首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: To observe the influence of erythropoietin (EPO) on eryptosis and production of reactive oxygen species (ROS) in erythrocytes under stimulation of hydrogen peroxide (H2O2),and to explore its related mechanism. METHODS: The erythrocyte suspension (1%) was cultured in vitro and divided into 3 groups:control group (C group, the culture medium was PBS), H2O2 group (H group, the culture medium was PBS containing H2O2 at final concentration of 100 μmol/L) and EPO group (E group, the culture medium was PBS containing H2O2 at final concentration of 100 μmol/L and EPO at final concentration of 2×104 U/L). The erythrocytes were collected at 24 h and 60 h. The eryptosis was detected by flow cytometry with Annexin V staining. The production of ROS and intracellular calcium ion concentration ([Ca2+]i) were also analyzed by flow cytometry. RESULTS: The eryptosis in C group was increased as the incubating time extended. The eryptosis in H group was higher than that in C group (P<0.01), while that in E group was lower than that in H group (P<0.01). Meanwhile, ROS production and[Ca2+]i were higher in H group than those in C group (P<0.01), but those were lower in E group than those in H group (P<0.05 or P<0.01). CONCLUSION: EPO inhibits eryptosis induced by H2O2 and its mechanism may be related to antioxidant effect and change of[Ca2+]i.  相似文献   

2.
AIM: To study apoptotic injury induced by reactive oxygen species-hydrogen peroxide (H2O2) on cardiac myocytes.METHODS:Cultured rat neonatal cardiac myocytes were treated with H2O2 of various concentration to observe apoptotic injury of cardiomyocytes by agarose gel electrophoresis, Giemsa-stained smears of cell, and flow cytometry, meanwhile lactate dehydrogenas (LDH) and malondialdehyde(MDA) were determined to assess the effect of H2O2 on lipid peroxidation and permeability of the plasma membrane. RESULTS: 5 mmol/L H2O2 caused cultured cardiomyocytes apoptotic morphological characteristics, including nucleosomal DNA fragmentation in myocytes by agarose gel electrophoresis (DNA ladder), cell shrinkage, nuclear condensation, and chromatin margin by Giemsa-stained cell smears, and aneuploid peak(AP)-apoptotic bodies occurrence by flow cytometry.CONCLUSIONS: H2O2-induced apoptosis in myocytes was a time-and concentration-dependent process. Treatment with low concentration of H2O2(<1 mmol/L) only caused cardiomyocyted early biochemical changes, such as increase of free radicals level and membrane permeability ,which were pro-apoptotic injurious features. High concentration of H2O2 (>10 mmol/L) rapidly induced a necrotic form of death characterized by smeared patterns of DNA digestion on agarose gel electrophoresis and lethal membrane disruption (as measured by LDH release). Exposure of 5~10 mmol/L H2O2 induced cardiomyocytes apoptosis concurrently with biochemical changes of LDH and MDA increase in the medium.  相似文献   

3.
AIM:To evaluate the effect of inhibiting ubiquitin-specific protease 14(USPl4) activity on oxidative stress induced by H2O2 of H9c2 cells.METHODS:The H9c2 cells were incubated with H2O2 at 25 μmol/L for 2 h to establish the oxidative stress injury model.The cells were divided into control group,H2O2 group,IU1 group (25 μmol/L or 50 μmol/L) and IU1+H2O2 group.The H9c2 cells activity was measured by MTS assay.The level of intracellular reactive oxygen species (ROS) and cell survival rate were analyzed by flow cytometry assay.The changes of the mitogen-activated protein kinase (MAPK) family related proteins were detected by Western blot.RESULTS:Compared with control group,the cell activity and the viability rate in H2O2 group were decreased (P<0.05),while the intracellular ROS,the protein levels of Bax/Bcl-2,P53,p-ERK1/2,p-JNK and p-P38 were increased (P<0.05).Compared with H2O2 group,the cell activity and the viability rate of the H9c2 cells in IU1+H2O2 group were increased (P<0.05),while the intracellular ROS,the protein levels of Bax/Bcl-2,P53,p-ERK1/2,p-JNK and p-P38 were decreased (P<0.05).CONCLUSION:Inhibition of USPl4 activity reduces the oxidative stress injury of the H9c2 cells.The mechanism may be related to inhibition of the MAPK signaling and down-regulation of apoptosis related proteins.  相似文献   

4.
AIM: To study the effect of 6-gingerol on the apoptosis of rat nucleus pulposus cells and its possible mechanism. METHODS: Rat nucleus pulposus cells were isolated and cultured. The effects of 6-gingerol and hydrogen peroxide (H2O2) at different concentrations on the viability of nucleus pulposus cells were measured by CCK-8 assay. After 6-gingerol treatment, the protein level of p-Akt was determined by Western blot. The cells were divided into 4 groups:control group, H2O2 group, 6-gingerol group (6-gingerol + H2O2) and LY294002 group (6-gingerol + H2O2 + LY294002). The apoptotic rate and the levels of reactive oxygen species (ROS) were analyzed by flow cytometry. TUNEL fluorescence staining was used to observe the number of apoptotic cells. The morphological changes of mitochondria were observed under transmission electron microscope, and Western blot was used to determine the protein levels of caspase-3, Bcl-2, Bax, p-Akt, Akt and p53. The mRNA expression of aggrecan and type II collagen was measured by RT-qPCR. RESULTS: The results of CCK-8 assay showed that the optimal concentration of 6-gingerol for promoting the viability of rat nucleus pulposus cells was 24 mg/L, and the exposure condition of H2O2 at 80 μmol/L for 6 h was appropriate for establi-shing the cell damage model. 6-Gingerol increased the protein level of p-Akt in a time-dependent manner. The apoptotic rate, ROS level and TUNEL positive cells in H2O2 group were significantly increased compared with control group. The mitochondrial edema was obvious in H2O2 group compared with control group. The protein levels of pro-apoptotic molecules caspase-3, Bax and p53 were significantly increased, while anti-apoptotic protein Bcl-2, and mRNA expression of aggrecan and type II collagen were significantly decreased compared with control group (P<0.05). 6-Gingerol exerted a protective effect against H2O2-induced apoptosis and promoted the expression of anti-apoptotic proteins. However, this effect was weakened after treatment with PI3K/Akt signaling pathway inhibitor LY294002. CONCLUSION: H2O2 induces damage and dysfunction of rat nucleus pulposus cells, and 6-gingerol may inhibit H2O2-induced apoptosis of nucleus pulposus cells by activation of PI3K/Akt signaling pathway.  相似文献   

5.
AIM: To investigate the effects of total flavonoids of onion (FO) on hydrogen peroxide (H2O2)-induced oxidative damage in retinal pigment epithelial cells. METHODS: The retinal pigment epithelium ARPE-19 cells were divided into 5 groups:control group, H2O2 group (treated with H2O2), FO-L+H2O2 group (treated with H2O2 and low concentration of FO), FO-M+H2O2 group (treated with H2O2 and medium concentration of FO) and FO-H+H2O2 group (treated with H2O2 and high concentration of FO). The cell viability was measured by MTT assay. Apoptosis was analyzed by flow cytometry. DCFH-DA staining was used to detect reactive oxygen species (ROS) level in the cells. WST assay was used to detect superoxide dismutase (SOD) activity. The content of malonaldehyde (MDA) was measured by TBA method. Mitochondrial membrane potential was analyzed by JC-1 staining. The protein levels of cytochrome C (Cyt C) in the cytoplasm, and cleaved caspase-3 and cleaved caspase-9 in the cells were determined by Western blot. RESULTS: Treatment with H2O2 decreased ARPE-19 cell viability, increased the apoptotic rate and the level of ROS in the cells, decreased SOD activity, increased the content of MDA, decreased mitochondrial membrane potential, and increased the protein levels of Cyt C in the cytoplasm and cleaved caspase-3 and cleaved caspase-9 in the cells (P<0.05). Compared with H2O2 group, the cell viability in FO-L+H2O2 group, FO-M+H2O2 group and FO-H+H2O2 group was increased, the apoptotic rates were decreased, the levels of ROS were decreased, SOD activity was increased, the content of MDA was decreased, mitochondrial membrane potential was increased, the protein level of Cyt C was decreased in the cytoplasm, and the protein levels of cleaved caspase-3 and cleaved caspase-9 protein in the cells were decreased gradually (P<0.05). CONCLUSION: Total flavonoids of onion reduce H2O2-induced oxidative damage in retinal pigment epithelial cells.  相似文献   

6.
AIM: To investigate the effects of platelet-derived growth factor receptor α (PDGFRα) on melanocyte apoptosis induced by hydrogen peroxide (H2O2). METHODS: Melanocyte PIGI was used as the research object. After exposed to H2O2 at different concentrations, the cell viability was detected by MTT assay. The PIGI cells were transfec-ted with empty vector pCMV6 or PDGFRα over-expression vector pCMV6-PDGFRα. The transfection efficiency was determined by RT-qPCR and Western blot. The effect of H2O2 on the viability of the PIGI cells after over-expression of PDGFRα was measured by MTT assay. The cell apoptosis was analyzed by flow cytometry. The protein levels of p38, p-p38 and cleaved caspase-3 in the cells were detected by Western blot. DCDHF-DA was used to estemate the generation of reactive oxygen species (ROS) in the cells. RESULTS: The viability of PIGI cells decreased after exposed to H2O2 (P<0.05), and the half maximal inhibitory concentration of H2O2 was 0.7 mmol/L. Transfection with PDGFRα over-expression vector successfully induced high expression of PDGFRα at mRNA and protein levels in the PIGI cells, and increased the viability of the cells with H2O2 treatment (P<0.05). Over-expression of PDGFRα decreased the apoptotic rate of PIGI cells treated with H2O2 (P<0.05), and the level of ROS in the cells (P<0.05). The protein levels of cleaved caspase-3 and p-p38 were also decreased (P<0.05). CONCLUSION: PDGFRα inhibits the apoptosis of melanocytes induced by H2O2, partially reverses the growth inhibition of melanocytes by H2O2, and decreases the ROS level. The mechanism may be related to regulating the protein levels of p-p38 and cleaved caspase-3 in the cells.  相似文献   

7.
AIM: To investigate the ability of a metal complex ammonium tetrathiomolybdate (ATTM) to release H2S and its cytoprotective effect on an oxidative injury model. METHODS: Released H2S was absorbed in a reaction flask from ATTM dissolved in the cell medium. Staining with dichlorodihydrofluorescein diacetate or rhodamine 123 followed by photofluorography was conducted for the observation of reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) levels, respectively. Cell viability and release of lactate dehydrogenase (LDH) from the cells were measured with commercial kits. RESULTS: Similar to another H2S donor GYY4137, ATTM had an ability to release H2S in the cell medium in a dose-dependent manner. Treatment of human skin HaCaT cells with ATTM at concentrations of 25~400 μmol/L didn't significantly alter cell viability. Exposure of the cells to ultraviolet rays or a ROS donor H2O2 increased the intracellular ROS levels. Treatment with 400 μmol/L H2O2 significantly reduced the viability of HaCaT cells (P<0.01). However, before the treatment with H2O2, pretreatment with ATTM at 100 and 200 μmol/L markedly prevented the H2O2-induced cell injury (P<0.01). In addition, the treatment with H2O2 triggered ΔΨm loss (P<0.01) and LDH release from the cells (P<0.01). Prior to suffering from H2O2 injury, the preconditioning with 200 μmol/L ATTM significantly improved ΔΨm levels (P<0.05) and attenuated LDH release from the cells (P<0.01).CONCLUSION: ATTM is capable of releasing H2S and protecting human skin cells against oxidative injury.  相似文献   

8.
9.
AIM: To establish an injured cell model using human kidney proximal tubule epithelial cell line (HKC) to mimic the oxidative injury by hydrogen peroxide (H2O2). METHODS: The cell viability, the content of malondialdehyde (MDA) in the culture supernatant and the activity of intracellular superoxide dismutase (SOD) were detected to investigate the degree of cell injury. Osteopontin (OPN) expressed on the cell membrane surface were observed by laser confocal microscopy before and after cell injury. The changes of cellular morphology and the ultrastructure of membrane surface were observed under scanning electronic microscope. RESULTS: After HKC cells were treated with H2O2 at the concentration of 1 mmol/L for different time, the cell viability and the activity of SOD decreased and the content of MDA increased. The expression level of OPN significantly increased and reached to maximae at 1 h. The injured cells appeared shriveled and rough surface, and the shedding of most flagellae was also observed. CONCLUSION: H2O2 induces severer injury in HKC cells, including not only the cell viability and membrane surface ultrastructure, but also the OPN expression on the membrane, which could bind calcium oxalate crystal. Therefore, treatment with H2O2 at the concentration of 1 mmol/L for 1 h can be used to establish an oxidative injury model in HKC cells.  相似文献   

10.
AIM: To investigate the effect of ecdysterone (EDS) on H9c2 cardiomyocytes after oxidative stress. METHODS: H9c2 cells were cultured in vitro and divided into control group, high dose (2 μmol/L) of EDS group, middle dose (1.5 μmol/L) of EDS group, low dose (1 μmol/L) of EDS group, and H2O2 group. H9c2 cardiomyocytes in H2O2 group and high, middle and low doses of EDS groups were exposed to H2O2 for 6 h to establish the model of oxidative stress. The viability of the H9c2 cells was detected by CCK-8 assay. The apoptosis of H9c2 cells was analyzed by flow cytometry. The levels of lactate dehydogenase (LDH) and creatine kinase-MB (CK-MB) in the culture medium, and the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in the H9c2 cells were measured by colorimetry. The generation of reactive oxygen species (ROS) and the mitochondrial membrane potential were evaluated by flow cytometry and confocal laser scanning microscopy. The protein levels of Bax, Bcl-2 and cleaved caspase-3 in the H9c2 cells were determined by Western blot. RESULTS: Ecdysterone at the selected concentrations had no effect on the viability of H9c2 cells. Compared with control group, the levels of LDH, CK-MB, ROS and MDA, and the apoptotic rates of the H9c2 cells were significantly increased after treated with H2O2, but were decreased by EDS treatment in a dose-dependent manner. The levels of SOD and mitochondrial membrane potential of the H9c2 cells in H2O2 group were reduced significantly compared with control group, but high, middle and low doses of EDS treatments up-regulated the levels of SOD and mitochondrial membrane potential in H2O2-treated H9c2 cells. The protein levels of Bax and cleaved caspase-3 in the H9c2 cells in H2O2 group showed significant elevation in comparison with control group, and the protein expression of Bcl-2 declined in H2O2 group compared with control group, but high, middle and low doses of ecdysterone treatments down-regulated the protein levels of Bax, cleaved caspase-3 and up-regulated the expression of Bcl-2 in H2O2-treated H9c2 cells. CONCLUSION: Ecdysterone attenuates the effect of H2O2-induced oxidative stress on H9c2 cardiomyocytes. The mechanism may be involved in scavenging oxidative stress products, increasing antioxidant enzyme activity and improving mitochondrial function.  相似文献   

11.
AIM: To observe the effect of docosahexaenoic acid(DHA) on H2O2-induced apoptosis in human retinal pigment epithelium cells and its molecular mechanism. METHODS: Human retinal pigment epithelium cell line ARPE-19 was cultured in vitro, and 12.5 mmol/L H2O2 was used to mimic the oxidative stress condition. The cells were treated with 30~100μmol/L DHA for 4~24 h. The expression of heme oxygenase-1(HO-1) at mRNA and protein levels was detected by real-time PCR and Western blot, respectively. The enzymic activity of HO-1 was measured by colorimetry. Production of reactive oxygen species(ROS) was determined by fluorescent probe. Activation of NF-E2-related factor 2(Nrf2) was examined by immunofluorescence method. Apoptosis of ARPE-19 cells was analyzed by flow cytometry. RESULTS: The mRNA and protein expression and the enzymic activity of HO-1 were significantly increased in the ARPE-19 cells after DHA treatment. Meanwhile, nuclear translocation of Nrf2 was also observed. Apoptosis appeared and ROS was produced upon H2O2 incubation. In contrast, DHA at 100μmol/L significantly abrogated H2O2-induced apoptosis and ROS production. Furthermore, silencing of HO-1 by specific siRNA, or treatment with ZnPP, an inhibitor of HO-1, partly counteracted the protective effect against H2O2-induced apoptosis and ROS production. CONCLUSION: DHA protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase-1 expression after Nrf2 activation.  相似文献   

12.
AIM: To investigate the effects of Schisandrin B (Sch B) on apoptosis of lens epithelial cells (LEC) treated with H2O2. METHODS: Eyes in SDrats were excised and lenses were separated under operating microscope in sterilized condition. Lenses were divided randomly into four groups with different treatment: control group, hydrogen peroxide group (H2O2), pirenoxine sodium group (PS) and schisandrin Bgroup (Sch B). Lenses were incubated in CO2 incubator for 24 h with 300 μmol·L-1 H2O2 and with or without 0.5 mmol·L-1 Sch B. LECaoptosis and apoptosis rate were measured by TUNELmethod. Ultrastructure changes and apoptosis bodies of LECwere observed via transmitted electron microscope. RESULTS: (1) Apoptosis rate in H2O2 group (92.0±2.6) was significantly higher than that in control group (3.5±1.8). Apoptosis rate in Sch Bgroup (13.8±3.27) was remarkably lower than that in H2O2 group and PSgroup. (2) Ultrastructure observation indicated that apoptosis cells occurred in most LEC in H2O2 group and the changes were severe presenting different stages. While a few apoptosis cells were observed in Sch Bgroup, the changes were slight and most of them were in early and middle stages. CONCLUSION: These data indicated that Sch Bsignificantly inhibited apoptosis of LECduring experimental oxidative injury, the effects were stronger than PS.  相似文献   

13.
AIM: To investigate the effect of probucol on proliferation of rat vascular smooth muscle cells(VSMC) stimulated by basic fibroblast growth factor (bFGF) and/or hydrogen peroxide(H2O2). METHODS: Effects of probucol on VSMC proliferation and DNA synthesis stimulated by bFGF and/or H2O2 were observed by means of MTT test, cell number count and [3H]-TdR incorporation. RESULTS: ①Probucol significantly inhibited proliferation and DNA synthesis in VSMC stimulated by bFGF and/or H2O2, with dosage-dependent manner. Cell number, A value and [3H]-TdR incorporation in group probucol+bFGF and group probucol+H2O2 were reduced by 40.0%, 39.1%, 45.5% and 46.9%, 45.0%, 39.5%, respectively, compared with group bFGF and group H2O2 (P<0.05, P<0.01, respectively). ②Pretreatment of VSMC with probucol for 24 h prior to bFGF and/or H2O2 stimulation exhibited significant inhibiton of VSMC proliferation and DNA synthesis, but after prestimulation by bFGF and/or H2O2 for 24 h, probucol had no influence on VSMC proliferation and DNA synthesis (P>0.05). CONCLUSION: Probucol dramatically inhibited proliferation and DNA synthesis in VSMC stimulated by bFGF and/or H2O2, but had no inhibitory effect on the cell proliferation prestimulated by bFGF and /or H2O2.  相似文献   

14.
AIM: To observe the effect of senegenin (Sen) on hippocampal neuron injuries induced by H2O2.METHODS: Hippocampal neurons were isolated from neonatal SD rats. The primarily cultured neurons were divided into control group, H2O2 group, Sen group and Sen+H2O2 group. The cell viability, the content of malondialdehyde(MDA) and the activity of superoxide dismutase(SOD) in the neurons were detected after treated with Sen. The morphological changes of nucleus of the neurons were observed by Hoechst 33258 staining. The mRNA expression of bcl-2 and bax was quantified by real-time PCR. The protein levels of Bcl-2 and bax were measured by Western blotting. The activity of caspase-3 was also assayed.RESULTS: Compared with H2O2 group, the levels of antioxidative enzyme were increased in Sen+H2O2 group (P<0.05). In addition, mRNA expression of bcl-2 increased and that of bax decreased (P<0.05) in Sen+H2O2 group. Moreover, Sen increased the protein level of Bcl-2, and reduced the protein level of Bax and the activity of caspase-3 in the neurons exposed to H2O2 (P<0.05).CONCLUSION: The protective effect of Sen on hippocampal neurons with H2O2 -induced injury may be involved in the mechanisms of  相似文献   

15.
AIM: To observe the expression of 26S proteasome LMP2 subunit in vascular endothelial cells (VECs) under oxidative stress, and to evaluate its role in the development of tolerance against oxidative stress in VECs. METHODS: The cell model of H2O2 preconditioning-induced oxidative tolerance was established in VECs. The expression of LMP2 was detected by cellular immunofluorescent labeling and Western blotting. The LMP2 anti-sense and sense oligonucleotides were transfected into VECs by LipofectamineTM 2000. The damages of VECs were evaluated by detecting the activity of lactate dehydrogenase (LDH) and the concentration of malondialdehyde (MDA) in the culture medium. RESULTS: H2O2 (500 μmol/L for 3 h) induced oxidative stress in VECss in a dose- and the activity of time-dependent manner, characterized by the increase in the concentration of MDA and LDH in the culture medium. Pretreatment with H2O2 (10 μmol/L for 24 h) up-regulated the expression of LMP2. Meanwhile, the capacity of cellular tolerance against oxidative stress induced by H2O2 was increased as the concentration of MDA and the activity of LDH in the culture medium significantly decreased. Compared with H2O2 group, up-regulation of LMP2 by IFN-γ pretreatment (20 μg/L for 48 h) increased the tolerance of VECs against H2O2 injury, and the MDA conentration and the activity of LDH in the culture medium also significantly decreased. Transfection with LMP2 antisense oligonucleotide partly inhibited the increased expression of LMP2 induced by IFN-γ in VECs and abolished the tolerance against H2O2. CONCLUSION: The 26S proteasome LMP2 subunit is associated with the development of the tolerance against H2O2-induced oxidative stress in VECs.  相似文献   

16.
AIM:To investigate the effect of reactive oxygen species (ROS) on the adhesion of neutrophils to bone marrow stromal cells (BMSCs) and its mechanism. METHODS:Murine bone marrow neutrophils were isolated from mouse tibia and femur by density gradient centrifugation. HL60 cells were induced into human mature neutrophils (dHL60 cells) by DMSO treatment. Murine bone marrow neutrophils and dHL60 cells were labeled with CFDA-SE. The adhesion of the CFDA-SE-labeled cells to BMSC monolayer was tested by microplate reader after H2O2 treatment. The level of glutaredoxin 1 (Grx1) in dHL60 cells infected by lentivirus carrying Grx1 expression vector was examined by fluorescence microscopy and Western blot. The genotype of Grx1-/- mice was identified by PCR. RESULTS:Diff-Quick staining result displayed that the purity of murine bone marrow neutrophil was higher than 90%. The adhesion of H2O2-pretreated neutrophils to BMSCs was higher than that of the control cells (P<0.01). The expression of Grx1 in Grx1 stably transfected dHL60 cells was significantly higher than that in the control cells. After H2O2 treatment, the results of in vitro adhesion assay showed that the adhesion of dHL60 cells with Grx1 over-expression to BMSCs was lower than that of the control cells (P<0.01). The results of PCR showed no Grx1 was detected at the whole gene level in Grx1-/- mice. Compared with the neutrophils from wild-type mice, the neutrophils from Grx1-/- mice displayed increased adhesion to BMSCs after H2O2 treatment. Vascular cell adhesion molecule-1 (VCAM-1) antibody pretreatment induced the adhesion rate back to non-H2O2-treated condition. CONCLUSION:ROS promotes the adhesion of neutrophils to BMSCs in bone marrow, which might be regulated by VCAM-1 adhesion signaling-related S-glutathionylation.  相似文献   

17.
18.
AIM: To investigate the effects of the sera from the rats after limb ischemic preconditioning (LIPC) on human umbilical vein endothelial cells (HUVECs) injured by hydrogen peroxide (H2O2). METHODS: The HUVECs were divided into 5 groups: the cells in control group were cultured without any intervention; the cells in model group (M) were damaged by 1 mmol/L H2O2 for 2 h; the cells in early preconditioning serum (EPS) group, delayed preconditioning serum (DPS) group or sham limb ischemic preconditioning serum (SPS) group were treated with the corresponding serum at 5% for 12 h, respectively, and then treaed with H2O2 for 2 h. The viability of the HUVECs was analyzed by flow cytometry. The lactate dehydrogenase (LDH) in the culture media was detected. The cell adhesion molecules in the HUVECs were detected by real-time PCR. The mRNA and protein expression of heme oxygenase-1 (HO-1) was also determined. RESULTS: The viability of HUVECs incubated with 1 mmol/L H2O2 for 2 h significantly decreased compared with the control cells, which was accompanied with the augmentations of LDH in the medium and the cell adhesion molecules in cells, such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Preincubation with EPS and DPS derived from the rats subjected LIPC attenuated these injuries. Furthermore, pretreatment with EPS and DPS increased the expression of HO-1 at mRNA and protein levels. CONCLUSION: LIPC protects the HUVECs from H2O2-induced injury.  相似文献   

19.
AIM: To study the protective effect of piperine on abnormalityies of inward rectifier potassium current (IK1) and ultra rapid delayed rectifier potassium current (IKUr) induced by hydrogen peroxide (H2O2) in single rabbit atrial myocytes. METHODS: The technique of whole-cell patch-clamp was used to study the effect of H2O2 at concentration of 50 μmol/L on IK1 and IKUr in single rabbit atrial myocytes. The protective effect of pretreatment with piperine (7 μmol/L) was also observed. RESULTS: The piperine at concentration of 7 μmol/L had no significant effect on IK1 and IKUr and their channel dynamics. In the presence of H2O2 at concentration of 50 μmol/L, the peak currents of IK1 and IKUr reduced significantly (P<0.05).The steady-state activation curve of IKUr was shifted right, the steady-state inactivation curve of IKUr was shifted left, and the recovery from inactivation of IKUr was shifted downward. The IKUr showed frequency-dependent characteristics. Piperine at concentration of 7 μmol/L significantly alleviated the inhibitory effect of H2O2 on IK1 and IKUr (P<0.01). In addition, piperine protected against the changes of IKUr dynamics induced by H2O2. CONCLUSION: Piperine alleviates the abnormalities of IK1 and IKUr induced by oxidative stress in atrial myocytes.  相似文献   

20.
AIM: To investigate the effect of salvianolic acid B (Sal B) on apoptosis of rat bone mesenchymal stem cells(BMSCs) induced by hydrogen peroxide(H2O2). METHODS: BMSCs were incubated with Sal B at the concentration of 1, 10 or 100 μmol/L while treated with lethal concentration of H2O2 (500 μmol/L). The effect of Sal B at different concentrations on the viability of BMSCs was detected by MTT. Flow cytometry were used to determine the protective role of Sal B in apoptosis of BMSCs. The changes of chromatin distribution in BMSCs were observed by Hoechst 33342 staining. The expression of p-ERK1/2 was detected by Western blotting. RESULTS: Sal B protected the BMSCs against H2O2 as the cell viability was increased from (53.60±4.21)% to (85.33±9.08)% or (75.78±6.28)% in a dose-dependent manner. After exposed to H2O2, about 50%-65% BMSCs displayed apoptotic morphology. Treatment with Sal B at the concentrations of 10 and 100 μmol/L reduced the cytotoxic effect of H2O2 on BMSCs to about 32% and 47%, respectively. The results of flow cytometric analysis confirmed the cytoprotective effect of Sal B. This protective effect was concomitant with significant reduction of ROS generation. Moreover, H2O2 time-dependently induced a pronounced increase in ERK1/2 phosphorylation,which was effectively inhibited by Sal B.CONCLUSION: Sal B protects BMSCs against H2O2-induced apoptosis. Sal B may exert its protective effect on BMSCs by triggering intracellular anti-apoptosis mechanism as well as reducing the oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号