首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Different drying methods were applied to fresh Canadian-grown Echinacea purpurea flowers to determine optimal drying procedures for preserving caffeic acid derivatives. Fresh flowers of E. purpurea were dried by freeze-drying (FD), vacuum microwave drying with full vacuum (VMD), and air-drying (AD) at 25, 40, and 70 degrees C. Using HPLC, chicoric acid and caftaric acid levels were quantitated in dried flowers. These acids were significantly affected by the drying method conditions used. Although significant (p < 0.05) loss of chicoric acid was observed when flowers were stored at high moisture, VMD flowers with a low moisture content retained the highest levels of chicoric acid and caftaric acid similar to FD flowers. Flowers that were AD at 25 degrees C retained about 50%, while those dried by AD at 70 degrees C resulted in the lowest retention of these acids. Although flowers dried by AD at 40 degrees C retained relatively high amounts of chicoric acid and caftaric acid, the time (55 h) required to reach optimal drying was considerably longer than that (47 min) for VMD.  相似文献   

2.
The changes of the antioxidant (AOA) and antiradical activities (ARA) and the total contents of phenolics, anthocyanins, flavonols, and hydroxybenzoic acid in roots and different aerial sections of Echinacea purpurea, nettle, and dandelion, after treatment with ornithine decarboxylase inhibitor, a polyamine inhibitor (O-phosphoethanolamine, KF), and a phenol biosynthesis stimulator (carboxymethyl chitin glucan, CCHG) were analyzed spectrophotometrically; hydroxycinnamic acids content was analyzed by RP-HPLC with UV detection. Both regulators increased the AOA measured as inhibition of peroxidation (IP) in all herb sections, with the exception of Echinacea stems after treatment with KF. In root tissues IP was dramatically elevated mainly after CCHG application: 8.5-fold in Echinacea, 4.14-fold in nettle, and 2.08-fold in dandelion. ARA decrease of Echinacea leaves treated with regulators was in direct relation only with cichoric acid and caftaric acid contents. Both regulators uphold the formation of cinnamic acid conjugates, the most expressive being that of cichoric acid after treatment with CCHG in Echinacea roots from 2.71 to 20.92 mg g(-1). There was a strong relationship between increase of the total phenolics in all sections of Echinacea, as well as in the studied sections of dandelion, and the anthocyanin content.  相似文献   

3.
4.
This study was focused on the effects of virus and phytoplasma infections on the production of Echinacea purpurea (L.) Moench secondary metabolites, such as caffeic acid derivatives, alkamides, and essential oil. The identification of caffeic acid derivatives and alkamides was carried out by means of high-performance liquid chromatography-diode array detection (HPLC-DAD), HPLC-electrospray ionization-mass spectrometry (ESI-MS), and MS(2). Quantitative analysis of these compounds was carried out using HPLC-DAD. The results indicated that the presence of the two pathogens significantly decreases (P < 0.05) the content of cichoric acid, the main caffeic acid derivative. Regarding the main alkamide, dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamide, a significant decrease (P < 0.05) in the content of this secondary metabolite was observed in virus-infected plants in comparison with healthy plants, while in the phytoplasma-infected sample the variation of this secondary metabolite was not appreciable. The % relative area of the E/Z isomers of this alkamide was also found to change in infected samples. The gas chromatography (GC) and GC-MS analysis of E. purpurea essential oil enabled the identification of 30 compounds. The main significant differences (P < 0.05) in the semiquantitative composition were observed for three components: limonene, cis-verbenol, and verbenone. The results indicate that the presence of virus and phytoplasma has an appreciable influence on the content of E. purpurea secondary metabolites, which is an important issue in defining the commercial quality, market value, and therapeutic efficacy of this herbal drug.  相似文献   

5.
酚酸类和萜类是水稻化感作用研究中研究较多、争议较大的2大类化感物质,但目前有关水稻根系分泌物的研究多在实验室条件下进行。本文以国际公认的强化感水稻‘PI312777’和弱化感水稻‘Lemont’为材料,以未种植水稻的土壤为对照,研究了其在田间旱育条件下,不同土壤水分状态(旱地和湿地)时,根际土壤酚酸类和萜类物质的差异。结果表明,不同水分条件下不同化感潜力水稻品种和对照根际土壤中酚酸类物质和萜类物质的组成较为相似,但各物质含量存在一定差异。适度旱胁迫下,各处理根际土壤中所检测到的咖啡酸、对羟基苯甲酸、香草酸、阿魏酸和肉桂酸5种酚酸类物质及总量均有提高,其中强化感水稻‘PI312777’根际土壤中5种酚酸类物质提高最显著,比CK湿地处理提高2.84倍;在各处理根际土壤共检测到的27种萜类物质中,17种是含氧单萜;干旱胁迫导致各处理根际土壤单萜烯、含氧单萜、含氧倍半萜和总萜变化程度和变化趋势不同,单萜烯相对含量在强化感水稻‘PI312777’根际土壤中明显提高,而在弱化感水稻‘Lemont’和对照根际土壤中则降低。本文在此基础上讨论了由此导致2种水稻田间化感抑草效果差异的原因与机制。  相似文献   

6.
A proposed standard extraction and HPLC analysis method has been used to measure typical levels of various phenolic compounds in the medicinally used Echinacea species. Chicoric acid was the main phenolic in E. purpurea roots (mean 2.27% summer, 1.68% autumn) and tops (2.02% summer, 0.52% autumn), and echinacoside was the main phenolic in E. angustifolia (1.04%) and E. pallida roots (0.34%). Caftaric acid was the other main phenolic compound in E. purpurea roots (0.40% summer, 0.35% autumn) and tops (0.82% summer, 0.18% autumn), and cynarin was a characteristic component of E. angustifolia roots (0.12%). Enzymatic browning during extraction could reduce the measured levels of phenolic compounds by >50%. Colorimetric analyses for total phenolics correlated well with the HPLC results for E. purpurea and E. angustifolia, but the colorimetric method gave higher values.  相似文献   

7.
Microbial populations and phenolic acids in soil   总被引:18,自引:0,他引:18  
Populations of bacteria, fungi and actinomycetes in Portsmouth A1- and B,-soil material were affected in different ways by repeated enrichment with ferulic, p-coumaric, p-hydroxybenzoic or vanillic acids. Responses varied with type of soil material and phenolic acid, phenolic acid concentration, and inorganic nutrient status of the soil. Populations changed more frequently in B1- than in A1-soil material. Phenolic acids were readily metabolized by microorganisms, sometimes without detectable population changes, when adequate mineral nutrients were present. Induction of enzymes or selection of organisms capable of degrading individual phenolic acids were clearly evident. Results imply that microbial activity in bioassay systems should be defined for allelopathic studies, particularly when results from various bioassay systems are to be compared  相似文献   

8.
A reversed-phase high-performance liquid chromatography (HPLC) method has been developed to determine caffeic acid derivatives, for example, cichoric acid, and alkamides in plant parts and herbal products of Echinacea purpurea. The method consists of an extraction procedure whereby the hydrophilic phenolics as well as the lipophilic alkamides are released from the samples, followed by the analytical HPLC procedure for quantitative determination of these compounds. The method is the first one validated for the determination of these two groups of compounds in the same procedure. Naringenin has been used as an internal standard, as no other flavanones are present in the extract and it does not interfere with any of the compounds under investigation. Analysis of Danish-grown plant material shows that it is possible to raise plants of a very high chemical quality in Denmark. A selection of international herbal products available on the Danish market show surprisingly variable quality, not necessarily reflecting the product information given on the labels.  相似文献   

9.
The phenolic acids p-hydroxybenzoic, ferulic, caffeic and vanillic acid, were added to soil of the Countesswells series that had been fallow or carried crops of potatoes, peas or barley for two consecutive years. Changes in phenolic acid concentration, the soil biomass, the respiration rate, and soil amylase activity were measured over 28 days. All the phenolic acids were sorbed by the soils which was generally in the order caffeic > ferulic = vanillic > hydroxybenzoic acid. The phenolic acids stimulated soil respiration and increased the biomass as determined by the substrate-induced respiration method. but the fumigation method of biomass assessment gave anomalous results. The soil amylase activity was initially increased by phenolic acid amendments but soon decreased, and after 7 days was less than in non-amended soil although activity had increased again after 28 days. The rates of respiration and the total phenolic acid concentrations were similar to unamended controls after 28 days. The immediate respiration response, measured 1–6 h after amendment, indicated that caffeic acid gave the largest initial response of the phenolic tested, this being 55–72% of that given by glucose. Soil from the potato plot showed the highest immediate response to the phenolic acid amendments measured as a proportion of the respiration response to glucose. The findings suggest that some crops stimulate the growth of phenolic-acid degrading organisms.  相似文献   

10.
Anthocyanin extracts are increasingly used as food ingredients. A current challenge is to maintain their color properties. The stability of some colorants has been studied in sugar and non-sugar drink models at three pH values (3, 4, and 5) under thermal and light conditions simulating rapid food aging. At a given pH, color stability mainly depends on the structures of anthocyanins and of colorless phenolic compounds. Colorants rich in acylated anthocyanins (purple carrot, red radish, and red cabbage) display great stability due to intramolecular copigmentation. The protection of red chromophore is higher for diacylated anthocyanins in red radish and red cabbage. For colorants without acylated anthocyanins (grape-marc, elderberry, black currant, and chokeberry), intermolecular copigmentation plays a key role in color protection. Colorants rich in flavonols and with the highest copigment/pigment ratio show a remarkable stability. By contrast, catechins appear to have a negative effect on red colorants, quickly turning yellowish in drink models. This effect is more pronounced when the pH is increased. Finally, color does not seem to be greatly influenced by the addition of sugar.  相似文献   

11.
A high-performance liquid chromatographic (HPLC) method with diode-array detection (DAD) was used to identify and quantify free and total phenolic acids (m-hydroxybenzoic acid, p-hydroxybenzoic acid, protocatechuic acid, gallic acid, vanillic acid, syringic acid, o-coumaric acid, m-coumaric acid, p-coumaric acid, caffeic acid, ferulic acid, sinapic acid, chlorogenic acid, and ellagic acid) in plant foods. Free phenolic acids were extracted with a mixture of methanol and 10% acetic acid. Bound phenolic acids were liberated using first alkaline and then acid hydrolysis followed by extraction with diethyl ether/ethyl acetate (1:1). All fractions were quantified separately by HPLC. After HPLC quantification, results of alkali and acid hydrolysates were calculated to represent total phenolic acids. Ellagic acid was quantified separately after long (20 h) acid hydrolysis. The methods developed were effective for the determination of phenolic acids in plant foods. DAD response was linear for all phenolic acids within the ranges evaluated, with correlation coefficients exceeding 0.999. Coefficients of variation for 4-8 sample replicates were consistently below 10%. Recovery tests of phenolic acids were performed for every hydrolysis condition using several samples. Recoveries were generally good (mean >90%) with the exceptions of gallic acid and, in some cases, caffeic acid samples.  相似文献   

12.
Foliar application of nitrogenous organic compounds effects on the quantity and quality of Echinacea purpurea were investigated. This experiment was conducted in a randomized complete blocks design with three replications in growing season of years 2011–2012 and 2012–2013. Treatments included Humiforte (H) and Fosnutren (F) organic fertilizers with concentrations of (0.5, 0.75, 1, 1.5, and 2?L ha?1). Most of the vegetative traits, all of the caffeic acid derivatives measured in aerial parts and roots were significantly affected by foliar application of these nitrogen-contained organic compounds. Generally, best quantitative and qualitative performance belonged to F(2) and F(0.5) treatments, respectively. The application of organic compounds led to significant increase in qualitative and quantitative traits in Echinacea which could be considered as a strategy for increasing medicinal metabolites production in this plant.  相似文献   

13.
14.
Gram-negative bacteria are important food spoilage and pathogenic bacteria. Their unique outer membrane (OM) provides them with a hydrophilic surface structure, which makes them inherently resistant to many antimicrobial agents, thus hindering their control. However, with permeabilizers, compounds that disintegrate and weaken the OM, Gram-negative cells can be sensitized to several external agents. Although antimicrobial activity of plant-derived phenolic compounds has been widely reported, their mechanisms of action have not yet been well demonstrated. The aim of our study was to elucidate the role of selected colonic microbial metabolites of berry-derived phenolic compounds in the weakening of the Gram-negative OM. The effect of the agents on the OM permeability of Salmonella was studied utilizing a fluorescence probe uptake assay, sensitization to hydrophobic antibiotics, and lipopolysaccharide (LPS) release. Our results show that 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3-(3,4-dihydroxyphenyl)propionic acid (3,4-diHPP), 3-(4-hydroxyphenyl)propionic acid, 3-phenylpropionic acid, and 3-(3-hydroxyphenyl)propionic acid efficiently destabilized the OM of Salmonella enterica subsp. enterica serovar Typhimurium and S. enterica subsp. enterica serovar Infantis as indicated by an increase in the uptake of the fluorescent probe 1-N-phenylnaphthylamine (NPN). The OM-destabilizing activity of the compounds was partially abolished by MgCl2 addition, indicating that part of their activity is based on removal of OM-stabilizing divalent cations. Furthermore, 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, and 3,4-diHPP increased the susceptibility of S. enterica subsp. enterica serovar Typhimurium strains for novobiocin. In addition, organic acids present in berries, such as malic acid, sorbic acid, and benzoic acid, were shown to be efficient permeabilizers of Salmonella as shown by an increase in the NPN uptake assay and by LPS release.  相似文献   

15.
Total equivalent antioxidant capacity (TEAC) and phenolic content of 26 common spice extracts from 12 botanical families were investigated. Qualitative and quantitative analyses of major phenolics in the spice extracts were systematically conducted by reversed-phase high-performance liquid chromatography (RP-HPLC). Many spices contained high levels of phenolics and demonstrated high antioxidant capacity. Wide variation in TEAC values (0.55-168.7 mmol/100 g) and total phenolic content (0.04-14.38 g of gallic acid equivalent/100 g) was observed. A highly positive linear relationship (R2= 0.95) obtained between TEAC values and total phenolic content showed that phenolic compounds in the tested spices contributed significantly to their antioxidant capacity. Major types of phenolic constituents identified in the spice extracts were phenolic acids, phenolic diterpenes, flavonoids, and volatile oils (e.g., aromatic compounds). Rosmarinic acid was the dominant phenolic compound in the six spices of the family Labiatae. Phenolic volatile oils were the principal active ingredients in most spices. The spices and related families with the highest antioxidant capacity were screened, e.g., clove in the Myrtaceae, cinnamon in the Lauraceae, oregano in the Labiatae, etc., representing potential sources of potent natural antioxidants for commercial exploitation. This study provides direct comparative data on antioxidant capacity and total and individual phenolics contents of the 26 spice extracts.  相似文献   

16.
Preparations of Echinacea are widely used as alternative remedies to prevent the common cold and infections in the upper respiratory tract. After extraction, fractionation, and isolation, the antioxidant activity of three extracts, one alkamide fraction, four polysaccharide-containing fractions, and three caffeic acid derivatives from Echinacea purpurea root was evaluated by measuring their inhibition of in vitro Cu(II)-catalyzed oxidation of human low-density lipoprotein (LDL). The antioxidant activities of the isolated caffeic acid derivatives were compared to those of echinacoside, caffeic acid, and rosmarinic acid for reference. The order of antioxidant activity of the tested substances was cichoric acid > echinacoside > or = derivative II > or = caffeic acid > or = rosmarinic acid > derivative I. Among the extracts the 80% aqueous ethanolic extract exhibited a 10 times longer lag phase prolongation (LPP) than the 50% ethanolic extract, which in turn exhibited a longer LPP than the water extract. Following ion-exchange chromatography of the water extract, the majority of its antioxidant activity was found in the latest eluted fraction (H2O-acidic 3). The antioxidant activity of the tested Echinacea extracts, fractions, and isolated compounds was dose dependent. Synergistic antioxidant effects of Echinacea constituents were found when cichoric acid (major caffeic acid derivative in E. purpurea) or echinacoside (major caffeic acid derivative in Echinacea pallida and Echinacea angustifolia) were combined with a natural mixture of alkamides and/or a water extract containing the high molecular weight compounds. This contributes to the hypothesis that the physiologically beneficial effects of Echinacea are exerted by the multitude of constituents present in the preparations.  相似文献   

17.
Seven soils were examined for their contents of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids, p-hydroxybenzaldehyde and vanillin. Water-soluble forms, both “free” and “bound” of the phenolic compounds accounted for less than 0.7% of the total amount of each acid or aldehyde as determined by extraction of the soil with 2 M NaOH. In most instances, more than 50% of the water-soluble compounds were in the bound form, which was estimated after conversion to the free form by treatment of the water extract with NaOH. Water-soluble forms, both free and bound, of each compound also occurred in roots associated with six of the soils, and in beech litter associated with the seventh.  相似文献   

18.
Great Northern bean (Phaseolus vulgaris L.) phaseolin proteolysis at 37 degrees C, varying HCl concentrations (10 mM to 1 M), phaseolin:pepsin ratios ranging from 5:1 to 100:1 (w/w), and incubation times up to 24 h was investigated. The results suggest that phaseolin is not resistant to in vitro pepsin hydrolysis. At a phaseolin-to-pepsin ratio of 100:1 (w/w), native phaseolin was completely digested in 24 h when incubated in 50 mM HCl, while heat-denatured phaseolin (30 min at 100 degrees C, boiling water bath) was digested in 1 h under similar conditions. When incubated at 37 degrees C for 24 h, acid alone, even at as low a concentration as 10 mM, caused a partial breakdown of native phaseolin. The degree of phaseolin hydrolysis by HCl was dependent on the acid concentration used. The rate of native phaseolin hydrolysis increased with increasing HCl concentration rather than pepsin concentration. Common food acids were able to partially hydrolyze phaseolin. Among the food acids tested, oxalic acid was the most effective in hydrolyzing phaseolin. Spectroscopic studies revealed a significant change in secondary and tertiary structures when native phaseolin was incubated in dilute HCl. None of the tested phenolic compounds adversely affected phaseolin hydrolysis by pepsin.  相似文献   

19.
Summary It is commonly assumed that the adverse effect of plant residues on crop yields is largely or partly due to phytotoxic compounds leached from these residues or produced by their decomposition. There has been substantial support for the hypothesis that the phytotoxic compounds responsible for reduced crop yields are phenolic acids such as p-coumaric acid, p-hydroxybenzoic acid, and ferulic acid. To test the validity of this hypothesis, we studied the effects of nine phenolic acids (caffeic acid, chlorogenic acid, p-coumaric acid, ellagic acid, ferulic acid, gallic acid, p-hydroxybenzoic acid, syringic acid, and vanillic acid) on (1) seed germination of corn (Zea mays L.), barley (Hordeum vulgare L.), oats (Avena sativa L.), rye (Secale cereale L.), sorghum [Sorghum bicolor (L.) Moench], wheat (Triticum aestivum L.), and alfalfa (Medicago sativa L.) on germination paper and soil, (2) seedling growth of alfalfa, oats, sorghum, and wheat on germination paper and soil, and (3) early plant growth of corn, barley, oats, rye, sorghum, and wheat in soil. The results showed that although the phenolic acids tested affected germination and seedling growth on germination paper, they had no effect on seed germination, seedling growth, or early plant growth in soil even when the amounts applied were much greater than the amounts detected in soil. We conclude that the adverse effect of plant residues on crop yields is not due to phenolic acids derived from these residues.  相似文献   

20.
An online accumulation/mobilization preconcentration technique based on a dynamic pH junction technique and electrokinetic injection was employed for analysis of phenolic acids (sinapic, ferulic, coumarinic, caffeic, syringic, vanillic, and 4-hydroxybenzoic acid) in extracts from Majorana hortensis leaves. Samples were extracted by pressurized solvent extraction with acetone at 150 degrees C and 15 MPa. The capillary electrophoretic method employed 50 mmol.L (-1) sodium borate, pH 9.5, as the sample electrolyte, 50 mmol.L (-1) sodium phosphate, pH 2.5, as the background electrolyte, and 50 mmol.L (-1) sodium phosphate, pH 2.5, with 60 mmol.L (-1) sodium dodecyl sulfate as the mobilization electrolyte. The method allowed 720-fold to 5560-fold preconcentration of the phenolic acids during 30 min of electrokinetic accumulation with detection limits from 0.38 to 4.22 ng.mL (-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号