首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 81 毫秒
1.
以人工林速生材桉木为基材,聚氯乙烯膜代替传统胶黏剂制备木塑复合材料,解决了甲醛释放、白色污染等问题。采用热压—冷压工艺,以热压温度、时间及塑料添加量3个因素为自变量,胶合强度为响应值,通过响应面分析确定了最优生产工艺;并采用扫描电子显微镜观察其界面形态,即热压温度为183℃,热压时间为452 s,塑料添加量为320 g/m~2。试验表明:桉木单板/聚氯乙烯膜制备木塑复合材料工艺具有可行性,其胶合强度达1.14MPa,满足GB/T 9846—2015标准中Ⅱ类胶合板的要求。  相似文献   

2.
为研究硅烷偶联剂对复合材料的性能影响,采用不同质量分数的硅烷偶联剂对桉木单板进行表面处理,然后与聚氯乙烯膜采用热压--冷压工艺制备木塑复合材料,测定复合材料的物理力学性能,并用扫描电子显微镜观察分析其界面相容机理。结果表明:当偶联剂质量分数为1%时处理效果最好,复合材料的胶合强度最高、耐水性能最好;当偶联剂质量分数为3%时,复合材料的弹性模量和静曲强度最高。单板经过硅烷偶联剂处理后,制得的复合材料的界面相容性得到改善。   相似文献   

3.
沙柳/聚丙烯复合材料的制备及力学性能研究   总被引:2,自引:0,他引:2  
本研究以沙柳木粉、聚丙烯为原料,加入硅烷偶联剂,采用热压法制备沙柳?聚丙烯复合材料,对其力学性能进行相关研究。在不加偶联剂条件下,当木粉加入量为20%~50%,木粉目数为20目至80目时,随木粉加入量的增加复合材料的静曲强度呈先上升后下降趋势、弹性模量呈上升趋势,拉伸强度随之下降;随木粉粒径的减小,上述力学性能呈现先上升后下降的趋势。硅烷偶联剂KH550和玻璃纤维的加入,使复合材料的整体力学性能明显提高,当木粉加入量为40%,木粉目数为60目,偶联剂加入量为5%,玻璃纤维加入量为15%时,复合材料整体力学性能较好,此时,静曲强度为55.93MPa,弹性模量为3 400MPa,拉伸强度为24.83MPa。  相似文献   

4.
为提高桉木单板出材率,合理利用桉树木材,采用BQK1813C 型无卡轴旋切机对尾巨桉进行旋切试验、 BXQS1813A 型无卡轴旋切机对6 种桉木进行旋切试验。结果表明:桉木径级对单板综合出材率影响显著,树种和 加工设备对其影响不显著;设备旋切后剩余木芯的大小对单板出材率影响较大。尾巨桉径级较小(12 cm 以内)时, 综合出材率随径级增加缓慢增加;径级为12 cm 时,单板综合出材率最大,为77郾65%。其他5 种桉木单板综合出材 率随原木径级的增加而增加,在径级达到12 cm 后趋于稳定;柳桉的单板综合出材率稳定在(77郾98 依1郾44)%,巨桉 稳定在(81郾73 依2郾20)%,大花序桉稳定在(83郾75 依2郾03)%,邓恩桉稳定在(75郾01 依0郾45)%,粗皮桉稳定在 (72郾12 依0郾62)%。6 种桉木的A + B 等级单板的出材率占单板综合出材率的74郾91% 以上。因此,建议用于单板 旋切的桉树在径级为12 cm 左右时进行采伐,并采用旋切后木芯直径较小的旋切设备作业,这将会产生较好的经济 效益。   相似文献   

5.
以木粉和聚丙烯为主要原料,填充改性炭黑(M-CB)和可膨胀石墨(EG)制备阻燃抗静电木粉-聚丙烯木塑复合材料,并进行力学性能、表面电阻率、氧指数及燃烧性能、热失重行为、阻燃性能测试。结果表明:加入15 g EG、10g M-CB 后,木塑复合材料的拉伸强度、弯曲强度和冲击强度分别增加了2.0%、5.2% 和15.6%,电阻率下降到了108 ;与空白样相比,复合材料的起始分解温度从255.0 ℃上升到了272.5 ℃,木粉最高分解温度由349.2 ℃下降到了287.5 ℃,聚丙烯的最高分解温度由448.1 ℃上升到了477.9 ℃,在800 ℃下的残炭率由9.9% 上升到了33.5%;点燃时间从3 s 增加到了14 s,在500 s 时总热释放量下降了56.5%,残炭率提高了5 倍,表现出显著的阻燃与抗静电性能。   相似文献   

6.
聚乙烯、聚丙烯与木纤维复合制板工艺   总被引:3,自引:0,他引:3  
通过聚乙烯、聚丙烯分别与木纤维复合制板工艺的实验,探讨了加入助剂和改变聚乙烯、聚丙烯用量对复合材料力学性能的影响,结果表明:对纤维进行改性处理,可以明显改善木塑复合材料力学功能;塑料越细且含量为30%时复合材料力学性能基本达到中密度板材的力学性能指标。  相似文献   

7.
为了增强木粉与聚丙烯间的相容性,改善木塑复合材料的性能,制备马来酸酐接枝聚丙烯接枝聚乙二醇(MAPP-g-PEG)作为增容剂添加到聚丙烯木塑复合材料中,考察增容剂对制备的木塑复合材料的静曲强度、弹性模量、缺口冲击强度及吸水厚度膨胀率等指标的影响,采用扫描电镜观察材料的断面形貌.结果表明,添加MAPP-g-PEG增容剂后,木塑复合材料的静曲强度、弹性模量升高,缺口冲击强度增强,吸水厚度膨胀率降低.聚丙烯基体与木粉填料的界面结合紧密,且填料分散均匀,很好地改善了聚丙烯木塑复合材料的性能.  相似文献   

8.
为了研究碳纤维增强木基复合材料的力学性能,选择直径为12 μm的碳纤维制备试样。分别对碳纤维增强木基复合材料与木纤维板进行了三点弯曲力学性能测试,运用扫描电镜(SEM)对其微观结构进行表征。结果表明:通过力学曲线对比及断裂机理分析,可以明显的发现碳纤维增强木基复合材料的力学性能要优于木纤维板,这种“三明治”结构的材料设计充分发挥出碳纤维独特的缓冲能力,试件在较高外加载荷作用下并不是产生突然的断裂破坏,而是具有一定的承载能力。SEM分析表明,聚醋酸乙烯胶粘剂工作强度高,在受力时能够很好的传递载荷,碳纤维网与木纤维板结合良好。  相似文献   

9.
为改善刨切厚单板质量,减少水热处理时间,采用带实时喷蒸加热功能的刨切试验装置,在冷水浸泡、冷水浸泡再喷蒸加热、水煮软化和水煮软化再喷蒸加热4种条件下对桉木进行刨切试验,刨切厚度为1~6 mm。结果表明:单板表面粗糙度为4.29~14.30μm,随刨切厚度的增加而增加,其中横纹方向表面粗糙度大于顺纹方向,但都能满足GB/T 13010—2006的要求;单板背面裂隙度在刨切厚度为2~6 mm时变化幅度不大。相对于未喷蒸加热的情况,采用实时喷蒸加热刨切的单板横纹表面粗糙度、顺纹表面粗糙度和背面裂隙度的最大降低百分率分别为11.55%、23.12%和28.06%,表明采用实时喷蒸加热处理对改善单板质量效果明显;其中,在水煮软化再喷蒸加热的条件下,刨切单板表面粗糙度和背面裂隙度最小。  相似文献   

10.
竹粉粒径对竹/聚丙烯复合材料力学性能的影响   总被引:1,自引:0,他引:1  
以竹粉和聚丙烯粉料为原料,马来酸酐接枝聚丙烯为偶联剂,通过注塑成型制备了竹塑复合材料.研究了不同粒径竹粉对复合材料力学性能的影响.结果表明:不同粒径的竹粉对复合材料拉伸性能、弯曲性能及冲击强度均有显著的影响.竹粉粒径在40~120目时,随着粒径的减小,复合材料的拉伸强度、弯曲强度,以及缺口冲击强度呈逐渐减小的趋势.当粒径达到200目时,复合材料的拉伸强度、弯曲强度及缺口冲击强度却有所增大.竹粉粒径为20目时,复合材料的拉伸强度、弯曲强度以及缺口冲击强度均比40目的要低.大粒径竹粉(40目)与小粒径竹粉(200目)填充的复合材料表现出的不同力学性能,可能与竹粉与基体塑料界面结合、纤维形态、表面粗糙度以及内部空隙状况不同有关.  相似文献   

11.
通过引入马来酸酐接枝乙烯与辛烯共聚物(MA-POE)提高了木粉/聚丙烯(WF/PP)复合材料的韧性,并通过动弹性模量分析探讨了MA-POE对WF/PP复合材料低温力学性能的影响。研究结果表明,加入MA-POE后复合材料冲击强度在-20℃和20℃条件下比未添加MA-POE的空白样分别提高了60%和68%;在常温下弯曲强度从41.70MPa升高到50.86MPa,提高了22%;MA-POE能够有效地降低WF/PP复合材料的弹性模量、储能模量和损耗模量,使三者都向低温偏移;采用MA-POE先与PP熔融共混后再与木粉混合的工艺可以进一步提高复合材的强度。动弹性模量分析证明添加MA-POE能够改善WF/PP复合材料的低温韧性。通过扫描电子显微镜也进一步印证了两相结合得到了改善。  相似文献   

12.
为实现玉米醇溶蛋白(Zein)的材料化利用,以生物炭、聚丙烯(polypropylene,PP)、Zein为原料制备复合材料(Zein/PP),探究生物炭对Zein/PP复合材料力学性能的影响。结果表明,生物炭与Zein均没有改变PP的晶面结构,生物炭降低了Zein/PP复合材料的相对结晶度;生物炭的多孔结构与PP形成了一种稳定的界面结构,进而改善了Zein/PP复合材料的弯曲性能、拉伸性能、冲击强度、刚性、弹性、尺寸稳定性。当生物炭的含量为15%时,复合材料的综合力学性能最佳,其弯曲强度、弯曲模量、拉伸强度、拉伸模量、断裂伸长率、冲击强度分别为44.68 MPa、2.66 GPa、24.27 MPa、0.29 GPa、7.07%、6.10 kJ·m-2。试验结果可为Zein/PP复合材料性能的改善提供依据。  相似文献   

13.
对马尾松热磨机械浆纤维增强聚丙烯复合材料力学性能进行测试与分析,结果表明:对纤维进行接核处理和偶联处理,可以明显改善纤维与取丙烯基体共混体系的力学性能;纤维与助剂的含量对复合材料力学性能的影响显著,马尾松热磨机械浆含量25%左右时,复合材料可达到的力学性能指标为拉伸强度27MPa以上、弯曲强度40MPa以上、冲击强度(缺口)5kJ/m^2以上。  相似文献   

14.
PVC木塑复合材料中添加低熔点尼龙,并引入3种增容剂:马来酸酐接枝EVA(EVA-g-MAH)、马来酸酐接枝聚丙烯(PP-g-MAH)和马来酸酐接枝POE(POE-g-MAH),以提高材料的性能。力学性能测试显示:尼龙及增容剂的添加提高了PVC木塑复合材料的力学性能。其中,EVA-g-MAH的使用效果最为明显,复合材料的冲击强度提高了39.02%,弯曲强度提高了16.37%。动态力学性能测试表明:添加低熔点尼龙及增容剂,不同程度地降低了复合材料的储能模量。转矩流变性能测试表明:低熔点尼龙降低了复合材料的平衡转矩。而EVA-gMAH及POE-g-MAH提高了尼龙-PVC复合材料的平衡转矩,对材料的加工性有不利的影响。扫描电镜分析表明:加入增容剂后,复合材料界面不同程度发生钝化,复合材料相容性提高。吸水率测试结果表明:低熔点尼龙的加入提高了PVC复合材料的吸水率,而增容剂对降低材料吸水率有明显作用。  相似文献   

15.
聚氯乙烯塑膜覆盖效应及毒性研究   总被引:1,自引:0,他引:1  
研究表明,在不同年份、不同生态条件下,用聚氯乙烯(PVC)膜和聚乙烯(PE)膜覆盖农作物,两者增产效果一致;PVC膜的增产效应介于PE普膜和微膜之间,但差异甚微;增温保墒效应PVC膜略优于PE膜或一致;PVC膜的老化较PE膜快,但覆盖两个月内不发生老化;PVC膜中增塑剂DEHP可被土壤微生物降解,所以连续覆盖PVC膜不会造成土壤中DEHP积累性污染。  相似文献   

16.
四川引种巨桉人工林木材物理力学性质的研究   总被引:1,自引:0,他引:1  
测定和分析研究了四川引种的5.5年生巨桉木材物理力学性质,结果表明:5.5年生巨桉木材材质轻、变形小,其气干密度为0.498g/cm3,全干密度为0.474g/cm3,基本密度为0.405g/cm3,体积干缩系数为0.487,顺纹抗压强度为47.97MPa,抗弯强度为90.60MPa,抗弯弹性模量为10411MPa,冲击韧性为60.8KJ/m2;综合强度为138.57MPa,属中等。  相似文献   

17.
为解决高热膨胀系数差异的塑膜与装饰薄木高温热压复合卷曲问题,制备各项性能良好的塑膜增强柔性装饰薄木,提高珍贵木材利用率和增加产品附加值,采用凹凸模曲面成型工艺进行塑膜与薄木的热压复合,并对其工艺进行优化,为塑膜增强柔性装饰薄木工业化应用探索科学方法和理论依据。以红栎为装饰薄木,等离子体改性低密度聚乙烯(LDPE)薄膜为胶粘和增强材料,以塑膜增强薄木剥离强度和卷曲度为性能指标,采用正交试验法优化凹凸模具曲面成型制备塑膜增强薄木的热压压力、温度和保压时间等工艺参数。结果表明:1)塑膜与装饰薄木热压曲面成型制备塑膜增强柔性薄木,可显著缓解塑膜增强柔性薄木高温热压卷曲变形现象。2)凹凸模曲面成型制备塑膜增强柔性装饰薄木的较优工艺参数为热压压力0.8 MPa、温度125℃、保压时间210 s。3)在优化工艺条件下制备的柔性装饰薄木,剥离强度达0.50 kN/m,横向抗拉强度达4.09 MPa,柔韧性可达钢棒直径4 mm,浸渍剥离性能达到国标I 类试验要求,表面平整度好。塑膜与装饰薄木热压曲面成型,可有效解决塑膜增强柔性薄木热压卷曲变形问题,保证后续饰面生产,为新型塑膜增强柔性薄木的制备和工业化应用提供重要理论依据。  相似文献   

18.
采用硅烷包覆型聚磷酸铵(APP)作为阻燃剂,对竹粉/聚丙烯(PP)复合材料进行阻燃改性,研究APP的用量对复合材料阻燃性能和力学性能的影响;基于APP的最佳用量,以APP、季戊四醇(PER)和三聚氰胺(MEL)作为膨胀型阻燃剂(IFR),研究APP、PER和MEL的互配比例对复合材料阻燃和力学性能的影响。结果表明,随着APP用量的增加,复合材料的阻燃性能不断增强,但弯曲和拉伸强度下降。当APP用量为复合材料总质量的15%时,其综合性能较佳,与未阻燃复合材料相比,极限氧指数(LOI)由17.1%提高至21.5%,弯曲模量和缺口冲击强度(NIS)分别增强14.8%和32.2%,弯曲强度和拉伸强度分别降低9.3%和28.8%。当APP、PER和MEL的互配比例为3∶1∶1时,添加15% IFR的复合材料的力学性能总体增强,与未阻燃复合材料相比,弯曲强度、弯曲模量和NIS分别增强18.1%、20.0%和23.3%,仅拉伸强度降低10%。锥形量热仪和极限氧指数仪结果显示,IFR阻燃复合材料的热释放速率、热释放速率峰值和总热释放量分别降低56.7%、40.2%和30.5%;LOI提高至25.9%,复合材料的阻燃性能进一步改善,但是,总产烟量增大了16.7%,该IFR的添加对复合材料的持久抑烟效果不佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号