首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of opening, carding, and repeated drawings on single fiber and bundle cotton characteristics were studied by employing Mantis®, AFIS® and HVI Testers. Some of the significant changes in single fiber properties were found to be due to process parameters as well as the changes in the fiber crimps, parallelness of fibers within HVI beards, and the actual changes in the tensile properties of the fibers. The study showed that the HVI test data taken just prior to spinning had the highest correlation with the yarn tensile properties. Based on the study results, we point out the potential of HVI for future quality and process control in spinning by recommending a set of expanded HVI output that is more scientific and comprehensive for the future control needs.  相似文献   

2.
In this paper, a hand-operating method (tiled test method) of the wool-blending sample is made out, and make use of the method, the test of wool-blending bundle in different blending ratio is accomplished. According to the test data, the synthesis method of the stretch curve is worked out and the synthesis software for the typical stretch curve of wool-blending bundle is designed. Through laboratory hand-operating method, the blending fasciculus applying to fiber bundle test can be obtained in a short time. Calculation for sampling is accomplished in the article. We bring up 9 new signs to describe the characteristics of the curve behind peak for the first time: elongation behind peak (HE), elongation percentage behind peak (HEP), relative elongation rate behind peak (RHE), total break work (W a), break work behind peak (HW), break work coefficient behind peak (HWC), elongation percentage of half-load behind peak (HEL), load percentage of half-elongation behind peak (HLE), break efficiency behind peak (HEC).  相似文献   

3.
The effect of impact force when using inclined water jets on splittable bicomponents hydroentangled fabrics are investigated focusing on changes in tensile properties and fiber splitting. The results indicated that with increase of impact force, the tensile strength was increased in both machine direction (MD) and crosswise direction (CD). On changing of water jet inclination angle, the tensile strength was the highest at 10 degree followed by 20 degree and the last 0 degree. The highest fiber splitting were observed in pie segment (PA6/PET) followed by island in sea (PA6/COPET) fiber but no fiber splitting was observed for island in sea (PET/COPET) fiber. The impact force in inclined mode of impact, played a great role in improving fiber splitting and tensile properties of hydroentangled nonwoven fabrics. The Scanning Electron Microscope (SEM) photos were used for investigation of fiber splitting by comparing fiber diameter before and after hydroentanglement.  相似文献   

4.
This work investigated the effects of date palm leaf fiber (DPLF) content on the thermal and tensile properties; and morphology of compatibilized polyolefin ternary blend. Recycled polyolefin ternary blend consisting of low density polyethylene (RLDPE), high density polyethylene (RHDPE) and polypropylene (RPP) were fabricated at different parts per hundred resin (phr) of DPLF. Maleic anhydride grafted polyethylene (MAPE) was used as compatibilizer to enhance the adhesion between filler and polymer matrix. The composites were prepared using melt extrusion and tests samples were produced via injection molding process. Thermal conductivity results showed that as much as 11 % reduction in thermal conductivity was achieved with the incorporation of 30 phr DPLF. Highest tensile strength was observed with the incorporation of 10 phr DPLF. The elongation at break was reduced with the addition of DPLF due to impediment of chain mobility by the fillers. Initial degradation temperature increased with the addition of DPLF. Hence, it is concluded that DPLF can be used to develop green and thermally insulating composites. It is hoped that the present results will stimulate further studies on the thermally insulative materials based on natural fibers reinforced polymer composites for applications in the building industries.  相似文献   

5.
Organic fiber from animal waste was used for the development of environmentally friendly animal fiber based polyester composites using cow hair. The cow hair fibers were cut into 10 mm lengths to produce the needed short fiber for random dispersion in the matrix. Before use, some of the fibers were treated with sodium hydroxide for fiber surface modification while some were left as untreated. Composites were developed using predetermined proportions of the fibers in an open mould production process. Samples were formed into tensile and flexural shape in their respective moulds and were stripped off the moulds after curing while further curing was ensured for 27 days before testing. Tensile and flexural properties of the cow hair fiber reinforced polyester composites were evaluated from which it was discovered that the untreated fiber reinforced composites possess better enhancement of mechanical properties compared to the treated fiber reinforced composites and the unreinforced polyester material. Mathematical models for the tensile and flexural properties were developed using statistical packages and estimation using developed software. The developed models revealed high degree of correlation between the experimental values and the predicted values. This denotes that the models can be used to predict the mechanical properties of cow hair reinforced polyester composites for various reinforcement contents.  相似文献   

6.
7.
PLA/LPCL/HPCL blends composed of poly(lactic acid) (PLA), low molecular weight poly(ε-caprolactone) (LPCL), and high molecular weight poly(ε-caprolactone) (HPCL) were prepared by melt blending for bioabsorbable filament sutures. The effects of blend composition and blending time on the ester interchange reaction by alcoholysis in the PLA/LPCL/HPCL blends were studied. Their thermal properties and the miscibility due to the ester interchange reaction were investigated by1H-NMR, DSC, X-ray, and UTM analyses. The hydroxyl group contents of LPCL in the blends decreased by the ester interchange reaction due to alcoholysis. Thus, the copolymer was formed by the ester interchange reaction at 220 °C for 30–60 minutes. The thermal properties of PLA/LPCL/HPCL blends such as melting temperature and heat of fusion decreased with increasing ester interchange reaction levels. However, the miscibility among the three polymers was improved greatly by ester interchange reaction. Tensile strength and modulus of PLA/LPCL/HPCL blend fibers increased with increasing HPCL content, while the elongation at break of the blend fibers increased with increasing LPCL content.  相似文献   

8.
TiO2/NBR-PVC hollow fibers were spinned by NBR casting solution blended PVC with nano-titanium dioxide (TiO2). The effect of NBR-PVC hollow fiber damping and mechanical properties aroused by loading TiO2 were studied. Results showed that the hollow fibers loaded TiO2 increased in tensile strength, storage modulus, stiffness and glass transition temperature, while decreased in tanδpeak and breaking tensile elongation. The damping of the TiO2/NRR-PVC hollow fiber were not only linked to the dosage of TiO2, but also related to the degree of dispersion in matrix.  相似文献   

9.
Wheat protein is widely used in food industry. In order to expand the scope of its application on non-food field, we managed to apply the wheat protein to fiber production. To improve the mechanical properties of the fibers, we used the method of microwave modification. The best process conditions obtained by response surface analysis were a microwave power of 20.6 W/mL, microwave time of 3 min, and pH 8. Compared to non-microwaved fibers, the breaking strength was 19% higher and the elongation was 302.43% higher which indicated the microwaved fiber toughness was increased. To study the mechanism underlying the effect of microwave treatment on the improvement of mechanical properties, changes in the SH and SS content during wheat protein fiber preparation, a secondary structure study, X-ray diffraction, thermal performance analysis, SEM, surface hydrophobicity, and standard moisture regain measurement were examined. The microwaved fiber had increased SS content, α-helices, crystallinity, which may be responsible for the better mechanical properties. DSC and TG results showed that the thermal stability of microwaved fiber was increased. Additionally, SEM micrographs revealed that the structure of microwaved fibers was smoother and denser, and contained less pores than non-microwaved fibers. Although the surface hydrophobicity and standard moisture regain were decreased, microwaved fiber had good hygroscopicity, which was close to that of silk.  相似文献   

10.
The main objective of this research was to study the effect of fiber content variation and stearic acid (SA) treatment on the fundamental properties of unidirectional coir fiber (CF) reinforced polypropylene (PP) composites. Several percentages of filler contents were used (10–40 wt %) in order to gain insights into the effect of filler content on the properties of the composites. Coir/PP composites were fabricated by compression molding, and the properties of composites were studied by physico-mechanical and thermal properties. The results from mechanical properties such as tensile strength (TS), tensile modulus (TM) and impact strength (IS) of the CF/PP composites were found to be increased with increasing fiber content, reached an optimum and thereafter decreased with further increase in fiber content. Treatment of the coir with SA as the coupling agent enhanced the mechanical properties, crystallization temperature and crystallinity of virgin PP and water desorption of the resulting composites, resulting from the improved adhesion between the CF and PP matrix. Scanning electron micrographs (SEM) of the tensile fractured samples showed improved adhesion between fiber and matrix upon treatment with SA. Interfacial shear strength (IFSS) of the composites was measured by single fiber fragmentation test (SFFT).  相似文献   

11.
The properties of moisture transfer and the comfort of mesh-structured fabrics with various knit compositions and properties were investigated. The comfort effects of the double knitted fabrics combined with different cross-shaped fibers composed of dyeable-polypropylene (PPd) and regular polyester (PET) double-knitted fabrics were studied. A series of PET, PPd, Coolmax® (Cm) with single knitted fabrics and PPd/Cm with double knitted fabrics were evaluated to determine the physical properties and wearing performance for comfortable clothing. To compare the structural properties involving the vapor transfer of 4 types of fabrics with different fiber compositions, fiber types, weights, and thicknesses, the surface structure and pore characteristics were evaluated by scanning electron microscopy and a capillary flow porometer. The properties of moisture transfer were tested using vertical wicking and gravimetric absorbent testing system (GATS). In addition, the comfort performance measured by the thermal insulation value (Rt) and moisture permeability index (im) with a thermal manikin in a conditioned walk-in environmental test chamber was predicted. The result showed that the PPd/Cm sample has potential applications as good comfort fabric materials.  相似文献   

12.
Dispersion and separation of fiber bundles into individual fibers, requires exposing them to a shear stress field to overcome inter-fiber frictional forces. To this end, fiber-mixing tanks are usually used to enhance shear and agitation in water and help the dispersion process. The required time and necessary agitation to separate and disperse fibers depend on fibers’ characteristics. It is well known that excessive agitation will give rise to the formation of rope defects in the output because of the high-energy vortices and optimizing the break up time is important in wet-lay process. In this work, experimental and numerical studies were done to investigate the effects of fiber characteristics on their dispersion in water for wet-laid nonwoven. The effective forces were analyzed using a one-way modeling of fiber behaviors in a stirred mixing tank. Results show that when the fiber diameter is increased, the required time for breaking up of fiber bundles and clumps is increased. The effects of fiber types on fibers break up and dispersing time, were also investigated. In the experimental work, an on-line vision system was designed to observe the dispersion behavior of polyester fibers. The effects of fiber length and fineness on the created defects (i.e. logs and ropes) in dispersion process, as well as on the dispersion speed, were studied. The results confirm that defects are increased by rising fiber length and fineness. It is also shown that increasing fiber length and fineness, decreases the required time for fiber clumps to be opened and reach a maximum number of individual fibers. On the other hand, when fiber length and fineness is increased, the dispersion speed increases.  相似文献   

13.
The tribological performance of PA6 and carbon fiber reinforced polyamide 6 (CF/PA6) under dry sliding condition was examined. Different contents of carbon fibers were employed as reinforcement. All filled and unfilled polyamide 6 composites were tested against CGr15 ball and representative testing was performed. The effects of carbon fiber content on tribological properties of the composites were investigated. The worn surface morphologies of neat PA6 and its composites were examined by scanning electron microscopy (SEM) and the wear mechanisms were discussed. Moreover, all filled polyamide 6 have superior tribological characteristics to unfilled polyamides 6. The optimum wear reduction was obtained when the content of carbon fiber is 20 vol%.  相似文献   

14.
This paper presents the results of a current study on polypropylene matrix composites processed by injection, with two different glass fiber lengths and five different volume fractions. Physical and mechanical properties were obtained, namely flexural strength, stiffness modulus and fracture toughness. The mechanical properties of the composites increased significantly with the increase of the fibers volume fraction in agreement with the Counto model. The effect of water immersion time was also analysed. Immersion in water promotes a marked decrease in mechanical properties in the early seven-ten days, and afterwards tends to stabilize. Water causes a decrease of the relative strength which increases with fiber volume fraction and reaches about 29 % and 32 % for 20 % of 4.5 mm fiber length and for 25 % of 12 mm fiber length respectively, after 28 days immersion in water. Fracture toughness increases with fiber volume fraction and is always higher for 12 mm fiber length composites than for 4.5 mm fiber length composites.  相似文献   

15.
PLA/LPCL/HPCL blend fibers composed of poly (lactic acid) (PLA), low molecular weight poly (ɛ-caprolactone) (LPCL), and high molecular weight poly (ɛ-caprolactone) (HPCL) were prepared by melt blending and spinning for bioabsorbable filament sutures. The effects of blending time and blend composition on the X-ray diffraction patterns and tensile properties of PLA/LPCL/HPCL blend fibers were characterized by WAXD and UTM. In addition, the effect ofin vitro degradation on the weight loss and tensile properties of the blend fibers hydrolyzed during immersion in a phosphate buffer solution at pH 7.4 and 37°C for 1–8 weeks was investigated. The peak intensities of PLA/LPCL/HPCL blend fibers in X-ray diffraction patterns decreased with an increase of blending time and LPCL contents in the blend fibers. The weight loss of PLA/LPCL/HPCL blend fibers increased with an increase of blending time, LPCL contents, and hydrolysis time while the tensile strength and modulus of the blend fibers decreased. The tensile strength and modulus of the blend fibers were also found to be increased with an increase of HPCL contents in the blend fibers. The optimum conditions to prepare PLA/LPCL/HPCL blend fibers for bioabsorbable sutures are LPCL contents of 5 wt%, HPCL contents of 35 wt%, and blending time of 30 min. The strength retention of the PLA/LPCL/HPCL blend fiber prepared under optimum conditions was about 93.5% even at hydrolysis time of 2 weeks.  相似文献   

16.
We investigated the surface modification of jute fiber by oxygen plasma treatments. Jute fibers were treated in different plasma reactors (radio frequency “RF” and low frequency “LF” plasma reactors) using O2 for different plasma powers to increase the interface adhesion between jute fiber and polyester matrix. The influence of various plasma reactors on mechanical properties of jute fiber-reinforced polyester composites was reported. Tensile, flexure, short beam shear tests were used to determine the mechanical properties of the composites. The interlaminar shear strength increased from 11.5 MPa for the untreated jute fiber/polyester composite to 19.8 and 26.3 MPa for LF and RF oxygen plasma treated jute fiber/polyester composites, respectively. O2 plasma treatment also improved the tensile and flexural strengths of jute fiber/ polyester composites for both plasma systems. It is clear that O2 plasma treatment of jute fibers by using RF plasma system instead of using LF plasma system brings about greater improvement on the mechanical properties of jute/polyester composites.  相似文献   

17.
Temperature and blowing agent are major factors influencing the properties of extruded foam materials. This study was conducted to determine the influence of temperature and alcohol content on selected properties and molecular weight of acetylated starch foam. Starch acetate, with degree of substitution of three, was prepared from 70% amylose corn starch and extruded with either 16 or 18% (db) ethanol in a single screw extruder at either 120 or 160°C. Unit and solid densities, specific mechanical energy, compressibility, spring index, water absorption and water solubility indices, glass transition temperature, molecular degradation and degree of substitution (DS) of the starch were measured. The samples extruded at 120°C had lower spring indices and water absorption indices (WAI), but higher compressibility and unit density than acetylated starch extruded at 160°C. The samples extruded with 16% ethanol content on a dry basis had lower spring indices and higher WSI than samples extruded with 18% alcohol. The extruded samples had lower solid density, WSI and WAI as compared to non-extruded acetylated starch. A slight decrease in the average molecular weight was recorded as a result of the extrusion processing. The samples extruded at 160°C had high spring indices and low unit densities and thus were more suitable for use as a loose-fill packaging material.  相似文献   

18.
enVix is a novel regenerated cellulosic fiber, which is prepared from cellulose diacetate fiber using environmentally friendly manufacturing process. Vat dyeing properties of the enVix were investigated and compared with those of regular viscose rayon. The enVix exhibited better dyeability than viscose rayon. The colour yields of vat dyes on the enVix were found to be dependent on dyeing temperature as well as the amount of levelling agent and salt. Good build-up and good to excellent fastness properties were obtained on the enVix fabric.  相似文献   

19.
Study on the characteristics of blended ring and rotor spun yarns is a topic of major interest to the researchers. The overall properties of these blended yarns are affected by the relative proportion, properties of the components and their interactions. The main focus of this work is on comparing and analyzing effects of blend ratio on tensile properties of the yarns produced in different spinning systems using concept of hybrid effects that has not received enough attention from researchers. Various blends of cotton-polyester ring and rotor spun yarns were prepared. Tensile properties of the samples were examined as well. Interactions between cotton and polyester fibers was evaluated through predicting strength and elongation at break of the yarns using simple rule of mixtures (ROM) and hybrid model. Experimental results showed that, the effect of different blend ratios on tensile properties of the samples is different. In comparison with 100 % cotton yarn, promotion in braking strength of the ring and rotor spun samples occurred after increasing fraction of the polyester fiber to 50 and 66.5 % respectively. The prominent finding of the present work is that the trend of change in tensile properties of different yarns versus blend ratio is predictable via hybrid model and migration behavior of the constituent fibers. Coefficients representing the intensity of the interaction and migration index of the fibers were calculated and all results were discussed based on these calculated factors.  相似文献   

20.
Abstract A limitation to using n‐alkanes in plants as faecal markers for estimating diet composition in herbivores is the small number of dietary components that it is possible to determine. One approach to overcoming this is to group species on the basis of their n‐alkane concentrations and to consider these groups as dietary components. Feeding selectivity within a group, however, may change the proportion of a particular species in the group ingested and hence its n‐alkane contribution to the diet ingested. This could potentially affect estimates of the composition of the diet. Simulations (380) of feeding selectivity within a group of herbage species were undertaken to assess the effects of selectivity on estimates of diet composition. The dataset was from a study whose aim was to estimate the proportions of the herbage component, composed of nineteen species, and of four individual browse species in the diet of red deer grazing a montado ecosystem in S. Portugal in the summer. Simulations were undertaken of total avoidance of each species in the group of herbage species, and selection of each species at 0·5, 1·5, 2·0 and 3·0 of its actual proportion within the group. Feeding selectivity had no effect on 0·36 of the outcomes of the simulations. Over 0·90 of the simulations were within ± 0·05 of the values calculated assuming no selection within the group of herbage species. It is concluded that, in the particular case studied, the effect of selection within a group on the estimates of other dietary components was relatively small and that the group of herbage species could be analysed as a single dietary component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号