首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZHOU Yu-di  JIANG Wei  ZHOU Ping 《园艺学报》2000,36(10):1860-1866
AIM To investigate the effect of scutellarin (SCU) on oxidative stress and apoptosis induced by lipopolysaccharide (LPS) in human glomerular epithelial cells and its mechanism. METHODS Human glomerular epithelial cells were cultured in vitro, and were treated with LPS (1.0 mg/L) to establish a cell injury model. The cells were divided into normal control (NC) group, LPS group, NC+SCU group, LPS+SCU group, LPS+miR-NC group, LPS+microRNA-7-5p (miR-7-5p) group, LPS+SCU+anti-miR-NC group and LPS+SCU+anti-miR-7-5p group. Cell viability was detected by CCK-8 assay. Apoptosis was detected by flow cytometry. The intracellular malondialdehyde (MDA) content and superoxide dismutase (SOD) activity, and lactate dehydrogenase (LDH) activity in the cell culture supernatant were determined by kit. RT-qPCR was used to detect the expression level of miR-7-5p. RESULTS Compared with NC group, the cell viability, miR-7-5p expression and SOD activity in LPS group were significantly reduced, and the apoptotic rate, MDA content and LDH activity were significantly increased (P<0.05). Compared with LPS group, the cell viability, miR-7-5p expression and SOD activity in LPS+SCU group were significantly increased, and the apoptotic rate, MDA content and LDH activity were significantly reduced (P<0.05). Compared with LPS+miR-NC group, the cell viability and SOD activity in LPS+miR-7-5p group were significantly increased, and the apoptotic rate, MDA content and LDH activity were significantly reduced (P<0.05). Compared with LPS+SCU+anti-miR-NC group, the cell viability and SOD activity in LPS+SCU+anti-miR-7-5p group were significantly reduced, and the apoptotic rate, MDA content and LDH activity were significantly increased (P<0.05). CONCLUSION Scutellarin inhibits LPS-induced oxidative stress damage and apoptosis in glomerular epithelial cells via up-regulating miR-7-5p expression.  相似文献   

2.
AIM To investigate the mechanism of long noncoding RNA (lncRNA) FEZF1-AS1 regulating microRNA-363-3p (miR-363-3p) on the viability and apoptosis of lipopolysaocharide (LPS)-induced vascular endothelial cells. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured in vitro. pcDNA-NC, pcDNA-FEZF1-AS1, anti-miR-NC, anti-miR-363-3p, miR-NC and miR-363-3p mimics were transfected into the HUVECs and LPS stimulation was applied for 24 h. RT-qPCR was used to detect the expression of FEZF1-AS1 and miR-363-3p. The cell viability was measured by MTT assay. The apoptotic rate was analyzed by flow cytometry. The dual-luciferase reporter experiment was used to verify the targeted regulation of FEZF1-AS1 and miR-363-3p. Western blot was used to determined the expression of cyclin D1, Ki67 and cleaved caspase-3. RESULTS Compared with control group, the expression level of FEZF1-AS1 in LPS group was significantly reduced (P<0.05), and the expression level of miR-363-3p was significantly increased (P<0.05). Compared with pcDNA-NC+LPS group, the cell viability in pcDNA-FEZF1-AS1+LPS group was significantly increased (P<0.05), the apoptotic rate was significantly reduced (P<0.05), the protein levels of cyclin D1 and Ki67 were significantly increased (P<0.05), and the protein level of cleaved caspase-3 was significantly reduced (P<0.05). Compared with anti-miR-NC+LPS group, the cell viability in anti-miR-363-3p+LPS group was significantly increased (P<0.05), the apoptotic rate was significantly reduced (P<0.05), the protein levels of cyclin D1 and Ki67 were significantly increased (P<0.05), and the protein level of cleaved caspase-3 was significantly reduced (P<0.05). Dual-luciferase reporter experiment confirmed that FEZF1-AS1 targeted miR-363-3p. Compared with miR-NC+pcDNA-FEZF1-AS1+LPS group, the cell viability in miR-363-3p+pcDNA-FEZF1-AS1+LPS group was significantly reduced (P<0.05), the apoptotic rate was significantly increased (P<0.05), the protein levels of cyclin D1 and Ki67 were significantly reduced (P<0.05), and the protein level of cleaved caspase-3 was significantly increased (P<0.05). CONCLUSION Over-expression of FEZF1-AS1 promotes the viability and inhibits apoptosis of LPS induced vascular endothelial cells by inhibiting the expression of miR-363-3p.  相似文献   

3.
AIM To investigate the effect of microRNA-92b-5p (miR-92b-5p) on renal injury and inflammatory response in diabetic nephropathy (DN) rats and its mechanism. METHODS The rats were divided into control group, DN group, lentiviral negative control (LV-NC) group, LV-miR-92b group, LV-high mobility group protein B1 (LV-HMGB1) group and miR-92b+HMGB1 group, with 15 rats in each group. After fasting for 12 h, the model rats were intraperitoneally injected with streptozotocin at dose of 60 mg/kg, and the control rats were intraperitoneally injected with an equal volume of citrate buffer. Three days later, the rats in each treatment group were intravenously injected with 100 μL LV-NC, LV-miR-92b and LV-HMGB1 (1×1011 U/L) twice a week for 8 consecutive weeks. Urinary protein, blood glucose, blood urea nitrogen and serum creatinine were detected by an automatic biochemical analyzer. The expression of miR-92b-5p and HMGB1 mRNA was detected by RT-qPCR. The targeting relationship between miR-92b-5p and HMGB1 was verified by dual-luciferase reporter assay. HMGB1 expression in kidney tissue was detected by Western blot. The kidney damage was observed by HE staining. The apoptosis was detected by flow cytometry. The levels of interleukin-6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) in renal tissues were detected by ELISA. RESULTS In DN model rats, miR-92b-5p was down-regulated, while HMGB1 was highly expressed. There was a binding site between miR-92b-5p and HMGB1 3'-untranslated region. High expression of miR-92b-5p inhibited the luciferase activity of the wild-type HMGB1 plasmid (P<0.01), but had no effect on the luciferase activity of the mutant HMGB1 plasmid. Compared with DN group, urinary protein, blood glucose, serum creatinine and blood urea nitrogen in LV-miR-92b group were significantly reduced (P<0.01). The degree of hyperplasia, swelling and inflammatory cell infiltration of glomerular mesangium and basement membrane tubules, the apoptosis rate of renal tissues, and the content of IL-6, IL-1β and TNF-α in renal tissues were significantly decreased (P<0.01). Co-transfection of LV-HMGB1 significantly reversed the effect of miR-92b-5p on DN rats. CONCLUSION miR-92b-5p reduces renal injury and inflammatory response in DN rats by targeting HMGB1 and down-regulating its expression.  相似文献   

4.
5.
AIM: To investigate the effect of microRNA-323 (miR-323) on the apoptosis of hypoxia-induced rat H9C2 cardiomyocytes and its mechanism. METHODS: The hypoxic injury model was established in the H9C2 cells. Anti-miR-323, pcDNA-FGF9 and si-FGF9 were transfected into the H9C2 cells and cultured under hypoxic condition for 48 h. The expression of miR-323 was detected by qPCR. The protein levels of fibroblast growth factor 9 (FGF9), cleaved caspase-3, c-Jun N-terminal kinase (JNK) and p-JNK were determined by Western blot. The cell viability was measured by MTT assay, and the apoptosis was analyzed by flow cytometry. The method of bioinformatics was applied to predict the target gene of miR-323, and dual-luciferase reporter assay was used for further validation. RESULTS: Hypoxia greatly reduced the viability of H9C2 cells at 12 h, 24 h and 48 h (P<0.05), and remarkably increased apoptotic rate and the protein level of cleaved caspase-3 in a time-dependent manner (P<0.05). The expression of miR-323 and the protein level of p-JNK were up-regulated and the expression of FGF9 was down-regulated in the H9C2 cells exposed to hypoxia (P<0.05). Down-regulation of miR-323 and over-expression of FGF9 obviously increased the viability of the H9C2 cells exposed to hypoxia, and decreased the apoptotic rate and the protein level of cleaved caspase-3 (P<0.05). FGF9 was the target gene of miR-323. Down-regulation of FGF9 reversed the attenuating effect of down-regulation of miR-323 on hypoxia-induced H9C2 cell injury. miR-323 regulated FGF9 and affected p-JNK level. CONCLUSION: miR-323 affects the viability and apoptosis of H9C2 cardiomyocytes under hypoxia by targeting FGF9 and regulating JNK signaling pathway.  相似文献   

6.
AIM:To investigate the effect of microRNA-23b-3p (miR-23b-3p) on the viability and apoptosis of rheumatoid arthritis synovial fibroblasts by targeting X-linked inhibitor of apoptosis protein (XIAP). METHODS:The expression of miR-23b-3p and XIAP was detected by RT-qPCR. The TargetScan was used to predict the targeting regulatory relation between miR-23b-3p and XIAP, and then the regulatory relation was confirmed by dual-luciferase reporter assay. After the miR-23b-3p mimic and inhibitor were transfected into the cells, the expression of miR-23b-3p and XIAP was detect by RT-qPCR. The effect of miR-23b-3p on the viability and apoptosis was measured by CCK-8 assay and flow cytometry. The protein expression levels of Ki67 and Bcl-2 were determined by Western blot. RESULTS:The expression level of miR-23b-3p was down-regulated significantly (P<0.05), and XIAP was up-regulated significantly in rheumatoid arthritis synovial fibroblasts (P<0.05). The miR-23b-3p mimic significantly inhibited XIAP expression and the cell viability, promoted the apoptosis, and down-regulated the expression of Ki67 and Bcl-2 (P<0.05). The effects of miR-23b-3p inhibitor were the opposite. CONCLUSION:miR-23b-3p inhibits the viability and promotes apoptosis of rheumatoid arthritis synovial fibroblasts by targeting XIAP.  相似文献   

7.
AIM To investigate the effects of curcumin (Cur) on the inflammatory response of human gingival fibroblasts (HGFs) induced by Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS) and the role of microRNA-124 (miR-124) in this process. METHODS The HGFs were divided into control group, LPS group (10 mg/L LPS) and LPS+Cur (20, 40 and 80 μmol/L) groups (10 mg/L LPS+corresponding dose of Cur). After treatment for 24 h, CCK-8 assay was used to measure the cell viability. ELISA was used to measure the levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the supernatant. The level of miR-124 in the cells was detected by RT-qPCR. The protein levels of nuclear factor kappa B (NF-κB) p-p65 in cytoplasm and nucleus were determined by Western blot, and the nuclear translocation of NF-κB p-p65 was evaluated by laser confocal microscopy. After transfection with mimic-NC or miR-124 mimic, the expression of miR-124 and NF-κB p-p65 protein in the cytoplasm and nucleus of the cells were also detected. RESULTS The cell viability, the level of miR-124 in the cells and NF-κB p-p65 protein level in cytoplasm of LPS group were lower than those in control group (P<0.05), while the levels of IL-1β and TNF-α in the supernatant and NF-κB p-p65 protein level in the nucleus were higher than those in control group (P<0.05). The cell viability, the level of miR-124 in cells and NF-κB p-p65 protein level in the cytoplasm of LPS+Cur (40 and 80 μmol/L) groups were higher than those in LPS group (P<0.05), while the level of TNF-α in the supernatant and NF-κB p-p65 protein level in the nucleus were lower than those in LPS group (P<0.05). The level of IL-1β in the supernatant of LPS+80 μmol/L Cur group was lower than that in LPS group (P<0.05). The levels of miR-124 and NF-κB p-p65 protein level in the cytoplasm of miR-124 mimic group were higher than those in LPS group and mimic-NC group (P<0.05), while the level of NF-κB p-p65 proteinlevel in the nucleus was lower than that in LPS group and mimic-NC group (P<0.05). CONCLUSION Curcumin inhibits the inflammatory response of HGFs induced by Pg LPS, which may be achieved by up-regulating miR-124 and then inhibiting the nuclear translocation of NF-κB p-p65.  相似文献   

8.
AIM: To investigate the effect of microRNA-486 (miR-486) on lipopolysaccharide (LPS)-induced apoptosis of alveolar epithelial cell A549. METHODS: A549 cells were treated with LPS, and the expression of miR-486 was detected by RT-qPCR. miR-486 mimics were transfected into LPS-induced A549 cells, and RT-qPCR was used to detect the up-regulation effect. The apoptotic rate was analyzed by flow cytometry and the protein levels of cleaved caspase-3 (C-caspase-3) and C-caspase-9 were determined by Western blot. The target gene prediction software was used to predict the target gene PTEN of miR-486. Luciferase reporter vector was used to identify the target relationship. pcDNA 3.1-PTEN and miR-486 mimics were co-transfected into A549 cells to detect the effect of PTEN up-regulation on apoptosis of miR-486 mimics transfected A549 cells stimulated with LPS. RESULTS: After LPS treatment, the expression of miR-486 in A549 cells was significantly decreased (P<0.05). Transfection of miR-486 mimics significantly up-regulated the expression of miR-486 in A549 cells stimulated with LPS (P<0.05). The apoptotic rate of A549 cells and the protein levels of C-caspase-3 and C-caspase-9 were significantly increased after LPS treatment (P<0.05). Up-regulation of miR-486 significantly down-regulated LPS-induced apoptosis of A549 cells (P<0.05). The expression of PTEN was negatively regulated by miR-486. Transfection of pcDNA 3.1-PTEN significantly increased the expression of PTEN, promoted the apoptosis and increased the protein levels of C-caspase-3 and C-caspase-9 in A549 cells stimulated with LPS after co-transfection with miR-486 mimics(P<0.05). CONCLUSION: miR-486 inhibits PTEN expression and reduces LPS-induced apoptosis of A549 cells.  相似文献   

9.
AIM: To study the effects of microRNA-153 (miR-153) on inflammatory factors, cell viability and apoptosis of embryonic rat H9C2 cardiomyocytes induced by lipopolysaccharide (LPS), and to explore its mechanism. METHODS: The injury model of H9C2 cells was established by LPS stimulation. The H9C2 cells were divided into anti-miR-Con group (transfected with anti-miR-Con), anti-miR-153 group (transfected with anti-miR-153), pcDNA group (transfected with pcDNA), pcDNA-SORBS2 group (transfected with pcDNA-SORBS2), anti-miR-153+si-Con group (co-transfected with anti-miR-153 and si-Con) and anti-miR-153+si-SORBS2 group (co-transfected with anti-miR-153 and si-SORBS2), and treated with LPS after transfection. The expression of miR-153 and SORBS2 mRNA in the cells was detected by RT-qPCR. The viability of H9C2 cells was measured by MTT assay. The protein expression of SORBS2 in the H9C2 cells was determined by Western blot. The contents of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were detected by ELISA. The apoptosis of the H9C2 cells was analyzed by flow cytometry. The targeting relationship between miR-153 and SORBS2 was verified by dual-luciferase reporter assay. RESULTS: The LPS-induced H9C2 cell injury model was successfully constructed. Compared with PBS group, the expression of miR-153 was significantly increased and the expression of SORBS2 was significantly decreased in the H9C2 cells treated with LPS. The inhibition of miR-153 and over-expression of SORBS2 decreased the contents of TNF-α and IL-6 and the level of apoptosis, but increased the cell viability. miR-153 inhibited the luciferase activity of the H9C2 cells containing wild-type SORBS2. Inhibition of SORBS2 reversibly inhi-bited the anti-inflammatory effects of miR-153 on LPS-induced H9C2 cells and increased the viability of the cells. CONCLUSION: miR-153 promotes the secretion of inflammatory factors, induces apoptosis, and inhibits the viability of H9C2 cells induced by LPS, thus enhancing the damage. Its mechanism may be related to targeting SORBS2, which will provide new targets for the treatment of myocardial injury.  相似文献   

10.
XIAO Li  LIU Ping  QIN Bing 《园艺学报》2000,36(11):1928-1937
AIM To investigate the role of microRNA-142-3p (miR-142-3p) in endothelial cell apoptosis during atherosclerosis (AS) and the underlying mechanism. METHODS Human aortic endothelial cells (HAECs) were treated with oxidized low-density lipoprotein (ox-LDL). The expression level of miR-142-3p was detected by RT-qPCR. Apoptosis was determined via flow cytometry (FCM) and caspase-3 activity assay. Prediction of the binding site between miR-142-3p and 3’-UTR of Rictor mRNA was performed by bioinformatics analysis and confirmed by dual-luciferase reporter assay. RESULTS The expression of miR-142-3p was substantially up-regulated during the ox-LDL-elicited apoptosis in HAECs (P<0.05,P<0.01). Forced expression of miR-142-3p exacerbated apoptosis in HAECs whereas inhibition of miR-142-3p partly alleviated apoptotic cell death mediated by ox-LDL. Further analysis identified Rictor as a direct target gene of miR-142-3p, and Rictor knock-down abolished the anti-apoptotic effect of miR-142-3p inhibitor. Moreover, the Akt/endothelial nitric oxide synthase (eNOS) signaling pathway was found to mediate the beneficial effect of miR-142-3p inhibitor on endothelial cells apoptosis. CONCLUSION Down-regulation of miR-142-3p inhibits endothelial cell apoptosis and atherosclerotic development by up-regulating the expression of Rictor and activating the Akt/eNOS signaling pathway.  相似文献   

11.
AIM To investigate the effect of mangiferin on hypoxia/reoxygenation (H/R)-induced injury of human myocardial cells and its mechanism. METHODS Human myocardial AC16 cells were divided into normal group, H/R group and H/R + mangiferin (50, 100 and 200 μmol/L) treatment groups. The mRNA and protein expression levels of Kelch-like epichlorohydrin-associated protein-1 (Keap-1), Bax, Bcl-2, caspase-3, caspase-9 and superoxide dismutase 2 (SOD2) were detected by RT-qPCR and Western blot, respectively. The protein expression of nuclear factor E2-related factor 2 (Nrf-2) in nucleus was determined by Western blot. The expression of microRNA-432-3p (miR-432-3p) was detected by RT-qPCR. The generation of reactive oxygen speciess (ROS) in the cells was measured by DCFH-DA probing. The cell viability was measured by CCK-8 assay. Apoptosis was analyzed by flow cytometry. RESULTS No significant difference in the expression of miR-432-3p and Keap-1 between normal group and H/R group was observed. Compared with normal group, the nuclear translocation of Nrf-2, the ROS level, and the mRNA and protein expression of Bax, caspase-3 and caspase-9 were significantly increased in H/R group (P<0.05). The mRNA and protein expression of SOD2 and Bcl-2, and the cell viability significantly decreased in H/R group compared with normal group, while the apoptosis was increased significantly (P<0.05). Treatment with mangiferin resulted in an increase in the miR-432-3p expression and a decrease in the ROS level, and the expression of Keap-1, Bax, caspase-3 and caspase-9 was also inhibited as compared with H/R group (P<0.05). The Nrf-2 nuclear translocation, and the protein levels of SOD2 and Bcl-2 in mangiferin treatment groups were significantly increased as compared with H/R group (P<0.05). The cell viability was increased significantly, and the apoptosis was decreased significantly in mangiferin treatment groups as compared with H/R group (P<0.05). The effects of mangiferin in middle- and high-dose groups were better than those in low-dose group, and no significant difference between middle- and high-dose groups was found. CONCLUSION Mangiferin inhibits the decrease in myocardial cell viability and the apoptosis induced by H/R injury. The mechanism may be related to the up-regulation of Nrf-2 antioxidant stress effect via enhancing the expression of miR-432-3p.  相似文献   

12.
13.
AIM To investigate whether microRNA-9-5p (miR-9-5p) mediates sympathetic overactivity by targeting KCNN3 (potassium intermediate/small conductance calcium-activated channel, subfamily N, member 3) gene,which encoded small-conductance calcium-activated potassium channel 3 (SK3) protein, in paraventricular nucleus (PVN) of rats with type 2 diabetes mellitus (T2D). METHODS A rat model of T2D was established by high-fat diet combined with intraperitoneal injection of 30 mg/kg streptozotocin. The levels of miR-9-5p and KCNN3 mRNA in PVN were detected by real-time PCR. The relationship between KCNN3 and miR-9-5p was predicted by TargetScan. Recombinant adeno-associated virus (rAAV)-miR-9-5p or KCNN3 were bilaterally microinjected into the PVN to observe the changes in plasma glucose levels and sympathetic drive indicators. The number of FosB and SK3 positive cells was measured by immunofluorescence staining. The protein expression of SK3 was determined by Western blot. The relationship between KCNN3 and miR-9-5p were confirmed by cell transfection and dual-luciferase reporter assay. RESULTS Compared with the rats in diabetes control (DC) group, the blood glucose, sympathetic drive indexes and the level of miR-9-5p in PVN were significantly increased, while the SK3 expression in PVN was obviously reduced in the diabetes mellitus (DM) rats. After microinjecion of rAAV-miR-9-5p in PVN, the sympathetic drive indexes, blood glucose, and the number of FosB-positive cells were increased significantly, but the SK3 protein expression was significantly reduced (P<0.05). However, up-regulation of KCNN3 in PVN had the opposite effect. These responses were obviously enhanced in DM rats compared with DC rats. The results of cell transfection and dual-luciferase reporter assay demonstrated that miR-9-5p bound to the 3’-UTR of KCNN3 and inhibit its expression. CONCLUSION miR-9-5p was up-regulated in PVN of the rats with T2D, and it may mediate sympathoexcitation by targeting KCNN3.  相似文献   

14.
CHANG He  SONG Ying  LIU Chun-xiao 《园艺学报》2000,36(10):1729-1738
AIM To evaluate the effects of recombinant plasmids encoding interleukin-1 type II receptor (IL-1RII) and interleukin-1 receptor accessory protein (IL-1RAcP) on rat experimental autoimmune myocarditis (EAM) and the possible mechanism. METHODS The recombinant plasmids pCAGGS-IL-1RII and pCAGGS-IL-1RAcP were constructed, and pCAGGS-SP (signal peptide) served as the control plasmid. Male Lewis rats (n=29) were divided into 4 groups: control group (rats without immunization or injection, n=5), EAM+SP group (immunized rats injected with pCAGGS-SP, n=9), EAM+IL-1RII group (immunized rats injected with pCAGGS-IL-1RII, n=8) and EAM+IL-1RII+IL-1RAcP group (immunized rats injected with pCAGGS-IL-1RII and pCAGGS-IL-1RAcP, n=7). The rats were immunized to induce EAM on day 0, and injected with recombinant plasmids by hydrodynamics-based delivery on day 6. Echocardiography was performed, and the rats were killed on day 17. The ratio of heart weight to body weight (HW/BW) was evaluated, and the histopathological changes of the myocardial tissues were observed by HE staining. The mRNA expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and inflammatory factors in the myocardial tissues was detected by RT-qPCR. Recombinant plasmids pUC19-IL-1RII-actin and pUC19-IL-1RAcP-tub were transfected into Cos7 cells, and the culture supernatants were collected and added to lipopolysaccharide (LPS)-induced H9c2 cells. The expression of inflammatory genes were detected by RT-qPCR. Recombinant plasmids pEGFP-IL-1RII-actin and pEGFP-IL-1RAcP-tub were transfected into the Cos7 cells to identify the formation of IL-1RII/IL-1RAcP heterodimer by co-immunoprecipitation (Co-IP). RESULTS Compared with EAM+SP group, injection with plasmids effectively attenuated EAM in EAM+IL-1RII group and EAM+IL-1RII+IL-1RAcP group, as indicated by the decreases in HW/BW, left ventricular end-systolic diameter, and myocardial expression of ANP, BNP, TNF-α, IL-2, IFN-γ and TGF-β, and the increase in expression of IL-4 in the hearts. In LPS-induced H9c2 cells, compared with LPS group, the levels of TGF-β and IL-6 in the culture supernatants were significantly decreased (P<0.01), and the level of IL-10 was significantly increased (P<0.05) in LPS+IL-1RII group and LPS+IL-1RII+IL-1RAcP group. Compared with LPS+IL-1RII group, the expression of TNF-α and IL-2 was significantly decreased (P<0.05), and the expression of IL-13 was significantly increased in LPS+IL-1RII+IL-1RAcP group (P<0.01). The formation of IL-1RII/IL-1RAcP heterodimer was detected by Co-IP. CONCLUSION Plasmids encoding IL-1RII and IL-1RAcP effectively attenuate EAM, and the possible mechanism may be related to the inhibition of inflammatory factor expression and the formation of IL-1RII/IL-1RAcP heterodimer.  相似文献   

15.
AIM To investigate the effects of bortezomib (BTZ) on microRNA-223 (miR-223)/nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) signaling pathway and lipopolysaccharide (LPS)-induced inflammatory response of human monocytes. METHODS Monocytes were isolated and purified from peripheral blood of rheumatodid arthritis (RA) patients. The levels of interleukin-6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) in supernatants of the monocytes were determined by ELISA, and the optimal induction time of LPS and the optimal treatment concentration of BTZ were selected according to the levels of IL-6, IL-1β and TNF-α. The monocytes were divided into control group, LPS induced group and BTZ group. The level of miR-223 in the monocytes was measured by RT-qPCR, and the protein levels of NLRP3, caspase-1, suppressor of cytokine signaling 1 (SOCS1) and SH2 domain-containing inositol phosphatase-1 (SHIP-1) in the monocytes were determined by Western blot. RESULTS The monocytes successfully isolated and purified from the peripheral blood of RA patients were spherical, evenly distributed and regular in shape.And after LPS induction for 24 h, the cells were mostly spindle-shaped and aggregated. According to the levels of IL-6, IL-1β and TNF-α, the optimal induction time of LPS was 24 h, and the optimal concentration of BTZ was 50 nmol/L. Compared with control group, the levels of miR-223, SOCS1 and SHIP-1 in LPS induction group were significantly decreased (P<0.05), and the levels of NLRP3 and caspase-1 were significantly increased (P<0.05). Compared with LPS induction group, the levels of miR-223, SOCS1 and SHIP-1 in BTZ group were significantly increased (P< 0.05), and the levels of NLRP3 and caspase-1 were significantly lowered (P<0.05). CONCLUSION Bortezomib may block the activation of miR-223/NLRP3 signaling pathway, thus reducing the secretion of inflammatory factors in LPS-induced human monocytes.  相似文献   

16.
AIM To investigate the effects and mechanisms of heat shock protein 90 (HSP90) on complement-mediated hypoxia/reoxygenation (H/R) injury of rat H9c2 cardiomyocytes during hypoxic postconditioning (HPC). METHODS Rat H9c2 cardiomyocytes were divided into 7 groups according to different treatments: (1) control group (cultured for 10 h under normal oxygen); (2) H/R group (hypoxia for 4 h and reoxygenation for 6 h); (3) HPC group (3 cycles of 5 min H/R after hypoxia for 4 h, followed by reoxygenation for 6 h); (4) HPC+geldanamycin (GA) group (1 μmol/L HSP90 inhibitor GA was added 20 min before HPC); (5) negative control group (empty plasmid was transfected before HPC); (6) C3 over-expression group (C3a plasmid was transfected before HPC); (7) C5 over-expression group (C5a plasmid was transfected before HPC). Morphological changes of the H9c2 cells were detected by Hoechst 33242 staining. The effects of HPC on the apoptosis of H9c2 cells were examined by flow cytometry. The protein levels of HSP90, C3a, C5a, NF-κB p65, TNF-α, IL-1β, IL-6, Bcl-2 and Bax were determined by Western blot. RESULTS With up-regulation of HSP90, HPC significantly reduced H/R-induced apoptosis of the H9c2 cells, inhibited the expression of C3a, C5a, NF-κB p65, TNF-α, IL-1β, IL-6 and Bax, and increased the expression of Bcl-2. These effects were blocked by GA. The inhibitory effects of HPC on NF-κB p65 expression and H9c2 cell apoptosis were offset after over-expression of C3a or C5a. CONCLUSION HSP90 attenuates H/R injury of H9c2 cardiomyocytes by inhibiting complement-NF-κB signaling pathway during HPC.  相似文献   

17.
AIM To investigate the expression level of long noncoding RNA (lncRNA) TTN antisense RNA 1 (TTN-AS1) in lung adenocarcinoma tissues and the effects of TTN-AS1 silencing on the viability and invasion of lung adenocarcinoma A549 cells. METHODS RT-qPCR was used to detect the expression of TTN-AS1, microRNA-519d-3p (miR-519d-3p) and matrix metalloproteinase 2 (MMP2) mRNA in 32 cases of lung adenocarcinoma and adjacent normal tissues. The untransfected A549 cells were divided into blank group, si-NC group (with si-NC transfection) and si-lncRNA group (with silencing of lncRNA TTN-AS1 expression), with n=5 in each group. The effects of TTN-AS1 silencing on the viability and invasion of A549 cells were detected by CCK8 and Transwell methods. The targeting regulatory effects of TTN-AS1 on miR-519d-3p and miR-519d-3p on MMP2 were determined by dual-luciferase reporter assay, RNA immunoprecipitation test, RT-qPCR and Western blot. RESULTS The expression level of TTN-AS1 in 32 cases of lung adenocarcinoma tissues is notably higher than that in the adjacent normal tissues (P<0.05). Silencing of TTN-AS1 in A549 cells significantly suppressed the cell viability and invasion. TTN-AS1 negatively regulated the expression of miR-519d-3p via sponging and absorbing miR-519d-3p. MMP2 is the target gene of miR-519d-3p and can be negatively regulated by miR-519d-3p. Overexpression of MMP2 partially reversed the inhibitory effect of TTN-AS1 silencing and miR-519d-3p overexpression on the invasion of A549 cells. CONCLUSION The lncRNA TTN-AS1 is overexpressed in lung adenocarcinoma tissues, and it regulates lung adenocarcinoma A549 cell viability and invasion via miR-519d-3p/MMP2 pathway.  相似文献   

18.
AIM To study the effect of microRNA-153-3p (miR-153-3p) knock-down on oxidative injury of H9C2 cells induced by H2O2 and its specific mechanism. METHODS The oxidative stress injury of H9C2 cell model was induced by H2O2, and then the cell viability and the expression of miR-153-3p were detected by MTT assay and RT-qPCR, respectively. The effects of miR-153-3p knock-down on the H9C2 cell injury under oxidative stress were studied by RNA interference technology. The targets of miR-153-3p were identified by Western blot and dual-luciferase reporter assay. RESULTS MTT assay showed that the viability of H9C2 cells was decreased with the increase in H2O2 concentration (P<0.05). The results of RT-qPCR showed that the expression of miR-153-3p was increased with the increase in H2O2 concentration (P<0.05). Knock-down of miR-153-3p increased the viability of H9C2 cells under oxidative stress, decreased the cell apoptosis and the content of malondialdehyde (MDA), and increased the activity of superoxide dismutase (SOD). The expression of nuclear factor E2-related factor 2(Nrf2) and antioxidant response element(ARE) activity were increased with the increase in H2O2 concentration (P<0.01). TargetScan analysis and dual-luciferase reporter assay showed that Nrf2 was one of the potential target genes of miR-153-3p. The results of Western blot further showed that over-expression of miR-153-3p inhibited the expression of Nrf2 (P<0.01), while down-regulation of miR-153-3p increased the expression of Nrf2 (P<0.01). Dual interference with Nrf2 and miR-153-3p significantly reduced H9C2 cell viability, promoted the apoptosis, increased MDA content, and decreased SOD activity in the presence of H2O2 (P<0.01). CONCLUSION Inhibition of miR-153-3p expression attenuates the injury of H9C2 cells induced by H2O2 through up-regulating Nrf2/ARE signaling pathway.  相似文献   

19.
AIM To investigate the effect of p65 gene knock-down mediated by recombinant adeno-associated virus serotype 9 (rAAV9) on the cardiac function of pressure overload rat and its possible mechanism. METHODS The rat model of left ventricular hypertrophy was established by abdominal aortic coarctation(AAC). SD rats were randomly divided into sham operation group, AAC group, AAC+rAAV9-eGFP group and AAC+rAAV9-eGFP-P65-siRNA group. The abdominal cavity was closed directly after laparotomy in the rats of sham operation group, the abdominal cavity was closed after ligation of the abdominal aorta in the rats of AAC group, and normal saline, rAAV9-eGFP and rAAV9-eGFP-P65-siRNA were injected into the tail vein 3 d after operation. After 4 weeks, the hemodynamic indexes were measured, the heart mass parameters were calculated, the degree of myocardial fibrosis was detected by Masson staining, the expression level of myocardial P65 was detected by Western blot, the degree of apoptosis was detected by TUNEL staining, and the serum contents of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) of the rats in each group were measured by ELISA. RESULTS The expression of P65 in AAC group and AAC+rAAV9-eGFP group was higher than that in sham operation group, while the expression of P65 in AAC+rAAV9-eGFP-P65-siRNA group was significantly lower than that in AAC group. The levels of systolic blood prossure (SBP), diastolic blood pressure (DBP), left ventricular weight/body weight (LVW/BW), cardiomyocyte apoptotic rate and TNF- α and IL-6 in AAC group and AAC+rAAV9-eGFP group were higher than those in sham operation group, while SBP, DBP, LVW/BW, cardiomyocyte apoptosis rate and TNF-α in AAC+rAAV9-eGFP-P65-siRNA group were significantly lower than those in AAC group. The results of Masson staining showed that the deposition of collagen in cardiac tissue in AAC group and AAC+rAAV9-eGFP group was higher than that in sham operation group, and treatment with rAAV9-eGFP-P65-siRNA alleviated hypertension-induced fibrosis. CONCLUSION Knockdown of p65 gene reduces the degree of left ventricular fibrosis and apoptosis in rats with stress overload, and its mechanism is related to the regulation of NF-κB pathway and the reduction of inflammatory response.  相似文献   

20.
AIM: To investigate the effects of propofol on the expression of apoptosis-inducing factor (AIF) and cell apoptosis in brain tissues of rats with lipopolysaccharide(LPS)-induced brain injury. METHODS: Seventy-two male and female SD rats weighing 220~250 g were randomly divided into 3 groups (n=24 each). Cerebral edema was induced by injection of LPS at 1 mg/kg via left internal carotid artery in LPS group and LPS+propofol group. In control group, equal volume of normal saline was administered instead of LPS. The rats in LPS+propofol group received intraperitoneal injection of propofol at 100 mg/kg immediately after LPS administration. Six rats in each group were decapitated 6 h, 12 h, 24 h or 48 h after operation and the frontal lobe cortex were immediately removed for determination of the water content. The apoptotic neurons were detected by Annexin V-PI staining. The protein levels of AIF, NF-κB and caspase-3 were measured by immunohistochemistry. The protein expression of AIF was detected by Western blotting analysis. RESULTS: Compared with control group, the brain water content, the number of neuronal apoptosis and the protein expression levels of AIF, NF-κB and caspase-3 were significantly increased in LPS group and LPS+propofol group. Compared with LPS group, the results mentioned above were markedly reduced in LPS+propofol group. CONCLUSION: Propofol attenuates LPS-induced brain injury by decreasing AIF protein expression and inhibiting apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号