首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: To study the effect of chronic hypoxic hypercapnia on expression of heme oxygenase-1 (HO-1). METHODS: Sprague-Dawley rats were randomly divided into three groups: control group(A),hypoxic hypercapnic group(B), hypoxic hypercapnia+hemin group(C). HO-1 and HO-1 mRNA were observed in pulmonary arterioles by the technique of immunohistochemistry and in situ hybridization. RESULTS: ① mPAP and weight ratio of right ventricle (RV) to left ventricle plus septum (LV+S) were significantly higher in rats of B group than those of A and C group (P<0.01). Differences of mCAP were not significant in three groups(P>0.05). ② Blood CO concentration was significantly higher in rats of B group than that of A group (P<0.01), it was much higher in C group than that of B group(P<0.01). ③ Light microscopy showed that vessel well area/total area (WA/TA), density of medial smooth muscle cell (SMC) and media thickness of pulmonary arterioles were much higher in rats of B group than those of A and C group (P<0.01). ④ The observation by electron microscopy showed proliferation of medial smooth muscle cells and collageous fibers of pulmonary arterioles in rats of B group, hemin could reverse the changes mentioned above. ⑤ HO-1 and HO-1 mRNA in pulmonary arterioles was significantly higher in rats of B group than those of A group(P<0.01), and they were significantly higher in rats of C group than those of B group (P<0.01). CONCLUSION: Expression of HO-1 mRNA and HO-1 in pulmonary arterioles was enhanced by hypoxic hypercapnia. Hemin partly inhibited pulmonary hypertension and pulmonary vessel remodeling by enhancing the expression of HO-1 mRNA and HO-1.  相似文献   

2.
AIM:To study the effect of ligustrazine on pulmonary hypertensive rats induced by hypoxic hypercapnia. METHODS:Thirty rats were randomly divided into three groups:control group(A),hypoxic hypercapnic group(B), hypoxic hypercapnia+ligustrazine(lig.) group(C). RESULTS: (1) Mean pulmonary arterial pressure(mPAP)of group B was significantly higher than that of group A and mPAP of group C was significantly lower than that of group B(P<0.01),differences of mean carotid pressure(mCAP) were not significant among three groups (P>0.05); (2)Electron microscopy and immunohistochemistry showed ligustrazine could inhibit the diposition of collagenous fiber(collagen typeⅠ)in pulmonary arterioles induced by hypoxic hypercapnia; (3) Plasma endothelin level of group C was significantly lower than that of group B (P<0.01), serum (NO 2-/NO3-) of group C was significantly higher than that of group B (P<0.01). CONCLUSION:Ligustrazine can inhibit pulmonary hypertension and the diposition of collagen type Ⅰ in pulmonary arterial wall induced by hypoxic hypercapnia.  相似文献   

3.
AIM:To study the effect of safflower injection on expression of COX-2 mRNA in chronic hypoxic hypercapnic rat pulmonary arterioles.METHODS: Sprague-Dawley rats were randomly divided into normal control group, hypoxic hypercapnic group (B), hypoxic hypercapnia+ safflower injection group (C). The concentration of TXB2 and 6-Keto-PGF1α in plasma and in lung were detected by the technique of radioimmunoassay. COX-2 mRNA was observed in arterioles from rats by the technique of in situ hybridization. RESULTS: ① Mean pulmonary arterial pressure(mPAP), weight ratio of right ventricle (RV) to left ventricle plus septum (LV+S) were much higher in B group than those in control group. No significant difference of mean carotid arterial pressure(mCAP) was observed in three groups. ② The concentration of TXB2 and the ratio of TXB2/6-keto-PGF1α were significantly higher in B group than those in control group. ③ Light microscopy showed that vessel wall area/total area, the density of medial smooth muscle cells and the thickness of medial smooth cell layer were significantly higher in B group than those in control group. Electron microscopy showed proliferation of medial smooth muscle cells and collagenous fibers in pulmonary arterioles in B group. Safflower injection reversed the changes mentioned above. ④ Expression of COX-2 mRNA in pulmonary arterioles was much higher in C group than those in B group. Differences of COX-1 mRNA in pulmonary arterioles were not significant between these two groups.CONCLUSION:Safflower injection increases the expression of COX-2 mRNA in chronic hypoxic hypercapnic rat pulmonary arterioles, indicating an important mechanism that safflower injection inhibits the formation of hypoxic hypercapnia pulmonary hypertension and pulmonary vessel remodeling.  相似文献   

4.
AIM: To study the expression and distribution of osteopontin (OPN) in lungs and pulmonary arteries in pulmonary hypertensive rats induced by hypoxia-hypercapnia, and to explore the role of OPN in pathogenesis of pulmonary hypertension. METHODS: Forty-eight male Sprague-Dawley rats (Weight 180 g-220 g) were randomly divided into four groups: normal control group (NC), hypoxic hypercapnia 1-week,2-week and 4-week group (1HH, 2HH and 4HH). The expressions of OPN mRNA and protein in lungs and pulmonary arteries were detected by RT-PCR and immunohistochemistry. ELISA was used to detect the concentration of OPN in lung homogenates. The content of OPN in pulmonary arteries was detected by Western blotting. RESULTS: ① The mean pulmonary artery pressure (mPAP) and weight ratio of right ventricle to left ventricle and septum [RV/(LV+S)] in all hypoxic hypercapniac groups were higher than those in normal control group (P<0.01), respectively. Differences of mean carotid artery pressure (mCAP) among these four groups were not significant (P>0.05). ② The expression of OPN mRNA was significantly increased in pulmonary arteries and lung tissues in hypoxic hypercapnic groups compared with normal control group (P<0.01). ③ The result of immunohistochemistry showed that OPN was only detected in bronchus and alveolar epithelium, but not detected in pulmonary arterioles of normal control group. In contrast,OPN expression was evident in pulmonary arterioles of 1HH rats,especially in media. Moreover, the expression of OPN was markedly increased in group 2HH and 4HH. ④ OPN levels in lung homogenates in 1HH, 2HH and 4HH were increased by 69%, 128% and 187% (P<0.01), respectively, compared with control rats. ⑤ Western blotting analysis showed that the contents of OPN were significantly higher in all hypoxic hypercapnic groups than those in NC group (P<0.01).CONCLUSION: The expressions of OPN in pulmonary arteioles and lung are increased in rats with pulmonary hypertension. OPN might play an important role in the pathogenesis of pulmonary hypertension induced by chronic hypoxia and hypercapnia.  相似文献   

5.
AIM: To study the effect of chronic hypoxic hypercapnia on gene expression of thromboxane synthase and prostacyclin synthase in pulmonary arterioles. METHODS: Sprague-Dawley rats were randomly divided into two groups: control group and hypoxic hypercapnic group. TXS mRNA and PGI2-SmRNA were observed in pulmonary arterioles by in situ hybridization. RESULTS: mPAP, weight ratio of right ventricle (RV) to left ventricle plus septum(LV+S), contents of TXB2 and 6-keto-PGF1α in plasma and lung and TXS mRNAin pulmonary arterioles were much higher in rats of hypoxic hypercapnic group than those of control group. Differences of PGI2-SmRNA in pulmonary arterioles were not significant in two groups. Light microscopy showed hypertrophy of vessel smooth muscle cells and vessel cavity straitness were found in hypoxic hypercapnic group. CONCLUSION: Changes of gene expressions of thromboxane synthase and prostacyclin synthase and imbalance of TXA2/PGI2 may play an important role in hypoxic hypercapnic pulmonary hypertension.  相似文献   

6.
AIM:To study the role and the mechanism of heme oxygenas/endogenous carbon monoxide on nitric oxide synthase/nitric oxide system in rats with pulmonary hypertension induced by hypoxic hypercapnia.METHODS:Sprague-Dawley rats were randomly divided into three groups: control group (A group), hypoxic hypercapnic group (B group), hypoxic hypercapnia+hemin group (C group). Blood CO concentration (COHb%), NO concentration, HO-1 activity, iNOS, cNOS in blood serum and lung homogenate were measured, respectively. RESULTS:① mPAP and RV/(LV+S) of B group were significantly higher than those of A and C group(P<0.01).② Blood CO concentration, activity of HO-1in blood serum and lung homogenate in rats of B group were significantly higher than those of A group, but were significantly lower than those of C group (P<0.01). ③ NO concentration in blood serum and lung homogenate in rats of B group were significantly lower than those of A group, those of C group were significantly higher than those of B group (P<0.01).④The activity of iNOS in blood serum and lung homogenate in rats of B group were significantly higher than those of A group, but were significantly lower than those of C group (P<0.01). Activity of cNOS in blood serum and lung homogenate of B group were significantly lower than those of A group (P<0.01), and there was no significant difference between cNOS in B and C group.CONCLUSION:Endogenous carbon monoxide upregulated iNOS/NO system in rats with chronic pulmonary hypertension induced by hypoxic hypercapnia.  相似文献   

7.
AIM: To clarify the role of nitric oxide (NO) system in development of chronic hypoxic hypercapnic pulmonary hepertension. METHODS: Male Sprague-Dawley rats were randomly divided into control group and hypoxic hypercapnic group. NO content of plasma was determined, constitutive nitric oxide synthase (cNOS) and inducible nitric oxide synthase (iNOS) were examined using the technique of immunohistochemistry, expression of cNOS mRNA and iNOS mRNA of arteriole were detected by in situ hybridization. RESULTS: Plasma NO concentration, cNOS activity and cNOS mRNA expression in arteriole of chronic hypoxic hypecapnic group were significantly lower than that of control group (P<0.01); activity of iNOS and expression of iNOS mRNA in arteriole showed significantly higher compared with control. CONCLUSION: The disturbance of NO production and NOS expression in arteriole are involved in hypoxic hypercapnic pulmonary hepertension.  相似文献   

8.
AIM: To investigate the roles of nitric oxide/L-arginine (NO/L-Arg) pathway and urotensin-Ⅱ (UⅡ) in the development of pulmonary hypertension induced by chronic hypoxia-hypercapnia in rats.METHODS: Forty male Sprague-Dawley rats were randomly divided into four groups (n=10): normal control group (A), hypoxia-hypercapnia+saline group (B), hypoxia-hypercapnia+L-Arg liposome group (C) and hypoxia-hypercapnia+N-nitro-L-arginine methyl ester (L-NAME) group (D).Contents of UⅡ, UⅡ mRNA and receptor of UⅡ (UT) mRNA in pulmonary arterioles were measured with immunohistochemistry analysis and in situ hybridization, respectively.Change of small pulmonary vascular microstructure was also investigated.RESULTS: (1) The mean pulmonary artery pressure (mPAP) and the weight ratio of right ventricle to left ventricle plus septum [RV/(LV+S)] in B and D groups were all higher than those in A group (respectively, P<0.05), with C group significantly lower than those in B group (respectively, P<0.01).(2) Light microscopy showed that the ratio of vessel wall area to total area (WA/TA) and the media thickness of pulmonary arterioles (PAMT) in B group were higher than those in A group (P<0.05), with C group significantly lower than those in B group.(3) The contents of UⅡ, UⅡ mRNA and UT mRNA in pulmonary arterioles in B and D groups were all higher than those in A group (respectively, P<0.01), while the expression of UⅡ and UⅡ mRNA in C group were lower than those in B group (P<0.01).CONCLUSION: The pathological process of pulmonary hypertension induced by chronic hypoxia-hypercapnia might be related to upregulation of UⅡ located in pulmonary arterioles, which might be partially inhibited by exogenous NO in rats.  相似文献   

9.
AIM: To explore the effects of hydroxylamine on the pulmonary arterial pressure in chronic hypoxic hypercapnic rats. METHODS: Twenty-four male Sprague-Dawley rats were randomly divided into 3 groups (8 rats in each group): the normal control group (NC), hypoxic hypercapnia+normal saline group (NS), hypoxic hypercapnia+hydroxylamine group (HA). The animals in NS and HA groups were kept in the O2 (9%-11%) and CO2 (5%-6%) cabin, 8 h a day and 6 days a week for 4 weeks. Before entering the cabin, the rats in HA group were administered with 1 mL hydroxylamine (12.5 mg/kg) by intraperitoneal injection, while the rats in NS group were given intraperitoneal injection of 1 mL saline solution. The mean pulmonary arterial pressure (mPAP) was measured by external jugular vein cannulation. The heart was removed, and the right ventricle (RV) and the left ventricle plus the septum (LV+S) were dissected. The ratio of the wet weight of the RV to that of the LV+S was calculated. The changes of the pulmonary vascular construction were observed under optical microscope. The concentration of H2S in the plasma was measured with a spectrometer. The expression of cystathionine-γ-lyase (CSE) in the pulmonary arterioles and bronchi was measured by immunohistochemistry and RT-PCR. RESULTS: The values of mPAP, RV/(LV+S),vessel wall area/total area (WA/TA) and media thickness of pulmonary arterioles (PAMT) in NS group and HA group were significantly higher than those in NC group (P<0.05). The level of H2S in the plasma, the content of CSE protein and the expression of CSE mRNA in NC group were significantly lower than those in NS group (P<0.05). The values of mPAP, RV/(LV+S), WA/TA and PAMT in HA group were significantly lower than those in NS group (P<0.05). The level of H2S in the plasma, the content of CSE protein and the expression of CSE mRNA in HA group were significantly higher than those in NS group (P<0.05). CONCLUSION: Hydroxylamine may decrease the pulmonary arterial hypertension induced by chronic hypoxic hypercapnia in rats by increasing the level of H2S in the plasma, the content of CSE protein and the mRNA expression of CSE, thus improving the pulmonary vascular structural remodeling.  相似文献   

10.
AIM: To observe the effect of Panax notoginoside (PNS) on the pulmonary artery pressure and the p38 mitogen-activated protein kinase(p38 MAPK) in lung tissues of rats treated with hypoxia. METHODS: Thirty adult male SD rats were randomly divided into 3 groups. The rats in normal control group were exposed to normal conditions, the rats in hypoxia group were exposed to isobaric hypoxia, and the rats in hypoxia+PNS group were treated with PNS under the condition of hypoxia. After 4 weeks of treatment, the mean pulmonary arterial pressure (mPAP) and the mean carotid arterial pressure (mCAP) were measured by cardiac catheterization. The heart was isolated, and the right ventricle (RV), left ventricle plus ventricular septum (LV+S) were weighed to calculate the ratio of RV/(LV+S).The quantity of phospho-p38 MAPK(p-p38 MAPK) in rat pulmonary arterioles was determined by the method of immunohistochemistry and the mRNA content of p38 MAPK was tested by RT-PCR. RESULTS: The mPAP and RV/(LV+S) in hypoxia group were higher than those in normal control group. The expression of p-p38 MAPK in rat pulmonary arterioles and p38 MAPK mRNA in the lung tissues were higher than those in normal control group (P<0.05). The mPAP, RV/(LV+S), the expression of p-p38 MAPK in rat pulmonary arterioles and p38 MAPK mRNA in the lung tissues in hypoxia+PNS group were significantly lower than those in hypoxia group (P<0.05).CONCLUSION: PNS possesses the preventive and therapeutic effect on hypoxic pulmonary hypertension by decreasing p-p38 MAPK and down-regulation of p38 MAPK mRNA in the lungs.  相似文献   

11.
AIM: To observe the change of CX3CL1/fractalkine (FKN) in the rats with monocrotaline-induced pulmonary hypertension, and to study the intervention of puerarin. METHODS: The pulmonary hypertension model was established in vivo by intraperitoneal injection of monocrotaline. Thirty male Sprague-Dawley rats (270-310 g) were randomly divided into 3 groups: control group (C), monocrotaline model group (M)and puerarin treatment group (M+P). The mean pulmonary arterial pressure (mPAP), mean right ventricular pressure (mRVP), mean carotid arterial pressure (mCAP) and the weight ratio of right ventricle (RV) to left ventricle plus septum (LV+S) were also detected. The structural changes of pulmonary arterioles were observed under optical microscope. Remodeling of lung blood vessels was determined by measuring the ratio of vessel wall area to total area (WA/TA) and the medium thickness of pulmonary artery (PAMT). The concentration of soluble fractalkine(sFKN) in plasma was measured by ELISA. The expression of FKN in the pulmonary artery wall was measured by immunohistochemistry. The mRNA level of FKN in the lung tissues was detected by RT-PCR.RESULTS: mPAP, mRVP, RV/(LV+S), WA/TA and PAMT in M group were higher than those in C group (P<0.01). RV/(LV+S), WA/TA and PAMT in M+P group were significantly lower than those in M group (P<0.01). No significant difference of mCAP among the 3 groups was observed. The levels of sFKN, FKN mRNA and FKN protein in M group were higher than those in C group (P<0.01), and the above data in M+P group were lower than those in M group(P<0.05). The serum level of sFKN had a positive correlation with PAMT and RV/(LV+S) (r=0.719, r=0.685,respectively, P<0.01).CONCLUSION: Puerarin down-regulates the expression of FKN and suppresses the development of pulmonary hypertension and pulmonary vessel remodeling.  相似文献   

12.
AIM: To study the relationship between the activity of phospholipase A2 (PLA2) and pulmonary structural remodeling with the model of chronic isobaric hypoxic pulmonary hypertension. METHODS: 29 healthy Sprague-Dawley rats were randomly divided into normal control group, chronic hypoxic group and hypoxia plus Polidatin (PD) group. By diameter, the arteries were divided into two groups: arteries of group I (30 μm-100 μm) and group II (101 μm-200μm). The mean pulmonary arterial pressure (mPAP) was measured by inserting a microcatheter into the pulmonary artery. The PLA2 activity was measured with modified microtitrimetic method. The pulmonary tissue and arterioles morphology changes were examined under light microscope. RESULTS: It was found that after 21 days hypoxia, the mean pulmonary arterial pressure (mPAP), the PLA2 activity in blood and lung homogenate increased significantly. The media thickness of group I arteries increased (P<0.01) while that of group II arteries had no significant changes. The ratio of media area and adventitia of both groups was raised. Under light microscope, it was observed that pulmonary vascular endothelium proliferated, media became thickening and adventitia matrix increased. Pretreatment with PD could attenuate the changes mentioned above. CONCLUSION:PLA2 plays an important inducing role through promotion of the pulmonary vascular structural remodeling in the formation of chronic hypoxic pulmonary hypertension.  相似文献   

13.
AIM: To investigate the preventive effect of PNS on chronic hypoxic pulmonary hypertension in rats. METHODS: Pulmonary arterial pressure observation, hematocrit (Hct)measurement, biochemical analysis and transmission electron microscopy were conducted to investigate the role of PNS. RESULTS: (1)Mean pulmonary arterial pressure (mPAP), right ventricular mean pressure (RVMP) and Hct were significantly higher in hypoxia group (H group) than that of control group (C group) and were much lower in hypoxia with PNS group (HT group) than that in H group; (2) Nitric oxide (NO2-/NO3-) concentration and nitric oxide synthase (NOS) activity in the plasma and the lung tissue, total superoxide dismutase (T-SOD) and copper/zinc-containing enzyme (Cu/ZnSOD) activities in the plasma were all significantly lower in H group than that in C group and were much higher in HT group than that in H group, but NO2-/NO3- concentration and NOS activity were still markedly decreased in comparison with C group; (3) Injury of endothelial cells in pulmonary arteriole was improved obviously in HT group Compared with H group. CONCLUSIONS: These results suggest that PNSreduces the increase in mPAP, probably through adjusting NOlevel, anti-damaging effectof free radicals, inhibiting the injury of endothelial cells and decreasing Hct.  相似文献   

14.
AIM:To investigate the expression of matrix metalloproteinases(MMPs) in pulmonary arterioles of rats with chronic hypoxia and hypercapnia-induced pulmonary hypertension.METHODS:MMP-2, MMP-9 and MMP-2 mRNA, MMP-9 mRNA were observed in pulmonary arterioles by the techniques of immunohistochemistry and in situ hybridization.RESULTS:①The mean pulmonary artery pressure (mPAP) and weight ratio of right ventricle to left ventricle and septum (RV/LV+S) of hypoxia-hypercapnia groups were higher than those of normal control group (P<0.01). ②Light microscopy showed that vessel wall and media of pulmonary arterioles were thicker in rats of hypoxia-hypercapnia groups than normal control group. There were vessel smooth muscle cell hypertrophy, vessel cavity straitness in hypoxia-hypercapnia group, but no same performance was found in normal control group. ③The expression of MMP-2, MMP-9 and MMP-2 mRNA, MMP-9 mRNA in pulmonary arterioles were significantly higher in rats of hypoxia-hypercapnia groups than control group (P<0.01).CONCLUSION:Expression of matrix metalloproteinases in pulmonary arterioles is enhanced by hypoxia hypercapnia. This may be involved in pulmonary vascular remodeling in rats with pulmonary hypertension.  相似文献   

15.
AIM: To study the protective effect of A2a adenosine receptor (A2aAR) on hypoxic pulmonary hypertension in the rats treated with salidroside. METHODS: Sprague-Dawley rats were randomly divided into 6 groups: normal control group, hypoxia group, hypoxia+salidroside (low dose) group, hypoxia+salidroside (median dose) group, hypoxia+salidroside (high dose) group, and hypoxia+CGS-21680 (a selective agonist of A2aAR) group. Pulmonary hypertension in the rats was produced for 4 weeks. Mean pulmonary artery pressure (mPAP), mean carotid arterial pressure (mCAP) and the weight ratio of right ventricle/(left ventricle+septum)[RV/(LV+S)] were measured. The expression of A2aAR in the pulmonary arterioles was determined by immunohistochemistry and in situ hybridization. The mRNA expression of A2aAR in the lung tissues was detected by real-time RT-PCR. The protein level of A2aAR in the lung tissues was analyzed by Western blotting. RESULTS: The mPAP in hypoxia group was significantly higher than that in normal control group. The mPAP in hypoxia+salidroside (high dose) group and CGS-21680 group was significantly lower than that in hypoxia group. RV/(LV+S) in hypoxia group were significantly higher than that in normal control group. RV/(LV+S) in hypoxia+salidroside (median dose) group, hypoxia+salidroside (high dose) group and CGS-21680 group were lower than that in hypoxia group. The ratio of vessel wall area/vessel total area (WA/TA) in hypoxia group was significantly higher than that in normal control group. WA/TA in hypoxia+salidroside (low dose) group, hypoxia+salidroside (median dose) group, hypoxia+salidroside (high dose) group and CGS21680 group were obviously lower than that in hypoxia group. The expression of A2aAR was significantly higher in hypoxia group than that in normal control group. The expression of A2aAR in hypoxia+salidroside (high dose) group and CGS-21680 group was obviously higher than that in hypoxia group. CONCLUSION: The A2aAR attenuates pulmonary vessel remodeling and pulmonary hypertension induced by hypoxia. Salidroside protects the pulmonary vessel from remodeling and inhibits the development of hypoxia-induced pulmonary hypertension by up-regulation of A2aAR expression.  相似文献   

16.
AIM: To investigate the effect of chronic hypoxia-hypercapnia and L-arginine (L-Arg) liposome on L-Arg transport in rats pulmonary artery. METHODS: Forty Sprague-Dawley rats were randomly divided into four groups, normal control group (NC), chronic hypoxia-hypercapnia group (HH), chronic hypoxia- hypercapnia group+L-Arg (HL) and chronic hypoxia-hypercapnia group+L-Arg liposome (HP). Changes in pulmonary artery L-Arg transport and pulmonary arterial microscopy were observed. RESULTS: (1) The mean pulmonary artery pressure (mPAP) and weight ratio of right ventricle to left ventricle and septum (RV/LV+S) in HH group were higher than those in NC group, and in HP group was lower than that in HH group and HL group, but there was no significant difference between HL group and HH group; (2) At 0.005 mmol/L, 0.01mmol/L, 0.02mmol/L, 0.05 mmol/L, 0.1 mmol/L and 0.2mmol/L concentration of L-Arg, the velocity of L-Arg transport in HH group was lower than that in NC group, and in HL group higher than in HH group, and in HP group was much higher than that in HH group and in HL group. (3) Light microscopy showed that vessel well area/total area (WA/TA) and media thickness of pulmonary arterioles (PAMT) were much higher in rats of HH group than those in NC group, WA/TA and PAMT in HP group were obviously improved. CONCLUSION: The above results indicated that there existed a functional disturbance in L-Arg transport of pulmonary artery in rats chronically exposed to hypoxia-hypercapnia, and it was obviously enhanced when liposome was used as L-Arg carrier. Thus, it appears that liposome-L-Arg may have clinical perspective in the treatment of chronic hypoxic pulmonary hypertension.  相似文献   

17.
AIM: To explore the mechanism of cilazapril inhibiting proliferation of pulmonary vascular and myocardial cells in hypoxic rats. METHODS: 30 male Wistar rats were used and divided into three groups: normal control (group A), intermittent hypoxia for 4 weeks (group B) and intermittent hypoxia for 4 weeks plus cilazapril treatment (group C). The cell proliferation and structural remodeling in pulmonary vasculature and myocardium during hypoxia were studied by biochemical analysis, radioimmunoassay, immunohistochemistry, terminal deoxyuridine tripnosphate nick end labeling and correlated with hemodynamic. RESULTS: (1) The mean pulmonary artery pressure (mPAP) and the right ventricle to left ventricle plus ventricular septum ratio (R/L±S) were significantly higher in the hypoxic rat than that in control animals, while increased thickness of the pulmonary vascular wall and vascular lumen with decrease in the caliber as well as myocardial hypertrophy were observed in hypoxic rats. (2) The proliferative index (PI) of pulmonary arteria and myocardium was significantly higher in group B and C than that in group A. The distribution of ET-1 positive cells was seen in pulmonary arterial wall and cardiomyocytes. The ET-1 immunoreactivity was group B>group C>group A by turns. (3) The concentrations of plasma endothelin-1 (ET-1) and angiotensin converting enzyme (ACE) were significantly higher in group B than that in group A. However, the ET-1 and ACE were significantly lower in group C than those in group B. (4) The ET-1 and ACE had a significant positive correlation with R/L+S, mPAP and PI, respectively. The multivariate linear regression analysis revealed that ET-1 and ACE were major factor affecting PI. CONCLUSION: The pulmonary vascular and myocardial structural remodeling are one of the pathogenesis accompanied with excessive cell proliferation in hypoxic pulmonary hypertension (PH). Cilazapril effectively prevents and treats the hypoxic PH by inhibiting cell proliferation and structural remodeling of pulmonary circulation, as induced by ET-1 and ACE.  相似文献   

18.
AIM:To study the effects of airway and pulmonary inflammation on pulmonary arterial remodeling in rats with chronic bronchitis (CB) and emphysema.METHODS:Twenty-four male Wistar rats were divided into three groups (n=8): Group A: four-weeks CB and emphysema;Group B: six-weeks CB and emphysema group;Group C: normal control.The rat model of CB and emphysema was established by intratracheal instillation of lipopolysaccharide (LPS) and daily exposure to cigarette smog.The arterial blood gas analysis,pulmonary hemodynamics changes and cell counts in bronchoalveolar lavage fluid (BALF) were measured.The pathomorphological changes of airway inflammation,alveoli destruction and pulmonary arterial remodeling were observed by HE straining and triple straining.RESULTS:(1) The characteristic pathological changes of CB and emphysema were observed in group A and B.Neutrophils were the main cells infiltrated into the walls of airway in group A.Lymphocytes and macrophages were the main cells in group B.(2) Right ventricular systolic pressure (RVSP),mean pulmonary arterial pressure (mPAP),the ratio of the weight of right ventricle/left ventricle and septum (RV/LV+S) in group A and B were significantly higher than those in group C (P<0.05).The amount of muscular artery (MA) in group A and B were significantly higher than that in group C (P<0.05).(3) In group A and B,the levels of MA,RVSP,mPAP and RV/LV+S was correlated positively with the average alveolar area,the total cell counts and differential cell counts of neutrophils,lymphocytes and macrophages in BALF,and the level of infiltration into the walls of airway,respectively (P<0.05).The positive correlation was observed with the percentage of neutrophils,lymphocytes and macrophages between group A and B (P<0.05).The amounts of MA were also correlated positively with RVSP,mPAP and RV/LV+S (P<0.05).CONCLUSIONS:(1) The pulmonary artery hypertension,the right ventricular hypertrophy and the pulmonary arterial remodeling appeared before hypoxia.These may be related with the degree of the pulmonary inflammation.(2) The characteristic of pulmonary arterial remodeling was small artery organization,and correlated positively with the changes of hemodynamics.  相似文献   

19.
AIM: To study the effect of hypoxia and hypercapnia on nitric oxide (NO) in plasma and superoxide dismutase (SOD), catalase (CAT), soluble guanylate cyclase (sGC), cyclic guanosine monophospholate (cGMP) in lung tissue in rats, and to explore the effect of NO- and H2O2-sGC pathway on the development of the pulmonary hypertension. METHODS: The model of hypoxic and hypercapnic 1, 2, 4-week group (HH 1 week, HH 2 weeks, HH 4 weeks) and control group was set up. NO content in plasma, CAT and SOD in rat lung were determined by spectrophotometry. The sGC activity in lung tissue was detected by enzyme kinetic analysis. cGMP content in lung tissue was examined with [125I]-radioimmunoassay. RESULTS: The mean pulmonary artery pressure (mPAP) showed significantly higher in HH 1 week, HH 2 weeks and HH 4 weeks groups compared with control group (all P<0.05). NO concentration in plasma, CAT, SOD, basal or nitroprusside-or H2O2- stimulated sGC activity and cGMP concentration in lung homogenates were significantly lower (P<0.05, P<0.01, P<0.01, respectively) in HH 1 week, HH 2 weeks and HH 4 weeks groups compared with control group. CONCLUSION: The inhibition of NO- and H2O2-sGC pathway by hypoxia and hypercapnia plays an important role in the development of pulmonary hypertension.  相似文献   

20.
AIM:To investigate the dynamic expression of Rho kinase (ROCK I) and transforming growth factor β1 (TGF-β1) in pulmonary arterioles of rat with chronic thromboembolic pulmonary hypertension. METHODS: Sixty-four male Wister rats were randomly divided into eight groups: beginning control group, embolism for 3 d, 1 week, 2 weeks, 4 weeks, 8 weeks, 12 weeks groups and end control group. The pulmonary thromboembolism (PTE) model was established by injecting thrombin into jugular vein two times in two weeks and each rat underwent peritoneal injection with tranexamic acid one time a day during experiment to prevent thrombolysis. The mean pulmonary artery pressure (mPAP), right ventricular hypertrophy index (RVHI), relative medial thickness of small pulmonary arteries (PAMT) and vessel wall area/total area (WA/TA) were measured. The levels of ROCK I mRNA and TGF-β1 protein in rat pulmonary artery were determined by in situ hybridization, immunohistochemistry and image analysis, respectively. RESULTS: mPAP, PAMT and WA/TA were higher respectively in embolism from 4 weeks group to 12 weeks group than those in beginning control group (mPAP: all P<0.01, PAMT and WA/TA: 4 weeks group P<0.05, 8 weeks group and 12 weeks group P<0.01). RVHI was elevated in 8 weeks group P<0.05, in 12 weeks group P<0.01. ROCK I mRNA and TGF-β1 protein in pulmonary arterioles got the enhanced positive signals of in situ hybridization or immunohistochemistry staining with prolonging the time of rats with pulmonary thromboembolism. ROCKⅠ mRNA: embolism from 3 d group to 2 weeks group P<0.05, 4 weeks group to 12 weeks group P<0.01, TGF-β1 protein: 1 week group and 2 weeks group P<0.05, 4 weeks group to 12 weeks group P<0.01. Linear correlation analysis showed that ROCK I mRNA and TGF-β1 protein were positively correlated with mPAP, RVHI and vessel remodeling index (all P<0.01), ROCK I mRNA were positively correlated with TGF-β1 protein (P<0.01). CONCLUSION:ROCK I and TGF-β1 play a role in the pathogenesis of chronic thromboembolic pulmonary hypertension and pulmonary vessel remodeling. TGF-β1 produces biological effect by active ROCK signal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号