首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To determine pharmacokinetics of clomipramine and its principle metabolite (desmethylclomipramine) in the plasma of dogs after IV or oral administration of a single dose. ANIMALS: 6 male and 6 female Beagles. PROCEDURES: Clomipramine was administered IV (2 mg/kg), PO (4 mg/kg) after food was withheld for 15 hours, and PO (4 mg/kg) within 25 minutes after dogs were fed. Plasma clomipramine and desmethylclomipramine concentrations were measured by use of a gas chromatography with mass-selection method. RESULTS: Time to peak plasma concentrations of clomipramine and desmethylclomipramine following oral administration was 1.2 hours. For clomipramine, after IV administration, elimination half-life was 5 hours, mean residence time was 3 hours, and plasma clearance was 1.4 L/h/kg. Values for mean residence time and terminal half-life following oral administration were similar to values obtained following IV administration, and systemic bioavailability was approximately 20% for clomipramine and 140% for desmethylclomipramine, indicating fast absorption of clomipramine from the gastrointestinal tract and extensive first-pass metabolism. Administration of clomipramine with food did not alter the area under the concentration versus time curve for desmethylclomipramine but resulted in a 25% increase for clomipramine. Clomipramine and desmethylclomipramine were extensively bound (> 96%) to serum proteins. There were no significant differences in area under the concentration versus time curve between male and female dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that there should not be any clinically important differences in efficacy regardless of whether clomipramine is administered with or without food.  相似文献   

2.
Norfloxacin was given to 6 healthy dogs at a dosage of 5 mg/kg of body weight IV and orally in a complete crossover study, and orally at dosages of 5, 10, and 20 mg/kg to 6 healthy dogs in a 3-way crossover study. For 24 hours, serum concentration was monitored serially after each administration. Another 6 dogs were given 5 mg of norfloxacin/kg orally every 12 hours for 14 days, and serum concentration was determined serially for 12 hours after the first and last administration of the drug. Complete blood count and serum biochemical analysis were performed before and after 14 days of oral norfloxacin administration, and clinical signs of drug toxicosis were monitored twice daily during norfloxacin administration. Urine concentration of norfloxacin was determined periodically during serum acquisition periods. Norfloxacin concentration was determined, using high-performance liquid chromatography with a limit of detection of 25 ng of norfloxacin/ml of serum or urine. Serum norfloxacin pharmacokinetic values after single IV dosing in dogs were best modeled, using a 2-compartment open model, with distribution and elimination half-lives of 0.467 and 3.56 hours (harmonic means), respectively. Area-derived volume of distribution (Vd area) was 1.77 +/- 0.69 L/kg (arithmetic mean +/- SD), and serum clearance (Cls) was 0.332 +/- 0.115 L/h/kg. Mean residence time was 4.32 +/- 0.98 hour. Comparison of the area under the curve (AUC; derived, using model-independent calculations) after iv administration (5 mg/kg) with AUC after oral administration (5 mg/kg) in the same dogs indicated bioavailability of 35.0 +/- 46.1%, with a mean residence time after oral administration of 5.71 +/-2.24 hours. Urine concentration was 33.8 +/- 15.3 micrograms/ml at 4 hours after a single dose of 5 mg/kg given orally, whereas concentration after 20 mg/kg was given orally was 56.8 +/- 18.0 micrograms/ml at 6 hours after dosing. Twelve hours after drug administration, urine concentration was 47.4 +/- 20.6 micrograms/ml after the 5-mg/kg dose and 80.6 +/- 37.7 micrograms/ml after the 20/mg/kg dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
OBJECTIVE: To determine serum pharmacokinetics of pentoxifylline and its 5-hydroxyhexyl metabolite in horses after administration of a single IV dose and after single and multiple oral doses. ANIMALS: 8 healthy adult horses. PROCEDURES: A crossover study design was used with a washout period of 6 days between treatments. Treatments were IV administration of a single dose of pentoxifylline (8.5 mg/kg) and oral administration of generic sustained-release pentoxifylline (10 mg/kg, q 12 h, for 8 days). Blood samples were collected 0, 1, 3, 6, 12, 20, 30, and 45 minutes and 1, 2, 4, 6, 8, and 12 hours after IV administration. For oral administration, blood samples were collected 0, 0.25, 0.5, 0.75, 1, 2, 4, 8, and 12 hours after the first dose and 0, 0.25, 0.5, 0.75, 1, 2, 4, 8, 12, and 24 hours after the last dose. RESULTS: Elimination of pentoxifylline was rapid after IV administration. After oral administration, pentoxifylline was rapidly absorbed and variably eliminated. Higher serum concentrations of pentoxifylline and apparent bioavailability were observed after oral administration of the first dose, compared with values after administration of the last dose on day 8 of treatment. CONCLUSIONS AND CLINICAL RELEVANCE: In horses, oral administration of 10 mg of pentoxifylline/kg results in serum concentrations equivalent to those observed for therapeutic doses of pentoxifylline in humans. Twice daily administration appears to be appropriate. However, serum concentrations of pentoxifylline appear to decrease with repeated dosing; thus, practitioners may consider increasing the dosage if clinical response diminishes with repeated administration.  相似文献   

4.
OBJECTIVE: To evaluate clinical safety of administration of injectable enrofloxacin. DESIGN: Randomized controlled clinical trial. ANIMALS: 24 adult horses. PROCEDURES: Healthy horses were randomly allocated into 4 equal groups that received placebo injections (control) or IV administration of enrofloxacin (5 mg/kg [2.3 mg/lb], 15 mg/kg [6.8 mg/lb], or 25 mg/kg [11.4 mg/lb] of body weight, q 24 h) for 21 days. Joint angles, cross-sectional area of superficial and deep digital flexor and calcaneal tendons, carpal or tarsal osteophytes or lucency, and midcarpal and tarsocrural articular cartilage lesions were measured. Physical and lameness examinations were performed daily. Measurements were repeated after day 21, and articular cartilage and bone biopsy specimens were examined. RESULTS: Enrofloxacin did not induce changes in most variables during administration or for 7 days after administration. One horse (dosage, 15 mg/kg) developed lameness and cellulitis around the tarsal plantar ligament during the last week of administration. One horse (dosage, 15 mg/kg) developed mild superficial digital flexor tendinitis, and 1 horse (dosage, 25 mg/kg) developed tarsal sheath effusion without lameness 3 days after the last administration. High doses of enrofloxacin (15 and 25 mg/kg) administered by bolus injection intermittently induced transient neurologic signs that completely resolved within 10 minutes without long-term effects. Slower injection and dilution of the dose ameliorated the neurologic signs. Adverse reactions were not detected with a 5 mg/kg dose administered IV as a bolus. CONCLUSIONS AND CLINICAL RELEVANCE: Enrofloxacin administered IV once daily at the rate of 5 mg/kg for 3 weeks is safe in adult horses.  相似文献   

5.
OBJECTIVE: To determine pharmacokinetics and tissue concentrations of azithromycin in ball pythons (Python regius) after IV or oral administration of a single dose. ANIMALS: 2 male and 5 female ball pythons. PROCEDURES: Using a crossover design, each snake was given a single dose of azithromycin (10 mg/kg) IV. After a 4-week washout period, each snake was given a single dose of azithromycin (10 mg/kg) orally. Blood samples were collected prior to dose administration and 1, 3, 6, 12, 24, 48, 72, and 96 hours after azithromycin administration. Azithromycin was quantitated by use of liquid chromatography-mass spectrometry. RESULTS: After IV administration, azithromycin had an apparent volume of distribution of 5.69 L/kg and a plasma clearance of 0.19 L/h/kg. Harmonic means for the terminal half-life were 17 hours following IV administration and 51 hours following oral administration. Mean residence times were 37 and 94 hours following IV and oral administration, respectively. Following oral administration, azithromycin had a peak plasma concentration (Cmax) of 1.04 microg/mL, a time to Cmax of 8.4 hours, and a prolonged mean absorption time of 57 hours. Mean oral bioavailability was 77%. Tissue concentrations ranged from 4 to 140 times the corresponding plasma concentration at 24 and 72 hours after azithromycin administration. CONCLUSIONS AND CLINICAL RELEVANCE: Azithromycin is well absorbed and tolerated by ball pythons. On the basis of plasma pharmacokinetics and tissue concentration data, we suggest an azithromycin dosage in ball pythons of 10 mg/kg, orally, every 2 to 7 days, depending upon the site of infection and susceptibil ity of the infective organism.  相似文献   

6.
OBJECTIVE: To compare systemic bioavailability and duration for therapeutic plasma concentrations and cardiovascular, respiratory, and analgesic effects of morphine administered per rectum, compared with IV and IM administration in dogs. ANIMALS: 6 healthy Beagles. PROCEDURE: In a randomized study, each dog received the following: morphine IV (0.5 mg/kg of body weight), morphine per rectum (1, 2, and 5 mg/kg as a suppository and 2 mg/kg as a solution), and a control treatment. Intramuscular administration of morphine (1 mg/kg) was evaluated separately. Heart and respiratory rates, systolic, diastolic, and mean blood pressures, adverse effects, and plasma morphine concentrations were measured. Analgesia was defined as an increase in response threshold, compared with baseline values, to applications of noxious mechanical (pressure) and thermal (heat) stimuli. Data were evaluated, using Friedman repeated-measures ANOVA on ranks and Student-Newman-Keuls post-hoc t-tests. RESULTS: Significant differences were not found in cardiovascular, respiratory, or analgesia values between control and morphine groups. Overall systemic bioavailability of morphine administered per rectum was 19.6%. Plasma morphine concentration after administration of the highest dose (5 mg/kg) as a suppository was significantly higher than concentrations 60 and 360 minutes after IV and IM administration, respectively. A single route of administration did not consistently fulfill our criteria for providing analgesia. CONCLUSIONS AND CLINICAL RELEVANCE: Rectal administration of morphine did not increase bioavailability above that reported for oral administration of morphine in dogs. Low bioavailability and plasma concentrations limit the clinical usefulness of morphine administered per rectum in dogs.  相似文献   

7.
The pharmacokinetics of amoxicillin (Amx) were determined in pigs following intravenous (IV) administration of a single dose of 15 mg/kg and a single dose of 15 mg/kg of a new oral formulation (Amx-FP containing 10% amoxicillin). Residue studies were performed to determine residues in edible tissues of healthy pigs after chronic oral administration of Amx-FP at a daily dose of 15 mg/kg for five consecutive days. After IV administration, the plasma concentration was characteristic of a two-compartment open model. The main pharmacokinetic variables were: t(1/2lambda(n)), MRT=90.1 min, V(darea)=0.81 L/kg and Cl(b)=3.9 mL/kg/min. After single oral administration the main pharmacokinetic variables were: C(max)=758 mug/L, t(max)=347 min and Cl(b/f)=3.7 mL/kg/min for Amx-FP. The oral bioavailability (F) was calculated at 11% for Amx-FP. Based on maximum residue levels (MRL) for AMX in pigs established at 50 microg/kg for all tissues, the withdrawal times of AMX in muscle and skin plus fat were estimated (95% tolerance limit and 95% confidence) to fall below the MRL after a withdrawal period of seven days. Levels of AMX in the liver and kidneys were estimated to fall below the MRL after a withdrawal period of four days.  相似文献   

8.
OBJECTIVE: To characterize oral bioavailability and pharmacokinetic disposition of etoposide when the IV formulation was administered orally to dogs. ANIMALS: 8 tumor-bearing dogs. PROCEDURES: An open-label, single-dose, 2-way crossover study was conducted. Dogs were randomly assigned to initially receive a single dose of etoposide (50 mg/m2) IV or PO. A second dose was administered via the alternate route 3 to 7 days later. Medications were administered before IV administration of etoposide to prevent hypersensitivity reactions. Oral administration of etoposide was prepared by reconstituting the parenteral formulation with 0.9% NaCl solution and further diluting the reconstituted mixture 1:1 with a sweetening agent. Plasma samples were obtained after both treatments. Etoposide concentrations were measured with a high-performance liquid chromatography assay, and plasma etoposide concentration-time profiles were analyzed by use of noncompartmental methods. RESULTS: 4 dogs had hypersensitivity reactions during IV administration of etoposide. No adverse effects were detected after oral administration. Plasma etoposide concentrations were undetectable in 2 dogs after oral administration. Oral administration of etoposide resulted in significantly lower values for the maximum plasma concentration and the area under the plasma etoposide concentration-versus-time curve, compared with results for IV administration. Oral bioavailability of etoposide was low (median, 13.4%) and highly variable among dogs (range, 5.7% to 57.3%). CONCLUSIONS AND CLINICAL RELEVANCE-Vehicle-related toxicosis can limit the IV administration of etoposide in dogs. The parenteral formulation of etoposide can be safely administered orally to dogs, but routine use was not supported because of low and variable oral bioavailability in this study.  相似文献   

9.
Long-term oral treatment with cimetidine is recommended to reduce vomiting in dogs with chronic gastritis. Despite this, few studies have specifically examined the plasma disposition and pharmacokinetics of cimetidine in dogs, particularly following repeated oral administration. The pharmacokinetics of cimetidine following oral administration as tablets was investigated in healthy dogs. Cimetidine was absorbed rapidly post-treatment ( t max = 0.5 h). A mean absolute bioavailability of 75% was calculated following a single oral administration of 5 mg cimetidine/kg body weight. After intravenous administration, a plasma half-life of 1.6 h was calculated. Repeated oral administration at the recommended dose rate and regime (5 mg/kg body weight three times daily) for 30 consecutive days did not lead to any accumulation of cimetidine in plasma. Food intake concomitant with oral administration of cimetidine delayed ( t max = 2.25 h) and decreased the rate and extent of absorption ( AUC ) by about 40%. Cimetidine was well absorbed in fasted dogs. Administration of food decreased the bioavailability of cimetidine by 40%. Cimetidine does not accumulate over time in plasma when administered long term to dogs.  相似文献   

10.
Oxymorphone was administered IV to dogs 4 times at 20-minute intervals (total dosage, 1 mg/kg of body weight, IV) on 2 separate occasions. Minute ventilation, mixed-expired carbon dioxide concentration, arterial and mixed-venous pH and blood gas tensions, arterial, central venous, pulmonary arterial, and pulmonary wedge pressures, and cardiac output were measured. Physiologic dead space, base deficit, oxygen transport, and vascular resistance were calculated before and at 5 minutes after the first dose of oxymorphone (0.4 mg/kg) and at 15 minutes after the first and the 3 subsequent doses of oxymorphone (0.2 mg/kg). During 1 of the 2 experiments in each dog, naloxone was administered 20 minutes after the last dose of oxymorphone; during the alternate experiment, naloxone was not administered. In 5 dogs, naloxone was administered IV in titrated dosages (0.005 mg/kg) at 1-minute intervals until the dogs were able to maintain sternal recumbency, and in the other 5 dogs, naloxone was administered IM as a single dose (0.04 mg/kg). Naloxone (0.01 mg/kg, IV or 0.04 mg/kg, IM) transiently reversed most of the effects of oxymorphone. Within 20 to 40 minutes after IV naloxone administration and within 40 to 70 minutes after IM naloxone administration, most variables returned to the approximate values measured before naloxone administration. The effects of oxymorphone outlasted the effects of naloxone; cardiovascular and pulmonary depression and sedation recurred in all dogs. Four hours and 20 minutes after the last dose of oxymorphone, alertness, responsiveness, and coordination improved in all dogs after IM administration of naloxone. Cardiac arrhythmia, hypertension, or excitement was not observed after naloxone administration.  相似文献   

11.
Maropitant is the first NK1 receptor antagonist developed to treat and prevent emesis in dogs; it is administered by subcutaneous (s.c.) injection at 1 mg/kg, or orally (p.o.), in tablet form, at either 2 or 8 mg/kg depending on indication. The absolute bioavailability of maropitant was markedly higher (90.7%) following s.c. injection than after oral administration (23.7% at the 2 mg/kg dose and 37.0% at the 8 mg/kg dose). First-pass metabolism contributes to the low bioavailability of maropitant following oral administration. The difference in bioavailability between the two oral doses reflects the nonlinear kinetics characterizing the disposition of maropitant within the 2-8 mg/kg dose range. Systemic clearance of maropitant following intravenous (i.v.) administration was 970, 995 and 533 mL/h.kg at doses of 1, 2 and 8 mg/kg, respectively. Nonproportional kinetics were observed for p.o. administered maropitant at doses ranging from 2 to 16 mg/kg but dose proportionality was demonstrated at higher doses (20-50 mg/kg). Linearity was also demonstrated following s.c. administration at 0.5, 1 and 2 mg/kg. Maximum plasma drug concentration (Cmax) occurred 0.75 h (tmax) after s.c. administration at 1 mg/kg, and at 1.7 and 1.9 h after oral administration of 8 and 2 mg/kg doses, respectively. The apparent terminal half-life of maropitant was 7.75, 4.03 and 5.46 h after dosing at 1 mg/kg (s.c.), 2 mg/kg (p.o.) and 8 mg/kg (p.o.), respectively. Feeding status had no effect on oral bioavailability. Limited accumulation occurred following once-daily administration of maropitant for five consecutive days at 1 mg/kg (s.c.) or 2 mg/kg (p.o.). At the dose of 8 mg/kg (p.o.) once daily for two consecutive days, the mean AUC(0-24h) (second dose) was 218% that of the first dose value. Urinary recovery of maropitant and its main metabolite was minimal (<1%), thus supporting the evidence that maropitant clearance is primarily hepatic.  相似文献   

12.
OBJECTIVE: To determine pharmacokinetics and metabolic patterns of fenbendazole after IV and oral administration to pigs. ANIMALS: 4 mixed-breed female pigs weighing 32 to 45 kg. PROCEDURE: Fenbendazole was administered IV at a dose of 1 mg/kg. One week later, it was administered orally at a dose of 5 mg/kg. Blood samples were collected for up to 72 hours after administration, and plasma concentrations of fenbendazole, oxfendazole, and fenbendazole sulfone were determined by use of high-pressure liquid chromatography. Plasma pharmacokinetics were determined by use of noncompartmental methods. RESULTS: Body clearance of fenbendazole after IV administration was 1.36 L/h/kg, volume of distribution at steady state was 3.35 L/kg, and mean residence time was 2.63 hours. After oral administration, peak plasma concentration of fenbendazole was 0.07 microg/ml, time to peak plasma concentration was 3.75 hours, and mean residence time was 15.15 hours. Bioavailability of fenbendazole was 27.1%. Oxfendazole was the major plasma metabolite, accounting for two-thirds of the total area under the plasma concentration versus time curve after IV and oral administration. Fenbendazole accounted for 8.4% of the total AUC after IV administration and 4.5% after oral administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that fenbendazole was rapidly eliminated from plasma of pigs. The drug was rapidly absorbed after oral administration, but systemic bioavailability was low.  相似文献   

13.
Verapamil, a calcium channel-blocking drug, was administered IV at a dosage that ranged from 0.05 to 0.15 mg/kg of body weight to 14 dogs with supraventricular tachycardia. The dosage was titrated, administering 0.05 mg/kg every 5 to 30 minutes following the initial 0.05 mg/kg dose in all but 1 dog. The drug terminated the arrhythmia in 12 dogs and slowed the ventricular rate in 1 dog. One dog was unresponsive to verapamil administration and became transiently hypotensive after the administration of a total dose of 0.15 mg/kg over 5 to 6 minutes. Various arrhythmias occurred after verapamil administration, but none required additional treatment or caused serious sequelae. Verapamil was an effective treatment for acutely converting supraventricular tachycardia to sinus rhythm in these dogs. It appears to be safe when administered in the aforementioned dosage range.  相似文献   

14.
OBJECTIVE: To investigate effects of short- and long- term administration of glucocorticoids, feeding status, and serum concentrations of insulin and cortisol on plasma leptin concentrations in dogs. ANIMALS: 20 nonobese dogs. PROCEDURE: For experiment 1, plasma leptin concentrations and serum concentrations of insulin and cortisol were monitored for 24 hours in 4 dogs administered dexamethasone (0.1 mg/kg, IV) or saline (0.9% NaCl) solution for fed and nonfed conditions. For experiment 2, 11 dogs were administered prednisolone (1 mg/kg, PO, q 24 h for 56 days [7 dogs] and 2 mg/kg, PO, q 24 h for 28 days [4 dogs]) and 5 dogs served as control dogs. Plasma leptin and serum insulin concentrations were monitored weekly. RESULTS: For experiment 1, dexamethasone injection with the fed condition drastically increased plasma leptin concentrations. Furthermore, injection of saline solution with the fed condition increased plasma leptin concentrations. These increases in plasma leptin concentrations correlated with increases in serum insulin concentrations. Dexamethasone injection with the nonfed condition increased plasma leptin concentrations slightly but continuously. Injection of saline solution with the nonfed condition did not alter plasma leptin concentrations. For experiment 2, prednisolone administration at either dosage and duration did not alter plasma leptin concentrations in any dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Dexamethasone injection and feeding increased plasma leptin concentrations in dogs. In addition, dexamethasone administration enhanced the effect of feeding on increases in plasma leptin concentrations. Daily oral administration of prednisolone (1 or 2 mg/kg) did not affect plasma leptin concentrations in dogs.  相似文献   

15.
OBJECTIVE: To compare pharmacokinetics of enrofloxacin administered IV and in various oral preparations to ewes. ANIMALS: 5 mature Katahdin ewes weighing 42 to 50 kg. PROCEDURE: Ewes received 4 single-dose treatments of enrofloxacin in a nonrandomized crossover design followed by a multiple-dose oral regimen. Single-dose treatments consisted of an IV bolus of enrofloxacin (5 mg/kg), an oral drench (10 mg/kg) made from crushed enrofloxacin tablets, oral administration in feed (10 mg/kg; mixture of crushed enrofloxacin tablets and grain), and another type of oral administration in feed (10 mg/kg; mixture of enrofloxacin solution and grain). The multiple-dose regimen consisted of feeding a mixture of enrofloxacin solution and grain (10 mg/kg, q 24 h, for 7 days). Plasma concentrations of enrofloxacin and ciprofloxacin were measured by use of high-performance liquid chromatography. RESULTS: Harmonic mean half-life for oral administration was 14.80, 10.80, and 13.07 hours, respectively, for the oral drench, crushed tablets in grain, and enrofloxacin solution in grain. Oral bioavailability for the oral drench, crushed tablets in grain, and enrofloxacin in grain was 4789, 98.07, and 94.60%, respectively, and median maximum concentration (Cmax) was 1.61, 2.69, and 2.26 microg/ml, respectively. Median Cmax of the multiple-dose regimen was 2.99 microg/ml. CONCLUSIONS AND CLINICAL RELEVANCE: Enrofloxacin administered orally to sheep has a prolonged half-life and high oral bioavailability. Oral administration at 10 mg/kg, q 24 h, was sufficient to achieve a plasma concentration of 8 to 10 times the minimum inhibitory concentration (MIC) of any microorganism with an MIC < or = 0.29 microg/ml.  相似文献   

16.
The pharmacokinetics and bioavailability of probenecid given IV and orally at the dosage level of 10 mg/kg of body weight to mares were investigated. Probenecid given IV was characterized by a rapid disposition phase with a mean half-life of 14.0 minutes and a subsequent slower elimination phase with a mean half-life of 87.8 minutes in 5 of 6 mares. In the remaining mare, a rapid disposition phase was not observed, and the half-life of the elimination phase was slower (172 minutes). The mean residence time of probenecid averaged 116 minutes for all 6 mares and 89.2 minutes for the 5 mares with biphasic disposition. The total plasma clearance of probenecid averaged 1.18 +/- 0.49 ml/min/kg, whereas renal clearance accounted for 42.6 +/- 9.3% of the total clearance. The steady-state volume of distribution of probenecid averaged 116 +/- 28.2 ml/kg. Plasma protein binding of probenecid was extensive, with 99.9% of the drug bound at plasma probenecid concentrations of 10 micrograms/ml. The maximum plasma probenecid concentration after 10 mg/kg orally averaged nearly 30 micrograms/ml. The half-life of probenecid after oral administration was approximately 120 minutes. Oral bioavailability was good with greater than 90% of the dose absorbed. The effect of probenecid on tubular secretion of organic anions was evaluated by determining the pharmacokinetics of IV cefazolin (11 mg/kg) administered alone and 15 minutes after probenecid (10 mg/kg orally). Treatment with probenecid did not affect pharmacokinetic values of cefazolin. This failure of probenecid to alter the pharmacokinetics of cefazolin may be caused by insufficient plasma probenecid concentrations after the oral dose.  相似文献   

17.
OBJECTIVE: To evaluate the effects of twice-daily oral administration of a low-dose of trilostane treatment and assess the duration of effects after once-daily trilostane administration in dogs with naturally occurring hyperadrenocorticism (NOH). DESIGN: Prospective study. ANIMALS: 28 dogs with NOH. PROCEDURES: 22 dogs received 0.5 to 2.5 mg of trilostane/kg (0.23 to 1.14 mg/lb) orally every 12 hours initially. At intervals, dogs were reevaluated; owner assessment of treatment response was recorded. To assess drug effect duration, 16 of the 22 dogs and 6 additional dogs underwent 2 ACTH stimulation tests 3 to 4 hours and 8 to 9 hours after once-daily trilostane administration. RESULTS: After 1 to 2 weeks, mean trilostane dosage was 1.4 mg/kg (0.64 mg/lb) every 12 hours (n = 22 dogs; good response [resolution of signs], 8; poor response, 14). Four to 8 weeks later, mean dosage was 1.8 mg/kg (0.82 mg/lb) every 12 or 8 hours (n = 21 and 1 dogs, respectively; good response, 15; poor response, 5; 2 dogs were ill). Eight to 16 weeks after the second reevaluation, remaining dogs had good responses (mean dosages, 1.9 mg/kg [0.86 mg/lb], q 12 h [n = 13 dogs] and 1.3 mg/kg [0.59 mg/lb], q 8 h [3]). At 3 to 4 hours and 8 to 9 hours after once-daily dosing, mean post-ACTH stimulation serum cortisol concentrations were 2.60 and 8.09 Pg/dL, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs with NOH, administration of trilostane at low doses every 12 hours was effective, although 2 dogs became ill during treatment. Drug effects diminished within 8 to 9 hours. Because of potential adverse effects, lower doses should be evaluated.  相似文献   

18.
Oral bioavailability and pharmacokinetic behaviour of clindamycin in dogs was investigated following intravenous (IV) and oral (capsules) administration of clindamycin hydrochloride, at the dose of 11 mg/kg BW. The absorption after oral administration was fast, with a mean absorption time (MAT) of 0.87+/-0.40 h, and bioavailability was 72.55+/-9.86%. Total clearance (CL) of clindamycin was low, after both IV and oral administration (0.503+/-0.095 vs. 0.458+/-0.087 L/h/kg). Volume of distribution at steady-state (IV) was 2.48+/-0.48 L/kg, indicating a wide distribution of clindamycin in body fluids and tissues. Elimination half-lives were similar for both routes of administration (4.37+/-1.20 h for IV, vs. 4.37+/-0.73 h for oral). Serum clindamycin concentrations following administration of capsules remained above the MICs of very susceptible microorganisms (0.04-0.5 microg/mL) for 12 or 10 h, respectively. Time above the mean inhibitory concentration (MIC) is considered as the index predicting the efficacy of clindamycin (T(>MIC) must be at least 40-50% of the dosing interval), so a once-daily oral administration of 11 mg/kg BW of clindamycin can be considered therapeutically effective. For less susceptible bacteria (with MICs of 0.5-2 microg/mL) the same dose should be given but twice daily.  相似文献   

19.
OBJECTIVES: To determine pharmacokinetic characteristics of marbofloxacin after a single IV and oral administration and tissue residues after serial daily oral administration in chickens. ANIMALS: 40 healthy broiler chickens. PROCEDURE: Two groups of chickens (groups A and B; 8 chickens/group) were administered a single IV and oral administration of marbofloxacin (2 mg/kg). Chickens of group C (n = 24) were given serial daily doses of marbofloxacin (2 mg/kg, PO, q 24 h for 3 days). Plasma (groups A and B) and tissue concentrations (group C) of marbofloxacin and its major metabolite N-desmethyl-marbofloxacin were determined by use of high-performance liquid chromatography. Residues of marbofloxacin and N-desmethylmarbofloxacin were measured in target tissues. RESULTS: Elimination half-life and mean residence time of marbofloxacin in plasma were 5.26 and 4.36 hours after IV administration and 8.69 and 8.55 hours after oral administration, respectively. Maximal plasma concentration was 1.05 microg/ml, and interval from oral administration until maximum concentration was 1.48 hours. Oral bioavailability of marbofloxacin was 56.82%. High concentrations of marbofloxacin and N-desmethyl-marbofloxacin were found in the kidneys, liver, muscles, and skin plus fat 24 hours after the final dose of marbofloxacin; however, marbofloxacin and N-desmethyl-marbofloxacin were detected in only hepatic (27.6 and 98.7 microg/kg, respectively) and renal (39.7 and 69.1 microg/kg, respectively) tissues 72 hours after termination of marbofloxacin treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of pharmacokinetic data obtained in this study reveals that a minimal therapeutic dose of 2 mg/kg, PO, every 24 hours should be appropriate for control of most infections in chickens.  相似文献   

20.
The present study characterizes the safety, pharmacokinetics, and anti-emetic effects of the selective NK-1 receptor antagonist maropitant in the cat. Safety of maropitant was determined following 15 days of subcutaneous (SC) administration at 0.5–5 mg/kg. Maropitant was well tolerated in cats at doses that exceeded the efficacious anti-emetic dose range of the drug by at least a factor of 10 and adverse clinical signs or pathological safety findings were not noted at any dose.The pharmacokinetics of maropitant in cats were determined following single dose oral (PO), intravenous (IV) and SC administration. Maropitant had a terminal half-life of 13–17 h and a bioavailability of 50 and 117% when administered PO and SC, respectively. Efficacy was determined against emesis induced either by xylazine or by motion. A dosage of 1 mg/kg maropitant administered IV, SC or PO prevented emesis elicited by xylazine. The compound had good oral antiemetic activity and a long (24 h) duration of action. Maropitant (1.0 mg/kg) was highly effective in preventing motion-induced emesis in cats. These studies indicate that the NK-1 receptor antagonist maropitant is well tolerated, safe and has excellent anti-emetic properties in cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号