability and business risk. Dual-purpose use of cereals and canola (Brassica napus) for forage during the vegetative stage while still harvesting for grain is now practiced throughout southern Australia's cropping zone. This practice provides risk management benefits, diversifies crop rotations, reduces pressure on other feed resources and can significantly increase both livestock and crop productivity from farms by 25–75% with little increase in inputs. Sacrificially grazing crops when expected grain yield is low and/or livestock prices are attractive relative to grain provides further flexibility in crop–livestock management systems vital for business risk management in a variable climate. Replacing annual pastures with perennial pasture phases in rotation with crops can provide a range of benefits including improved hydrological balance to reduce dryland salinity, subsoil acidification and water-logging, provide a management tool for herbicide-resistant or problem weeds, improved soil nutrient and carbon stocks as well as increased livestock productivity by filling feed gaps. In some environments, integration of perennial forages in mixtures with cropping, such as alley cropping and inter-cropping, also provide options for improving environmental outcomes. These practices are all innovations that provide flexibility and enable tactical decisions about the mix of enterprises and allocation of land and forage resources to be adjusted in response to climate and price. We discuss these innovations in the context of the emerging constraints to crop–livestock integration in Australia including the continuing decline in labour availability on farms and increasing management skill required to optimise enterprise profitability.  相似文献   

14.
气候变化影响下长江流域油菜产量模拟初步研究   总被引:7,自引:4,他引:3  
为油菜主产区油料作物种植结构调整、合理布局以及制定适应气候变化的管理措施提供理论依据。以中国三大油料作物之一的油菜为代表,针对油菜主产区之一的长江流域的油菜生产,利用引进的澳大利亚APSIM-Canola油菜模型,结合英国Hadley中心的区域气候模式PRECIS,对SRES A2、B2 2种排放情景下油菜生产状况进行模拟。同时结合多元回归统计方法,分析长江流域气候变化对油菜生产已经造成和未来可能造成的影响,并提出可能的适应性对策。研究表明:(1)油菜雨养产量与关键生育时期(现蕾-抽苔期、抽苔-开花期)内辐射和温度呈显著的负相关,与降水呈正相关。(2)A2、B2气候变化情景下油菜单产均随时间呈降低趋势,21世纪80年代减产幅度最为明显,A2情景下近期(21世纪20年代)、中期(21世纪50年代)、远期(21世纪80年代)油菜产量波动呈加强趋势,且同一时期内A2情景下产量波动趋势均大于B2情景。(3)适当采用调整播种期和栽培方式、改良作物品种等适应性对策可有效降低油菜的减产趋势。  相似文献   

15.
Effects of rotational fallows (‘set-aside land’) on subsequent winter wheat. The aim of the present study was to investigate the effects of different fallow treatment on subsequent winter wheat. The field trials included rotational fallows planted with Trifolium repens, Festuca rubra and Lolium perenne sown under winter barley compared to complete fallow and natural fallow without seed application and fallows planted with Trifolium pratense, Festuca rubra and Dactylis glomerata sown under winter wheat. After ploughing up the fallow vegetation, winter wheat was planted for 2 succeeding years at two levels of N-fertilization. Herbicides and fungicides were not applied. The following criteria were investigated: biomass-production, N-uptake, yield, weed infestation, nitrate and water content of the soil. In autumn, after ploughing up the fallow vegetation, the nitrate content of the soil (0—150 cm) increased by up to 210 kg NO3-N/ha after complete fallow, by up to 60 kg NO3-N/ha after natural fallow and by up to 75 and 130 kg NO3-N/ha after fallows cropped with Trifolium repens and Trifolium pratense, respectively. Low nitrate levels of 20—27 kg NO3-N/ha were observed after fallows planted with grass. N-immobilization caused by ploughing up grass fallows continued until the first harvest of the subsequent winter wheat. In the second year of winter-wheat, no differences of N-mineralization dependent on the previous fallow crop occurred, except in the case complete fallow which showed lower N-mineralization. It can be concluded that fallows cropped with grass lead to a higher nitrogen fertilizer requirement m the succeeding crops. Festuca rubra was able to form dense swards in strong competition with weeds and to decrease the abundance of Alopecurus myosuroides and Apera spíca-venti in subsequent winter wheat, while natural fallow and fallow planted with Trifolium repens and Lolium perenne caused epidemical increases in grass-weed density. Preceding crop effects on grain yield of the winter wheat showed a close relation to N-supply and were compensated by mineral N-fertilization. After natural fallow and fallow covered with Trifolinm repens, yield reductions due to grass-weed competition occurred. Undersown Festuca rubra seems to possess a special suitabihty for cultivation in routional fallows. It establishes itself strongly under different cover crops and is able to form dense swards in strong competition with weeds. Grass-weed density in the succeeding crops will be reduced and nitrate leaching will still be prevented after ploughing up the fallow vegetation. N-fertilization of the subsequent crops must be carried out under considerations of higher N-requirements which is probably not entirely due to a stronger N-immobilization.  相似文献   

16.
This study was carried out to verify the applicability of variable rate fertilization (VRF) based on soil testing and diagnosis of rice plant growth for high quality rice production of var. Chucheongbyeo at the farm level. The field trials were conducted at Icheon in Gyeonggi province on a 10 ha farm consisting of 45 experimental fields. For comparative study, 15 field trials were carried out adopting fertilizer management (FPM) practices currently used by farmers. FPM fields were managed by each rice grower using current cultivation methods, but in each VRF field fertilizer application was prescribed using soil test results and the amount of N fertilizer for top-dressing at panicle initiation stage was calculated using rice growth value at that stage. In VRF fields, the total amount of N fertilizer application was less (72 kg ha−1) than that in FPM fields (103 kg ha−1). However, the amount of K2O fertilizer application was more in VRF fields (60 kg ha−1) than that in FPM fields (52 kg ha−1). The amount of P2O5 fertilizer application was similar between the VRF and FPM fields. Plant height was significantly shorter and the number of tillers was significantly more at VRF fields than at the FPM fields. Coefficient of variation (CV) of each growth characteristic measured in VRF was lower than that of FPM fields at panicle initiation stage. There was no difference in culm and panicle length and panicle number between them at the grain filling stage, but CV of panicle numbers per m2 decreased in VRF compared with that of the FPM fields. Rice yield was not different between VRF and FPM fields despite higher brown rice recovery and 1,000-grain weight in VRF fields. Under VRF management, head rice yield increased due to an increase in head rice ratio accompanied by a reduction in brown rice protein content and variation of quality characteristics. These results suggest that VRF application based on soil tests and measurement of rice growth value at panicle initiation stage has the potential for quality control and production of high quality rice through increasing uniformity of growth and reducing the variability in quality among individual fields.  相似文献   

17.
气候变化对长江中下游稻区水稻产量的影响   总被引:22,自引:0,他引:22  
选择长江中下游平原作为研究区域,按照政府间气候变化专业委员会(IPCC)排放情景特别报告(SRES)中的A2和B2方案,将基于区域气候模式PRECIS构建的气候变化情景文件与水稻生长模型ORYZA2000结合,模拟基准时段(1961—1990)气候(Baseline)和2021—2050时段A2、B2情景下的水稻产量,分析未来气候变化对长江中下游水稻产量的影响。构建两种影响评估方法,重点分析增温和大气CO2肥效作用对水稻产量的影响。结果表明,不考虑CO2肥效作用时,随着温度升高,水稻生育期缩短,产量下降。A2情景下水稻生育期平均缩短4.5d,产量减少15.2%;B2情景下平均缩短3.4d,产量减少15%。其中,减产达到20%以上的区域集中在安徽中南部、湖北东南部和湖南东部地区。当考虑CO2肥效作用后,A2情景下水稻平均产量减少5.1%,B2情景平均减少5.8%。减产区域缩小且幅度降低,江西和浙江部分地区则呈现一定程度增产,但增幅10%。大气CO2肥效作用一定程度上可提高水稻产量,使晚稻在增温的不利影响下仍呈现不同程度的增产态势,但对单季稻和早稻的增产贡献仍不足以抵消升温的负面影响。另外,大气CO2肥效作用可有利于提高未来气候变化下水稻的稳产性。  相似文献   

18.
气候变化背景下陕西关中西部作物气候生产潜力变化特征   总被引:1,自引:0,他引:1  
为了研究气候变化背景下关中西部作物气候生产潜力变化规律,选用宝鸡市11个气象站1961—2010年温度、降水等气象资料,应用Tuynthwhite Memoral模式计算分析宝鸡地区作物气候生产力状况及其变化趋势。结果表明:关中西部气候生产力呈递减趋势;年及各季平均气温均呈明显上升趋势,降水量呈下降趋势;气候暖干化使作物气候生产潜力以35.69 kg/(hm2·10 a)的速率波动下降,降水是主要限制因子;气候生产力利用率平均为34.8%,作物生产有较大的发展潜力;未来气候情景下,“暖湿型”气候对区域作物生产最有利,平均增产幅度8.5%~22.5%,而“冷干型”气候对作物生产最不利,平均减产幅度为5.7%~20.8%。  相似文献   

19.
The Exploitation of Crop Allelopathy in Sustainable Agricultural Production   总被引:10,自引:0,他引:10  
Crop allelopathy may be useful to minimize serious problems in the present agricultural production such as environmental pollution, unsafe products, human health concerns, depletion of crop diversity, soil sickness and reduction of crop productivity. Several crops including alfalfa, buckwheat, maize, rice, rye, sorghum, sunflower, wheat, etc. are affected either by their own toxicity or phytotoxin exudates when their residues decompose in the soil, that show strong suppression on weed emergences. Allelopathic crops when used as cover crop, mulch, smother crops, green manures, or grown in rotational sequences are helpful in reducing noxious weeds and plant pathogen, improve soil quality and crop yield. Those crop plants, particularly the legumes, incorporated at 1–2 tons ha−1 (alfalfa, buckwheat, rice by-products), which can give weed reduction and increase of rice yield by 70 and 20 %, respectively, are suggested for use as natural herbicides. Allelochemicals from allelopathic crops may aid in the development of biological herbicides and pesticides. Cultivating a system with allelopathic crops plays an important role in the establishment of sustainable agriculture. The introduction of allelopathic traits from accessions with strong allelopathic potential to the target crops will enhance the efficacy of crop allelopathy in future agricultural production.  相似文献   

20.
Oil and protein crops are of growing importance in cropping systems. This study was carried out to compare oil crops of linseed, rapeseed, sunflower and protein crops of faba bean and white lupin for grain production, residual plant dry matter and nitrogen. Two field experiments with either oil or protein crops were conducted in 1993 and 1994, respectively. Total dry matter production, grain yield, residues, N concentrations and mineral N in the soil were measured. Dry matter production and distribution as well as N uptake and residues varied greatly among species and between years. In 1993, oil crops gave up to 3 t ha−1 grain and 16 t ha−1 residues with sunflower, while in 1994 up to 5 and 11 t ha−1, respectively, were recorded with winter rape. Protein crops showed an opposite reaction in years. Nitrogen uptake and residual N amounts were correlated with dry matter production. Plant residues of oil crops contained 20–140 kg N ha−1; those of protein crops up to 80 kg N ha−1. Despite the variation of residual plant N the variability of mineral N in the soil at harvest was hardly influenced by crops and amounted to only 20–50 kg NO3-N ha−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号