首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM:To establish a arsenic trioxide (As2O3 )-resistant leukemic cell line to explore the mechanism of resistance to As2O3, and the relationship between the resistant cell line and the multidrug resistance was also investigated. METHODS:The arsenic trioxide (As2O3 )-resistant leukemic cell line was established by exposing the cells to the increasing concentration of As2O3. MTT assay was used to detect the cytotoxicity. Cell cycle was detected by PI assay. Flow Cytometry was used to detect the P-glycoprotein on the surface of the cells, the intracellular concentration of DNR, and the immuetype of the cells. RESULTS:The cell doublings time and the cell cycle of the arsenic trioxide (As2O3 )-resistant leukemic cell line, K562/AS2, is similar to that of K562. The relative resistant fold of K562/AS2 to As2O3, DNR, VP16 and Ara-C was 7.4, 2.9, 3.8 and 1.1, respectively. The relative resistant fold of multidrug resistant cell line, K562/ A02, to As2O3, DNR, VP16 and Ara-C was 0.8、94、2.5 and 0.9, respectively. The fluorescence of the P-glycoprotein on the surface or of the DNR inside the cells detected was not significantly different between the K562 and the K562/AS2 cell lines. CONCLUSIONS:A cell line, K562/AS2, resistant to clinical achieving level (2 μmol/L) of As2O3 has been established. The relative resistant fold of K562/ AS2 to As2O3 is about 7.4 fold to the parent K562 line sensitive to As2O3. Partial resistance of K562/AS2 to DNR and VP16 is observed , the mechanism of which is unrelated to the P-gp, the expression product of multidrug resistance gene 1 (mdr1).  相似文献   

2.
AIM:To evaluate the effect of inhibiting ubiquitin-specific protease 14(USPl4) activity on oxidative stress induced by H2O2 of H9c2 cells.METHODS:The H9c2 cells were incubated with H2O2 at 25 μmol/L for 2 h to establish the oxidative stress injury model.The cells were divided into control group,H2O2 group,IU1 group (25 μmol/L or 50 μmol/L) and IU1+H2O2 group.The H9c2 cells activity was measured by MTS assay.The level of intracellular reactive oxygen species (ROS) and cell survival rate were analyzed by flow cytometry assay.The changes of the mitogen-activated protein kinase (MAPK) family related proteins were detected by Western blot.RESULTS:Compared with control group,the cell activity and the viability rate in H2O2 group were decreased (P<0.05),while the intracellular ROS,the protein levels of Bax/Bcl-2,P53,p-ERK1/2,p-JNK and p-P38 were increased (P<0.05).Compared with H2O2 group,the cell activity and the viability rate of the H9c2 cells in IU1+H2O2 group were increased (P<0.05),while the intracellular ROS,the protein levels of Bax/Bcl-2,P53,p-ERK1/2,p-JNK and p-P38 were decreased (P<0.05).CONCLUSION:Inhibition of USPl4 activity reduces the oxidative stress injury of the H9c2 cells.The mechanism may be related to inhibition of the MAPK signaling and down-regulation of apoptosis related proteins.  相似文献   

3.
REN Wei-wei  LI Hong  ZHANG Yuan 《园艺学报》2004,20(7):1179-1182
AIM: To explore the different inhibitory effect of arsenic trioxide (As2O3) on hepatocarcinoma cell growth in SMMC-7721 and BEL-7402 cell lines and its mechanism. METHODS: The cell culture and trypan blue staining were used to study the inhibitory effect of arsenic trioxide on cell growth, and the glutathione (GSH) contents in hepatocarcinoma cells treated with arsenic trioxide were detected. RESULTS: Arsenic trioxide inhibited the growth of BEL-7402 cells in a time and dose-dependent manner. The inhibitory effect was significant at a lower dose of 0.50 μmol/L for 24 h, however, to SMMC-7721 cells, a higher dose of 2.00 μmol/L for 96 h was needed. The inhibitory rate of arsenic trioxide (0.25-2.00 μmol/L) on BEL-7402 cell growth was higher than that on SMMC-7721 cells. The content of GSH in SMMC-7721 cells was much higher than that in BEL-7402 cells . CONCLUSION: There was a significant difference in inhibition of hepatocarcinoma cell growth by arsenic trioxide between BEL-7402 and SMMC-7721 cell lines, the cause of which may be due to the difference in GSH content in BEL-7402 and SMMC-7721 cells.  相似文献   

4.
AIM:To investigate the effects of sinapine, an effective monomer of Chinese medicine, on hydrogen peroxide (H2O2)-induced adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).METHODS:The undifferentiated rat BMSCs were identified and screened by flow cytometry. The adipogenic differentiation of BMSCs was induced by H2O2, and the toxicity of sinapine on BMSCs was tested by CCK-8 assay. After the modeling method and the concentration range of sinapine were determined, the lipid droplets in the cells were detected by Oil Red O semi-quantitative assay, and the optimal drug concentration was selected. Finally, Oil Red O assay was observed 24 h after drug intervention, and the expression of adipogenic differentiation-related proteins, adipocyte protein 2 (aP2), peroxisome proliferator-activated receptor γ (PPARγ) and glucose transporter 4 (Glut4), at mRNA and protein levels in the BMSCs was determined by qPCR and Western blot.RESULTS:Treatment with H2O2 at 200 μmol/L for 1 h induced BMSCs to differentiate into adipocytes. Below the concentration of 40 μmol/L, sinapine had no toxicity to BMSCs. The best inhibitory concentration of sinapine on adipogenic differentiation was at 15 μmol/L. The number of lipid droplets in sinapine (15 μmol/L) group was significantly lower than that in model group. In sinapine group, the expression of aP2, PPARγ and Glut4 at mRNA and protein levels was lower than that in model group (P<0.01).CONCLUSION:Sinapine inhibits H2O2-induced adipogenic differentiation of rat BMSCs. The mechanism may be related to the PPARγ/AMPK signaling pathway.  相似文献   

5.
AIM: To study the protective effect of brain-derived neurotrophic factor (BDNF) on vascular endothelial cells with H2O2-induced oxidative injury. METHODS: Human umbilical vein endothelial cells (HUVECs) were cultured in vitro, and the oxidation injury model of HUVECs was established by treatment with H2O2. The oxidatively injured HUVECs were cultured with different concentrations (1, 10 and 100 μg/L) of BDNF. At the same time, the control group (no injury), PBS treatment after H2O2 injury group and TrkB inhibitor group (with 100 μg/L BDNF and 1: 1 000 TrkB inhibitor) were also set up. The viability of the HUVECs was detected by MTT assay. The levels of LDH, MDA, SOD and GSH were measured. The releases of NO, ET-1 and ICAM-1 were analyzed by ELISA. The changes of ROS production and cell apoptosis were evaluated by flow cytometry. The protein levels of TrkB, p-TrkB, cleaved caspase-3, Bcl-2 and Bax were determined by Western blot. RESULTS: Compared with uninjured control group, in H2O2 oxidative injury plus PBS treatment group, the viability of the cells was decreased significantly, the LDH and MDA levels were increased significantly and the activities of SOD and GSH were decreased significantly. The NO secretion was decreased, and the ET-1 and ICAM-1 concentrations were increased significantly. The ROS content and apoptotic rate were increased significantly. The protein levels of cleaved caspase-3 and Bax were increased but Bcl-2 protein expression was decreased significantly. Compared with PBS treatment group, in H2O2-injured HUVECs treated with different concentrations of BDNF, the cell viability was gradually increased, the LDH and MDA levels were decreased and the activities of SOD and GSH were increased gradually. The secretion of NO was increased but ET-1 and ICAM-1 were decreased gradually. The ROS content and apoptotic rate were decreased significantly. The TrkB and p-TrkB levels were significantly increased significantly, the protein expression of cleaved-caspase 3 and Bax was decreased gradually and the Bcl-2 protein expression increased gradually. The role of BDNF was inhibited by TrkB inhibitor. CONCLUSION: BDNF protects HUVECs from oxidative injury by binding with TrkB to activate the BDNF-TrkB signaling pathways.  相似文献   

6.
AIM: To investigate the effect of ecdysterone (EDS) on H9c2 cardiomyocytes after oxidative stress. METHODS: H9c2 cells were cultured in vitro and divided into control group, high dose (2 μmol/L) of EDS group, middle dose (1.5 μmol/L) of EDS group, low dose (1 μmol/L) of EDS group, and H2O2 group. H9c2 cardiomyocytes in H2O2 group and high, middle and low doses of EDS groups were exposed to H2O2 for 6 h to establish the model of oxidative stress. The viability of the H9c2 cells was detected by CCK-8 assay. The apoptosis of H9c2 cells was analyzed by flow cytometry. The levels of lactate dehydogenase (LDH) and creatine kinase-MB (CK-MB) in the culture medium, and the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in the H9c2 cells were measured by colorimetry. The generation of reactive oxygen species (ROS) and the mitochondrial membrane potential were evaluated by flow cytometry and confocal laser scanning microscopy. The protein levels of Bax, Bcl-2 and cleaved caspase-3 in the H9c2 cells were determined by Western blot. RESULTS: Ecdysterone at the selected concentrations had no effect on the viability of H9c2 cells. Compared with control group, the levels of LDH, CK-MB, ROS and MDA, and the apoptotic rates of the H9c2 cells were significantly increased after treated with H2O2, but were decreased by EDS treatment in a dose-dependent manner. The levels of SOD and mitochondrial membrane potential of the H9c2 cells in H2O2 group were reduced significantly compared with control group, but high, middle and low doses of EDS treatments up-regulated the levels of SOD and mitochondrial membrane potential in H2O2-treated H9c2 cells. The protein levels of Bax and cleaved caspase-3 in the H9c2 cells in H2O2 group showed significant elevation in comparison with control group, and the protein expression of Bcl-2 declined in H2O2 group compared with control group, but high, middle and low doses of ecdysterone treatments down-regulated the protein levels of Bax, cleaved caspase-3 and up-regulated the expression of Bcl-2 in H2O2-treated H9c2 cells. CONCLUSION: Ecdysterone attenuates the effect of H2O2-induced oxidative stress on H9c2 cardiomyocytes. The mechanism may be involved in scavenging oxidative stress products, increasing antioxidant enzyme activity and improving mitochondrial function.  相似文献   

7.
AIM: To investigate the effect of acetyl-L-carnitine (ALC) on H2O2-induced oxidative damage in PC12 cells and its possible mechanism. METHODS: A moderate oxidative damage PC12 cell model was induced by exposure of the PC12 cells to H2O2. ALC at different concentrations (100, 200 and 400 μmol/L) was applied to the PC12 cells cultured in vitro, and CCK8 assay was used to detect the cell viability. The cells were divided into control group, H2O2 group, and low-ALC, medium-ALC and high-ALC groups. The apoptosis of the cells was analyzed by flow cytometry. The protein levels of Nrf2 and cleaved caspase-3 were determined by Western blot. The nuclear translocation of Nrf2 was observed by immunofluorescence staining. RESULTS: ALC at different concentrations (100, 200 and 400 μmol/L) significantly inhibited H2O2-induced PC12 cell apoptosis, and the medium concentration group had the best effect. Compared with H2O2 group, low, medium and high concentrations of ALC significantly increased the viability of the PC12 cells induced by H2O2, inhibit cell apoptosis (P<0.05), significantly down-regulated the protein level of cleaved caspase-3 (P<0.05), up-regulated the protein level of Nrf2 (P<0.05), and promoted the translocation of Nrf2 from the cytoplasm to the nucleus. CONCLUSION: Acetyl-L-carnitine attenuates H2O2-induced oxidative damage of PC12 cells, inhibits the apoptosis and increases the viability, which is related to the activation of Nrf2 signaling pathway.  相似文献   

8.
AIM: To observe the effect of senegenin (Sen) on hippocampal neuron injuries induced by H2O2.METHODS: Hippocampal neurons were isolated from neonatal SD rats. The primarily cultured neurons were divided into control group, H2O2 group, Sen group and Sen+H2O2 group. The cell viability, the content of malondialdehyde(MDA) and the activity of superoxide dismutase(SOD) in the neurons were detected after treated with Sen. The morphological changes of nucleus of the neurons were observed by Hoechst 33258 staining. The mRNA expression of bcl-2 and bax was quantified by real-time PCR. The protein levels of Bcl-2 and bax were measured by Western blotting. The activity of caspase-3 was also assayed.RESULTS: Compared with H2O2 group, the levels of antioxidative enzyme were increased in Sen+H2O2 group (P<0.05). In addition, mRNA expression of bcl-2 increased and that of bax decreased (P<0.05) in Sen+H2O2 group. Moreover, Sen increased the protein level of Bcl-2, and reduced the protein level of Bax and the activity of caspase-3 in the neurons exposed to H2O2 (P<0.05).CONCLUSION: The protective effect of Sen on hippocampal neurons with H2O2 -induced injury may be involved in the mechanisms of  相似文献   

9.
AIM: To investigate the ability of a metal complex ammonium tetrathiomolybdate (ATTM) to release H2S and its cytoprotective effect on an oxidative injury model. METHODS: Released H2S was absorbed in a reaction flask from ATTM dissolved in the cell medium. Staining with dichlorodihydrofluorescein diacetate or rhodamine 123 followed by photofluorography was conducted for the observation of reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) levels, respectively. Cell viability and release of lactate dehydrogenase (LDH) from the cells were measured with commercial kits. RESULTS: Similar to another H2S donor GYY4137, ATTM had an ability to release H2S in the cell medium in a dose-dependent manner. Treatment of human skin HaCaT cells with ATTM at concentrations of 25~400 μmol/L didn't significantly alter cell viability. Exposure of the cells to ultraviolet rays or a ROS donor H2O2 increased the intracellular ROS levels. Treatment with 400 μmol/L H2O2 significantly reduced the viability of HaCaT cells (P<0.01). However, before the treatment with H2O2, pretreatment with ATTM at 100 and 200 μmol/L markedly prevented the H2O2-induced cell injury (P<0.01). In addition, the treatment with H2O2 triggered ΔΨm loss (P<0.01) and LDH release from the cells (P<0.01). Prior to suffering from H2O2 injury, the preconditioning with 200 μmol/L ATTM significantly improved ΔΨm levels (P<0.05) and attenuated LDH release from the cells (P<0.01).CONCLUSION: ATTM is capable of releasing H2S and protecting human skin cells against oxidative injury.  相似文献   

10.
AIM: To evaluate the effect of senegenin (Sen) on H2O2-treated retinal ganglion cells (RGCs) and to explore its underlying mechanisms. METHODS: RGCs were retrograde labeled by injection of fluorogold into the superior colliculi of SD rats on the postnatal day 3. On the postnatal days 6 to 8, the retinas were dissociated with papain and cultured. Primary RGCs cultured in vitro were treated with H2O2 and/or various doses of Sen. The viability of RGCs was evaluated by counting the fluorescence-labeled neurons under microscope. The morphological changes of the nuclei in the retinal neurons were observed by Hoechst 33258 staining. Western blotting was applied to determine the expression of cleaved caspase-3, cytochrome C and Bcl-2 in cultured retinal neurons. RESULTS: Compared with the control cells, Sen at doses of 10, 20 or 40 μmol/L had no toxicity to RGCs (P>0.05). However, Sen at doses of 80 and 160 μmol/L had significant toxicity to RGCs (P<0.01). Compared with H2O2-injured group, Sen at doses of 10, 20 and 40 μmol/L effectively protected against H2O2-induced injury in RGCs (P<0.05) with the best efficiency at 40 μmol/L. Hoechst 33258 staining showed that the neuronal apoptosis caused by H2O2 was reduced by Sen. The results of Western blotting showed an up-regulation of Bcl-2, and decreased cytochrome C and cleaved caspase-3 levels by Sen in H2O2-treated retinal neurons. CONCLUSION: Sen is able to protect RGCs from H2O2-induced injury by enhancing Bcl-2 expression and inhibiting cell apoptosis.  相似文献   

11.
AIM: To investigate the role of autophagy inhibitor 3-methyladenine(3-MA) in the injury of U251 glioma cells induced by H2O2. METHODS: The following groups in this study were set up: control group, 10 mmol/L 3-MA group, 1 mmol/L H2O2 group and 1 mmol/L H2O2 +10 mmol/L 3-MA group. The viability of U251 cells in each group was detected by MTT assay. Autophagic vacuoles in the cells were observed by staining with MDC. The cells were stained with Hoechst 33342 to determine the chromatin condensation. Cell apoptotic ratio was measured by flow cytometry analysis. RESULTS: Compared with control group, no effect of 3-MA on the viability of U251 cells was observed. In H2O2 group, the cell viability decreased and cell apoptotic ratio increased.The autophagic vacuoles and nuclear chromatin condensation in the cells were also detected. Compared with H2O2 group, addition of 3-MA inhibited the increase in autophagic vacuoles but exacerbated the apoptosis. CONCLUSION: Autophagy inhibitor 3-MA inhibits autophagy partially, but exacerbates apoptosis in U251 cells, indicating that autophagy exerts protective effect in the process of injury in U251 cells induced by H2O2.  相似文献   

12.
13.
AIM: To investigate the effect of cobalt chloride (CoCl2) on the apoptosis of neural stem cells (NSCs) and the expression of microRNA-26a (miR-26a) in vitro, and to explore the mechanisms of NSC apoptosis induced by CoCl2. METHODS: NSCs were exposed to CoCl2 at different doses (200~600 μmol/L) for 24 h. The cell viability and apoptosis were measured by CCK-8 assay and TUNEL method. The expression of miR-26a-3p, miR-26a-5p, GSK-3β, caspase-3, Bcl-2 and Bax was examined by real-time PCR. The protein levels of Bcl-2 and Bax were detected by Western blotting. RESULTS: The cell viability was inhibited and the apoptosis of NSCs was increased significantly by CoCl2 in a dose-dependent manner (P<0.05). CoCl2 at concentration of 400 μmol/L for 24 h was used to induce apoptosis and the expression of miR-26a was down-regulated compared with control (P<0.05). Exposure to CoCl2 at concentration of 400 μmol/L up-regulated the expression of GSK-3β, caspase-3 and Bax, down-regulated the expression of Bcl-2 and Bcl-2/Bax (P<0.05). CONCLUSION: CoCl2 at concentration of 400 μmol/L induces the apoptosis of NSCs obviously. CoCl2 may induce the NSC apoptosis by mitochondrial apoptotic pathway. Declining miR-26a may be related to NSC apoptosis.  相似文献   

14.
AIM: To study the effect of Lycium barbarum polysaccharides (LBP) on oxidative stress injury of human endothelium-like EA.hy926 cells induced by hydrogen peroxide (H2O2). METHODS: The EA.hy926 cell model of oxidative stress injury was established by H2O2 treatment. The EA.hy926 cells were divided into 5 groups:control group, damage (H2O2 at 50 mmol/L) group, LBP (100 mg/L) group, anti-damage groups (LBP at 50 mg/L, 100 mg/L or 200 mg/L+50 mol/L H2O2), and LY294002 (20 μmol/L) group. The effect of LBP at different concentrations on the cell viability of EA.hy926 cells was measured by CCK-8 assay, and the optimum concentration of LBP was screened out. The apoptotic of EA.hy926 cells was analyzed by flow cytometry. Acridine orange/ethidium bromide (AO/EB) staining was used to observe the morphological characteristics of the apoptotic cells. The cell migration ability was detected by scratch method. The levels of nitric oxide (NO) and vascular endothelial growth factor (VEGF) in the cell culture medium were examined. The protein levels of cleaved caspase-3, Bax, Bcl-2, endothelial NO synthase (eNOS), p-eNOS and p-Akt were determined by Western blot. RESULTS: LBP at concentration of 100 mg/L significantly attenuated the injury of EA.hy926 cells induced by H2O2, as indicated by improved cell viability (P<0.05) and decreased apoptosis (P<0.05). Pretreatment with LBP elevated the levels of NO and VEGF (P<0.05), and promoted the migration ability of EA.hy926 cells. LBP also increased the Bcl-2/Bax ratio, down-regulated the protein level of cleaved caspase-3, and up-regulated the protein levels of eNOS and p-eNOS. The protective effect of LBP were abolished by pretreatment of the EA.hy926 cells with the inhibitor of PI3K (P<0.05). As a result, the protein level of p-Akt was down-regulated, and the level of NO was also significantly reduced. CONCLUSION: LBP has protective effect on H2O2 -induced EA.hy926 cells by attenuating apoptosis of the cells. The mechanism is closely related to the activation of PI3K/Akt/eNOS signaling pathway.  相似文献   

15.
AIM: To study the effect of 6-gingerol on the apoptosis of rat nucleus pulposus cells and its possible mechanism. METHODS: Rat nucleus pulposus cells were isolated and cultured. The effects of 6-gingerol and hydrogen peroxide (H2O2) at different concentrations on the viability of nucleus pulposus cells were measured by CCK-8 assay. After 6-gingerol treatment, the protein level of p-Akt was determined by Western blot. The cells were divided into 4 groups:control group, H2O2 group, 6-gingerol group (6-gingerol + H2O2) and LY294002 group (6-gingerol + H2O2 + LY294002). The apoptotic rate and the levels of reactive oxygen species (ROS) were analyzed by flow cytometry. TUNEL fluorescence staining was used to observe the number of apoptotic cells. The morphological changes of mitochondria were observed under transmission electron microscope, and Western blot was used to determine the protein levels of caspase-3, Bcl-2, Bax, p-Akt, Akt and p53. The mRNA expression of aggrecan and type II collagen was measured by RT-qPCR. RESULTS: The results of CCK-8 assay showed that the optimal concentration of 6-gingerol for promoting the viability of rat nucleus pulposus cells was 24 mg/L, and the exposure condition of H2O2 at 80 μmol/L for 6 h was appropriate for establi-shing the cell damage model. 6-Gingerol increased the protein level of p-Akt in a time-dependent manner. The apoptotic rate, ROS level and TUNEL positive cells in H2O2 group were significantly increased compared with control group. The mitochondrial edema was obvious in H2O2 group compared with control group. The protein levels of pro-apoptotic molecules caspase-3, Bax and p53 were significantly increased, while anti-apoptotic protein Bcl-2, and mRNA expression of aggrecan and type II collagen were significantly decreased compared with control group (P<0.05). 6-Gingerol exerted a protective effect against H2O2-induced apoptosis and promoted the expression of anti-apoptotic proteins. However, this effect was weakened after treatment with PI3K/Akt signaling pathway inhibitor LY294002. CONCLUSION: H2O2 induces damage and dysfunction of rat nucleus pulposus cells, and 6-gingerol may inhibit H2O2-induced apoptosis of nucleus pulposus cells by activation of PI3K/Akt signaling pathway.  相似文献   

16.
AIM: To explore the effect of fucoxanthin (Fu) on the growth and apoptosis of HSC-T6 cells. METHODS: HSC-T6 cells were divided into blank control group, negative control group and drug groups (treated with different concentrations of Fu). The cell viability was detected by CCK-8 assay at 24 h, 48 h and 72 h after Fu treatment. The cell cycle distribution and apoptotic rate were analyzed by flow cytometry. The protein expression of Bcl-2 and Bax were detected by Western blot. RESULTS: Compared with blank control group, the viability of HSC-T6 cells was inhibited by Fu at concentrations of 15~75 μmol/L in a dose- and time-dependent manner (P < 0.01). The cell ratio of G1 phase was significantly decreased (P < 0.01) and the cell ratio of S phase and G2 phase was significantly increased (P < 0.01) in 60 μmol/L Fu group after 24 h. The cell ratio of G1 phase was significantly decreased (P < 0.05) and the cell ratio of S phase and G2 phase was significantly increased (P < 0.05) in 15 μmol/L and 30 μmol/L Fu groups in a dose-dependent manner after 48 h. The early cell apoptotic rates and total cell apoptotic rates were significantly increased in the Fu treatment groups in a dose-dependent manner (P < 0.05). The protein expression of Bax was significantly increased in the Fu treatment groups and the protein expression of Bcl-2 was significantly decreased in 30 μmol/L and 60 μmol/L Fu groups (P < 0.05).CONCLUSION: Fu inhibits the growth of HSC-T6 cells possiblely via arresting the cell cycle at S phase and G2 phase. The apoptosis of HSC-T6 cells induced by Fu might be via down-regulating the protein expression of Bcl-2 and up-regulating the protein expression of Bax.  相似文献   

17.
AIM: To investigate the effect of salvianolic acid B (Sal B) on apoptosis of rat bone mesenchymal stem cells(BMSCs) induced by hydrogen peroxide(H2O2). METHODS: BMSCs were incubated with Sal B at the concentration of 1, 10 or 100 μmol/L while treated with lethal concentration of H2O2 (500 μmol/L). The effect of Sal B at different concentrations on the viability of BMSCs was detected by MTT. Flow cytometry were used to determine the protective role of Sal B in apoptosis of BMSCs. The changes of chromatin distribution in BMSCs were observed by Hoechst 33342 staining. The expression of p-ERK1/2 was detected by Western blotting. RESULTS: Sal B protected the BMSCs against H2O2 as the cell viability was increased from (53.60±4.21)% to (85.33±9.08)% or (75.78±6.28)% in a dose-dependent manner. After exposed to H2O2, about 50%-65% BMSCs displayed apoptotic morphology. Treatment with Sal B at the concentrations of 10 and 100 μmol/L reduced the cytotoxic effect of H2O2 on BMSCs to about 32% and 47%, respectively. The results of flow cytometric analysis confirmed the cytoprotective effect of Sal B. This protective effect was concomitant with significant reduction of ROS generation. Moreover, H2O2 time-dependently induced a pronounced increase in ERK1/2 phosphorylation,which was effectively inhibited by Sal B.CONCLUSION: Sal B protects BMSCs against H2O2-induced apoptosis. Sal B may exert its protective effect on BMSCs by triggering intracellular anti-apoptosis mechanism as well as reducing the oxidative stress.  相似文献   

18.
AIM:To investigate the role of transferrin/transferrin receptor system in transferrin-bound Yb2 (Yb2Tf) uptake by U-87 MG cells and the effect of transferrin-bound and -free Yb2 on proliferation of U-87 MG cells.METHODS:Cell culture and ICP-MS measurement of Yb2.RESULTS:Yb2Tf uptake by U-87 MG cells increased with the concentrations of Yb2Tf, and reached saturation as the concentration in the incubation medium was raised to about 2 μmol/L. Also, Yb2 uptake by the cells increased with increase of the mole ratio (Yb2: apoTf), reaching a maximum at 1.5 mole ratio. Yb2Tf in 0.4 μmol/L significantly inhibited proliferation of U-87 MG cells, however, 10 μmol/L Yb3+ had no significant effect on proliferation of the cells.CONCLUSION:The uptake of Yb2 by U-87 MG cells might be mediated by transferrin/transferrin receptor system. Transferrin-bound but not transferrin-free Yb2 could significantly inhibit proliferation of U-87 MG cells.  相似文献   

19.
JIANG Jian-wei  ZHANG Yuan 《园艺学报》2004,20(11):1994-1998
AIM: To evaluate the inhibitory effect of galactose (Gal)-polyethyleneimine (PEI)-c-myc antisense oligodeoxynucleotide (ASODN) complex on proliferation of human hepatocellular carcinoma cells. METHODS: Human hepatocellular carcinoma cell line Bel-7402 was treated with Gal-PEI-ASODN complex. Cell proliferation was tested by trypan blue dye at different time points and with various concentrations of ASODN treatment. Cell morphology was observed under inverted microscope, cell hypodiploid percentage was analyzed by flow cytometry and cell ultrastructure was observed through electron microscopy. RESULTS: Compared with ASODN group (20 μmol/L) from 0 h to 96 h, Gal-PEI-ASODN complex (with ASODN 0.75 μmol/L) significantly suppressed Bel-7402 cells proliferation, the ASODN concentration within Gal-PEI-ASODN complex and time course acquired were significantly lower and shorter, respectively. Incubated with pure ASODN at different concentrations for 72 hours, cell proliferation was inhibited and IC50 was 20.9 μmol/L; while mediated with galactose receptor for 48 hours, ASODN significantly inhibited cell proliferation and IC50 was only 0.294 μmol/L, the inhibitory efficacy of ASODN enhanced 70.9 folds. While Bel-7402 cells were incubated with Gal-PEI-ASODN complex for 48 hours, cell hypodiploid percentage was much higher than ASODN groups and cell apoptosis was seen under electron microscopy. CONCLUSIONS: Galactose receptor mediated ASODN delivery may significantly increase proliferation inhibition efficacy on Bel-7402 cells.  相似文献   

20.
AIM: To investigate the protective effect of hypoxic preconditioning on human bone marrow mesenchymal stem cells (hBM-MSCs), and to provide basic experimental support for more effective autologous stem cell transplantation in aged patients. METHODS: The old hBM-MSCs were subjected to hypoxic preconditioning using a hypoxia incubator chamber for 24 h. The cells were divided into young group, old group and old+hypoxia group (with 24 h hypoxic preconditioning). Hydrogen peroxide (H2O2, 300 μmol/L) was applied to simulate the oxidative stress. The cells were treated with 50 μmol/L LY294002 for 2 h to inhibit PI3K/AKT pathway. BrdU incorporation and CCK-8 assay were used for analyzing the cell proliferation and viability. The protein levels of Bax, Bcl-2 and p-AKT were measured by Western blot. RESULTS: BrdU-positive cells, which represented the cell proliferation, and the cell viability were significantly increased in old+hypoxia group compared with old group (P<0.05). The protein level of Bax decreased (P<0.05) and Bcl-2 increased (P<0.05) in old+hypoxia group compared with old group after using 300 μmol/L H2O2 simulate. the oxidative stress. The phosphorylation of AKT was enhanced by hypoxic preconditioning in old group (P<0.05). The protective effect of hypoxic preconditioning on the cell survival was decreased after treated with LY294002 (inhibitor of the PI3K/AKT pathway) (P<0.05). CONCLUSION: Hypoxic preconditioning increases the survival and proliferation of old hBM-MSCs by activation of AKT pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号