首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Two early- (EG) and two late-season (LG) corn-residue grazing trials were conducted either from October to December or from December to March (1987 and 1988) using both nonirrigated and irrigated fields. Initial availability, disappearance, and nutritive value of different corn residue components were estimated. Stocking rates were 1.97, 2.20, 1.36, and 2.58 animals/ha for the two EG and LG nonirrigated fields (NIF), respectively, and 3.96 animals/ha for EG irrigated fields (IF). Samples were collected three times throughout the grazing period. In one of the LG trials, samples were collected 30 d before the grazing season began for measurement of weathering damage. Composite samples were analyzed for CP, ADF, ADIN, and in vitro DM (IVDMD) and OM (IVOMD) disappearance. Ruminal escape protein (EP) content was assessed using a Dacron bag technique. Weathering reduced (P less than .02) the amount of leaf blade available by 42% during a period of 30 d before the LG season in Trial 2. Grain, husks, and leaf blades disappeared to the greatest degree (P less than .05) during either grazing season. More than 90% of the grain disappeared during the first 30 d, regardless of grazing season. Overall IVDMD for NIF grain, husks, leaf blades, stems, and cobs across the EG and LG trials were 98.6, 68.4, 42.0, 41.0, and 48.1%, respectively. Corn residue fractions from IF had a lower (P less than .05) IVDMD than did NIF fractions. Grain from NIF was 20% higher (DM basis) in EP than grain from IF (Trial 2). Grain left in the field was the most important source of CP and EP for calves grazing corn residues. Husks and leaf blades were selected by calves; husks were the roughage fraction with the highest nutritive value.  相似文献   

2.
Diet composition and the relationships between daily gain of calves grazing cornstalks and certain characteristics of the available residue and diets selected by esophageally fistulated cattle were studied in two trials during November and December of 1984 (Trial 1) and of 1986 (Trial 2). Eight adult steers and four esophageally fistulated calves were used in Trials 1 and 2, respectively, to collect extrusa samples from dryland and irrigated fields grazed at several stocking rates. Steers grazing irrigated cornstalks selected a diet with more (P less than .05) starch and less (P less than .05) CP than those grazing dryland fields. As grazing continued, extrusa starch content decreased (P less than .05). In vitro DM disappearance (IVDMD) of both diet and the roughage fraction of the diet decreased (P less than .05) with days of grazing; this decrease was greater (P less than .05) at higher stocking rates. Calves grazing dryland fields gained faster (P less than .05) than calves grazing irrigated fields. With a low level of protein supplementation (213 g CP/d, Trial 1), daily gain was positively correlated with CP of both diet (extrusa) or available leaf plus husk but not with grain available per animal or with extrusa IVDMD, suggesting that protein was first limiting. With a higher level of protein supplementation (458 g CP/d, Trial 2), daily gain was correlated positively with residue available per animal and IVDMD of extrusa at the end of the grazing season. The energy value of feed consumed by cattle grazing cornstalks decreases with time, and complex interactions between protein needs and energy intake may occur.  相似文献   

3.
Three trials were conducted to determine the effects of previous winter gain (Trials 1 and 3) and age of calf (Trials 1 and 2) on response to undegradable intake protein (UIP) supplementation during summer grazing. In Trial 1, 48 spring-born steers (243 kg) were used in a 4 x 2 factorial arrangement. Steers were wintered at four rates of gain: 0.65 (FAST), 0.24 (SLOW), 0.38 (S/F), and 0.38 (F/S) kg/d. The intermediate rates of gain (S/F and F/S) were created by switching steers from slow to fast or fast to slow midway through the wintering period. Following winter treatments, steers were assigned to one of two summer treatments: supplemented (S) or nonsupplemented (NS). In Trial 2, 32 summer-born steers were wintered at an ADG of 0.25 kg/d and allotted to the same summer treatments as Trial 1. The supplement was formulated to supply 200 g/d of UIP. Steers from both trials grazed upland Sandhills range from May to September 1998. In Trial 3, 49 spring-born steers (228 kg) were used in a 2 x 7 factorial arrangement of treatments. Steers were wintered at two rates of gain, 0.71 (FAST) and 0.24 kg/d (SLOW) and then assigned randomly to one of six levels of UIP supplementation or an energy control. Protein supplements were formulated to deliver 75, 112.5, 150, 187.5, 225, or 262.5 g/d of UIP. Sources of UIP for all trials were treated soybean meal and feather meal. In Trial 1, there were no (P > 0.05) winter by summer treatment interactions, and UIP supplementation increased (P = 0.0001) pasture gains over NS steers. In Trial 2, supplementation increased (P = 0.001) pasture ADG of summer-born steers by 0.15 kg/d compared with NS steers. In Trial 3, a winter gain by UIP supplementation interaction was observed (P = 0.09). Gain of FAST steers responded quadratically (P = 0.09) across UIP levels, with the maximum gain occurring at the 150 g/d UIP level. The SLOW steers responded linearly (P = 0.02) to increasing UIP levels; however, the response was negative. Levels of UIP above 150 g/d reduced steers gains; therefore, the data were reanalyzed excluding these levels. These new analyses showed that FAST steers responded linearly (P = 0.08; 0.2 kg/d) to increasing UIP, whereas the SLOW steers had no response to UIP. In Trials 1 and 3, SLOW steers experienced compensatory gain and had higher gains overall. We concluded that previous winter gain affected the response to UIP supplementation with the FAST winter gain group having a greater response.  相似文献   

4.
Grazing trials were conducted for 2 yr using weanling Brahman crossbred beef steers to evaluate graded levels of salinomycin (0, 50, 100 or 150 mg. head-1.d-1) for 161 d and to evaluate salinomycin in a free-choice mineral supplement (99 d). The 40 and 48 steers in trials 1 and 2 had average initial weights of 198 and 285 kg, respectively. In trial 1, steers were group-fed to consume either 0, 50, 100 or 150 mg of salinomycin.head-1.d-1 in .9 kg ground corn while grazing bermudagrass pastures. Both linear (P less than .01) and quadratic (P less than .05) effects were observed for steer performance as salinomycin level increased from 0 to 150 mg.head-1.d-1. Linear increases (P less than .01) in ruminal NH3-N (mg/100 ml) and in the molar proportion of propionate and decreases (P less than .01) in butyrate and acetate/propionate were detected. In trial 2, mineral supplements with and without salinomycin were fed free-choice to steers on bermudagrass pasture. The mean salinomycin intake of 38 mg.head-1.d-1 was lower than anticipated as a result of the instability of salinomycin in the mineral supplement and the slightly lower intake (65 g/d) than anticipated (75 g/d). Performance of steers was not influenced by salinomycin supplementation in trial 2. The ionophore salinomycin at intakes over 50 mg.head-1.d-1 appears to increase the performance of steers grazing bermudagrass pasture.  相似文献   

5.
Fifty-four crossbred steers (275 kg) were assigned randomly to one of three isoenergetic but not isonitrogenous ruminal escape protein (EP) supplements: high ruminal escape protein (HEP), low ruminal escape protein (LEP), or corn. The supplements contained corn, distillers' dried grains with solubles (DDGS), and fish meal. Supplements were fed at approximately 1.5 kg/d; the HEP and LEP supplements provided .25 and .12 kg more EP per day than corn, respectively. These supplements also supplied .20 and .10 kg more CP per day than corn. Fish meal and DDGS provided 66.7 and 33.3% of the supplemental EP, respectively. One-half of the steers in each supplement treatment were implanted once with 36 mg of zeranol. Steers grazed wheat (Triticum aestivum L.)-annual ryegrass (Lolium multiflorum Lam.) pastures for 73 d (March 1 to May 12). Daily gains (kg/d) increased linearly (P less than .07) as EP increased (HEP, 1.61; LEP, 1.54; corn, 1.47); responses were apparent only during the later periods as forage quality declined. Zeranol implants increased (P less than .02) ADG (kg/d) by 9.7% (1.58 vs 1.44). After grazing, all cattle were fed a finishing ration for 76 d. Pre-feedlot EP level produced a negative linear (P less than .04) response on feedlot ADG (kg/d) (HEP, 1.44; LEP, 1.50; corn, 1.59). Zeranol implantation during the grazing phase did not affect (P greater than .2) performance during the feedlot phase or carcass characteristics other than increased ribeye area (P less than .08). Compensatory feedlot performance negated all weight gain advantages elicited by EP supplementation during the grazing period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Seventy-two Holstein steers averaging 182 kg were assigned randomly to one of six treatment groups: 1) nonimplanted controls (C); 2) implanted with 36 mg of zeranol (Z); 3) implanted with 20 mg of estradiol benzoate and 200 mg of progesterone (EP); 4) implanted with 140 mg of trenbolone acetate (TBA); 5) implanted with 140 mg of trenbolone acetate plus 20 mg of estradiol benzoate and 200 mg of progesterone (TBA + EP); and 6) implanted with 140 mg of trenbolone acetate plus 36 mg of zeranol (TBA + Z). Each treatment group consisted of three replications of four animals per pen, which were implanted on d 0, 56, 112, and 168. Masculinity and muscling scores were assigned at 24 h preslaughter. Hide removal difficulty was scored by a plant supervisor. Quality and yield grade data were obtained at 24 h postmortem. Longissimus muscle (LM) steaks were removed and cooked for Warner-Bratzler shear (WBS) determinations and sensory panel (SP) evaluations. Over the entire feeding period (249 d), TBA + EP steers had higher (P less than .05) ADG than TBA + Z, TBA, and C steers. All treatments had higher (P less than .05) ADG than C, with the exception of TBA. The only feed efficiency differences were those following the 168-d implant time, when TBA steers were more (P less than .05) efficient than TBA + Z or C steers. The TBA + EP and TBA + Z steers were more (P less than .05) masculine and their hides were more (P less than .05) difficult to remove than those of EP and C steers. Carcass weights of TBA + EP steers were heavier (P less than .05) than those of TBA or C steers. The TBA + EP steers had larger (P less than .05) LM areas than Z, TBA, and C steers. Also, TBA + EP steers tended (P = .07) to have lower numerical yield grades than EP, Z, or C steers. Even though mean marbling scores and quality grades were similar (P greater than .05) among treatment groups, only 50% of TBA + EP carcasses graded low Choice or higher, compared with 100, 75, 82, 90, and 83% for C, TBA, Z, EP, and TBA + Z carcasses, respectively. The only meat palatability differences were that myofibrillar and overall tenderness scores tended to be lower (P = .07) for steaks from EP and TBA + Z than for steaks from Z and C groups.  相似文献   

7.
Two trials evaluated the effects of a monensin ruminal delivery device (MRDD) on steers grazing winter wheat pasture. In Trial 1, 60 Hereford steers (initial wt 238.5 kg) grazed a 21.9-ha paddock of Vona-variety winter wheat for 112 d. Steers were assigned to either MRDD or control (C) treatments in a randomized complete block design. In Trial 2, eight ruminally cannulated steers (avg wt 234.4 kg) grazed a 2.4-ha paddock of Vona-variety wheat and were assigned randomly to either MRDD or C treatments. Three 11-d collection periods were conducted during early February, early March and early April. Chromic oxide was dosed to determine fecal output, and ruminal samples were collected on d 6 of each period. Nylon bags containing ground wheat forage were incubated ruminally beginning on d 8. In Trial 1, steers with MRDD tended (P less than .11) to gain more weight than C steers (.44 vs .38 kg/d). In Trial 2, wheat forage intake, in situ DM disappearance, ruminal pH, ruminal ammonia concentrations and ruminal proportions of acetate and total VFA concentrations were not affected by treatment. Ruminal proportions of propionate were increased (P less than .05) slightly by MRDD (20.3 and 19.2 mol/100 mol for MRDD and C, respectively). Butyrate proportions in ruminal samples were decreased (P less than .05) by MRDD during March but not in other sampling periods. Ruminal fluid chlorophyll concentration was less (P less than .05) for MRDD-treated vs C steers during early March but was greater (P less than .10) for MRDD-treated steers during early April. The MRDD shows promise as a method of supplying monensin to cattle grazing winter wheat forage.  相似文献   

8.
Research was conducted to determine the effects of level of supplementation with quebracho condensed tannins (CT) on in vitro ruminal fluid gas production, in vivo ruminal fluid protein fractions, bloat dynamics, and ADG of steers grazing winter wheat. Two experiments were conducted to 1) enumerate the effect of ruminal fluid from steers fed quebracho CT (0, 1, and 2% CT/kg of DMI) on in vitro gas and methane production from minced fresh wheat forage; and 2) quantify the influence of CT supplementation on ruminal protein characteristics, biofilm complexes, bloat potential, and ADG of steers grazing wheat pasture. Eighteen ruminally cannulated steers (386 +/- 36 kg of BW) were randomly allocated to 1 of 3 treatments that included a control (water infusion) and 2 CT treatment levels (1 or 2% CT/kg of DMI). Treatments were administered daily (63 d) through the rumen cannula as pre-mixes with warm water (approximately 30 degrees C). Rumen contents were collected 2 h postinfusion (at 1030 to 1130) on d 0, 20, 40, 50, and 60. Bloat was visually scored daily for 5 d each wk. In Exp. 1, supplementation of CT decreased the rate of in vitro gas production in a dose-dependent response. In Exp. 2, ADG increased (P < 0.04) at both levels of CT supplementation. Mean bloat score across stage of growth and replicates decreased linearly with increasing CT supplementation; bloat scores were greater (P < 0.001) for the vegetative than for the reproductive stage of plant growth. Biofilm production and rumen fluid protein fractions varied among CT treatments and stage of growth. Addition of CT reduced the severity of bloat, principally through reducing microbial activities, biofilm production, and ruminal gas production. Quebracho CT is potentially a value-added supplement that can decrease the impacts of frothy bloat and increase BW gains in stocker cattle-wheat systems.  相似文献   

9.
One grazing and two feeding experiments were conducted to compare the feeding value of corn residue or corn grain from a genetically enhanced corn hybrid (corn rootworm-protected; event MON 863) with nontransgenic, commercially available, reference hybrids. In Exp. 1, two 13.7-ha fields, containing corn residues from either a genetically enhanced corn root-worm-protected hybrid (MON 863), or a near-isogenic, nontransgenic control hybrid (CON) were divided into four equal-sized paddocks. Sixty-four steer calves (262 +/- 15 kg) were stratified by BW and assigned randomly to paddock to achieve a stocking rate of 0.43 ha/steer for 60 d, with eight steers per paddock and 32 steers per hybrid. A protein supplement was fed at 0.45 kg/steer daily (DM basis) to ensure protein intake did not limit performance. Steer ADG did not differ (P = 0.30) between steers grazing the MON 863 (0.39 kg/d) and CON (0.34 kg/d) corn residues for 60 d. The four treatments for the feeding experiments (Exp. 2 and 3) included two separate reference hybrids, the near-isogenic control hybrid (CON), and the genetically enhanced hybrid (MON 863) resulting in two preplanned comparisons of CON vs. MON 863, and MON 863 vs. the average of the reference hybrids (REF). In Exp. 2, 200 crossbred yearling steers (365 +/- 19 kg) were fed in 20 pens, with five pens per corn hybrid. In Exp. 3, 196 crossbred yearling steers (457 +/- 33 kg) were fed in 28 pens, with seven pens per corn hybrid. In Exp. 2, DMI and G:F did not differ (P > 0.10) between MON 863 and CON; however, steers fed MON 863 had a greater (P = 0.04) ADG than steers fed CON. Gain efficiency was greater (P = 0.05) for MON 863 cattle than for REF cattle in Exp. 2, but other performance measurements (DMI and ADG) did not differ (P > 0.10) between MON 863 and REF. No differences (P > 0.10) were observed for performance (DMI, ADG, and G:F) between MON 863 and CON or MON 863 and REF in Exp. 3. In terms of carcass characteristics, no differences (P > 0.10) were observed between MON 863 and CON, as well as MON 863 and REF, for marbling score, LM area, or 12th rib fat thickness in both Exp. 2 and 3. Overall, performance was not negatively affected in the corn residue grazing or feedlot experiments, suggesting the corn rootworm-protected hybrid (event MON 863) is similar to conventional, nontransgenic corn grain and residues when utilized by beef cattle.  相似文献   

10.
Eighty-eight yearling beef steers (308 +/- 1.4 kg) were used in two separate trials to determine the protein-sparing value of the N added to wheat straw during the ammoniation process and to determine the effects of supplementing ammoniated straw diets with energy and ruminal escape protein. In Exp. 1, steers were fed untreated straw (US) with either 0, 150, or 500 g of soybean meal (SBM) for 88 d. The addition of SBM to US diets increased (P less than .01) straw intake and average daily gains (ADG), indicating that N was limiting. When ammoniated straw (AS) was substituted for US, the N in the AS was used as efficiently as 500 g of SBM for growth. In Exp. 2, steers had ad libitum access to AS with three levels of supplemental corn (0, 1.23, or 2.45 kg DM.animal-1.d-1) either with or without .41 kg DM of corn gluten meal (CGM) added. Straw intake decreased (P less than .01) as the amount of corn in the diet was increased, but ADG increased (P less than .01) with the addition of corn. Straw consumption was not altered by the addition of CGM, but ADG was increased (P less than .01) by an average .35 kg by CGM. Rumen and blood N components indicated that the N from AS was contributing to the ruminal N pool and that CGM was compensating for microbial protein deficiencies postruminally.  相似文献   

11.
Twenty-eight Angus (289 +/- 3.8 kg) steers were used in a completely randomized design to evaluate the effect of isocaloric supplementation of 2 different energy sources to steers rotationally grazing tall fescue pastures for 197 d in comparison to positive and negative controls. Steers were supplemented with either corn grain (0.52% BW on a DM basis; PC) or soybean hulls plus corn oil (0.45% BW on a DM basis + 0.10% BW on an as-fed basis; PO) using Calan gates for individual intake measurement. Negative, pasture only (PA), and positive, high-concentrate control diets (85% concentrate:15% roughage on DM basis; C) were also included in the study. Steers on PC, PO, and PA treatments were managed together under a rotational grazing system, whereas C steers were fed a high-concentrate diet for the final 113 d using Calan gates. Forage DMI and apparent DM and NDF digestibility for the grazing treatments were evaluated using Cr(2)O(5) and indigestible NDF as digesta markers. Energy supplementation decreased (P = 0.02) forage DMI (% of BW) with respect to PA, but not (P = 0.58) total DMI. There were no differences (P = 0.53) among grazing treatments on apparent total DM digestibility. However, NDF digestibility was less (P < or = 0.05) in PC than in PO and PA; the latter 2 treatments did not differ (P > 0.05). Overall ADG was greater (P < 0.01) in supplemented, regardless of type, than in nonsupplemented grazing treatments. During the final 113 d, ADG was greater (P < 0.01) in C than in the grazing treatments. Overall supplement conversion did not differ (P = 0.73) between supplement types and was less (P = 0.006) than C. Carcass traits did not differ (P > 0.05) between energy sources. Dressing percentage and HCW were greater (P < 0.01) in supplemented cattle than in PA. Fat thickness and KPH percentage for PA were less (P < 0.05) than for PO but did not differ (P > 0.14) from PC. Marbling score, LM area, and quality grade did not differ (P > 0.05) between grazing treatments. Hot carcass weight for C was heavier (P < 0.001) than for pastured cattle. Quality and yield grades of C carcasses were also greater (P < 0.001) than carcasses from pastured steers. Energy supplementation, regardless of source, to grazing steers increased ADG, dressing percentage, and carcass weight compared with PA steers; however, supplemented steers had less ADG, efficiency, dressing percentage, and carcass weight compared with high-concentrate finished steers.  相似文献   

12.
Our objective was to compare the performance of weaned steer calves managed with intensive-early stocking (IES; 12.4 steers per ha for 70 d) or season-long stocking (SLS; 6.2 steers per ha for 140 d) with and without supplementation (2 x 2 factorial). Beginning on May 15, 90 steers (BW = 217 ± 0.8 kg) were randomly assigned to one of 12 common bermudagrass (Cynodon dactylon [L.] Pers.) pastures (0.81 ha each) fertilized with 168 kg of nitrogen/ ha. One of the following four treatments was randomly applied to three pastures: i) SLS plus no supplement, ii) SLS plus 0.45 kg/steer of ground corn daily, iii) IES plus no supplement, and iv) IES plus 0.45 kg/steer of ground corn daily. Steers on IES were lighter (P=0.01) than SLS steers on d 70. By d 140, SLS steers supplemented with corn were 33 kg heavier (P=0.02) than nonsupplemented steers. When using SLS, corn increased the BW gain 0.5 kg/kg of corn fed; however, when IES was used, there was no benefit from corn supplementation. Total BW gain/ha did not differ (P>0.17) among treatments, but SLS with corn supplementation could have the potential to produce more BW gain/ ha compared to the other treatments. Grazing systems did not affect feedlot ADG (P>0.53), but IES (175 d on feed) steers did have a higher (P<0.01) feedlot total BW gain than the SLS steers (154 d on feed). Using IES positively affected (P<0.08) dressing percentage and longissimus area compared to SLS; however, these differences in carcass characteristics were probably the result of the longer feeding period.  相似文献   

13.
A 4-yr study was conducted to determine the effects of two grazing methods (GM) at two stocking rates (SR) on alfalfa pasture plant productivity and animal performance and to ascertain the effect of grazing systems on subsequent performance of steers fed a high-concentrate diet. Eight pasture plots (.76 ha) were seeded in 1988 with alfalfa (Medicago sativa L. var. WL225) and divided into two blocks of four pastures each. Grazing methods consisted of a traditional four-paddock or an intensive 13-paddock system. Pastures were managed to allow a 36-d rest period with an average grazing season of 110 d. The low and high SR were 5.9 vs 11.7, 5.3 vs 10.5, 5.3 vs 7.9, and 5.3 vs 7.9 steers/ha for years 1989 to 1992, respectively. Following the grazing season, steers were placed in a feedlot and fed a high-concentrate diet (81% high-moisture corn, 14% corn silage, 5% protein-mineral supplement) for an average of 211 d. There was no effect of GM on herbage mass, pasture phase ADG, or live weight gain/hectare. Increasing the number of paddocks was beneficial when herbage mass was limited and stocking rate was above 7.9 steers/ha. Increasing SR above 7.9 steers/ha decreased herbage mass and pasture-phase ADG. As forage allowance increased, pasture-phase ADG increased quadratically (R2 = .82, P < .001), reached a plateau, and then decreased. Previous grazing system did not influence the performance of steers in the feedlot or their carcass characteristics. Optimum SR is dependent on herbage mass produced.  相似文献   

14.
The objective of two experiments was to correlate plasma levels of urea N (PUN) and the percentage of urine N in the form of urea (UUN) to weight gain in response to different dietary protein regimens for growing Angus steers. In Exp. 1, 60 steers (302 kg BW) were assigned to various levels of dietary N (control plus supplemental N to provide from 100 to 400 g more crude protein daily) within two sources of supplemental N (soybean meal [SBM] or a mixture of two parts corn gluten meal:one part blood meal [CGM:BM]). In Exp. 2, 27 steers (229 kg BW) were fed two levels of SBM, and half of the steers received growth-promoting implants. Steers were housed in groups of 12 and fed individually for 84 d in both experiments. Corn silage was fed at a restricted rate to minimize orts. Jugular blood and urine samples were collected during the experiments. In Exp. 1, maximal ADG of steers fed SBM (1.0 kg) was reached with 671 g/d total crude protein, or 531 g/d metabolizable protein. Maximal ADG of steers fed CGM:BM (0.91 kg) was reached with 589 g/d total crude protein, or 539 g/d metabolizable protein. The DMI was higher (P < 0.07) for steers fed SBM (6.37 kg/d) than for steers fed CGM:BM (6.14 kg/d). Increasing ruminal escape protein from 36% (SBM) to 65% (CGM:BM) of CP decreased (P < 0.05) endogenous production of urea, as evidenced by lower concentrations of urea in blood and lower UUN. In Exp. 2, increasing supplemental protein from 100 to 200 g/d increased (P < 0.05) ADG and PUN. Implants lowered (P < 0.05) UUN, particularly at the higher level of supplemental protein. Protein supplementation of growing steers can be managed to maintain acceptable ADG yet decrease excretion of urea in the urine.  相似文献   

15.
Objectives of this research were to compare animal performance with or without supplementation, compare effectiveness of three intake limiters, and to examine seasonal changes in nutritive value of native range in south-central North Dakota. Treatments included 1) control (CONT; no supplement); 2) hand-fed (HF) supplement, with no chemical limiter; 3) 16% salt (NACL); 4) 5.25% ammonium chloride and ammonium sulfate (AS); and 5) 7% calcium hydroxide (CAOH). Supplements were based on wheat middlings, barley malt sprouts, and soybean hulls and were formulated to provide 40% of the CP intake and 32% of the NEm intake of 350-kg steers. Trials 1 and 2 each used 70 yearling steers (370.8 +/- 0.04 and 327.9 +/- 0.76 kg initial BW for Trials 1 and 2, respectively). In each year, four 28-d periods from the latter half of June through mid-October were used. Steers were stratified by weight and allotted randomly to treatments in 1 of 10 16-ha pastures (two pastures per treatment for each trial). In Trial 1, diet sampling began in the first 28-d period, but supplementation did not begin until the second 28-d period. In Trial 2, supplementation and diet collection began in the first 28-d period. Cation-anion differences (DCAD; Na + K - Cl - S) for NACL, AS, CAOH, and HF supplements were 151, -735, 160, and 166 mEq/ kg, respectively. In Trial 1, no treatment, period, or treatment x period effects for supplement intake were detected (P > or = 0.29). In Trial 2, a treatment x period interaction for supplement intake occurred (P = 0.005) because HF steers were offered a constant amount of supplement daily, whereas steers fed AS, CAOH, and NACL were allowed to consume ad libitum quantities of supplement. Average daily gain in Trial 1 was not affected (P = 0.21) by supplementation. In Trial 2, NACL, AS, and HF treatments had higher (P < or = 0.07) ADG than CONT. In Trial 1, final weights were not affected by supplementation (P = 0.23). In Trial 2, final weights of NACL- and HF-fed steers were greater than for CONT and CAOH steers (P < 0.10). In Trial 2, CONT steer final weights were lower than all supplemented treatments (P < 0.10). For yearling steers grazing native range, use of NACL as a limiter resulted in increased weight gains compared with using either CAOH or AS; however, no limiter that was tested restricted supplement intake as effectively as HF. More research is necessary to determine the optimum limiter level and the effect of forage quality on supplement intake.  相似文献   

16.
Five trials in five locations in the United States involving 512 steers were conducted to evaluate the effect of monensin [200 mg/d in .9 kg of supplement (Ru mensin )] and estradiol-controlled release implants ( Compudose ) administered alone and in combination on average daily gain (ADG) in steers on pasture. The effect of energy supplementation on rate of gain was also evaluated in these same trials. The initial weight of steers averaged 250 kg and the average duration of the five trials was 124 d. Estradiol-controlled release implants increased ADG by 15.6% (.095 kg/d; P less than .0001) and monensin increased ADG by 8.1% (.054 kg/d; P less than .05). The combination of estradiol-controlled release implant and monensin increased ADG by 27.4% (.168 kg/d). Treatment responses were additive relative to ADG response, with no interaction observed between the treatments. Nine-tenths kilograms of an energy supplement/d increased ADG by 12.4% (.073 kg/d; P less than .01).  相似文献   

17.
Our objective was to compare the performance of weaned steer calves managed with intensive-early stocking (IES; 12.4 steers per ha for 70 d) or season-long stocking (SLS; 6.2 steers per ha for 140 d) with and without supplementation (2 × 2 factorial). Beginning on May 15, 90 steers (BW = 217 ± 0.8 kg) were randomly assigned to one of 12 common bermudagrass (Cynodon dactylon [L.] Pers.) pastures (0.81 ha each) fertilized with 168 kg of nitrogen/ha. One of the following four treatments was randomly applied to three pastures: i) SLS plus no supplement, ii) SLS plus 0.45 kg/steer of ground corn daily, iii) IES plus no supplement, and iv) IES plus 0.45 kg/steer of ground corn daily. Steers on IES were lighter (P=0.01) than SLS steers on d 70. By d 140, SLS steers supplemented with corn were 33 kg heavier (P=0.02) than nonsupplemented steers. When using SLS, corn increased the BW gain 0.5 kg/kg of corn fed; however, when IES was used, there was no benefit from corn supplementation. Total BW gain/ha did not differ (P>0.17) among treatments, but SLS with corn supplementation could have the potential to produce more BW gain/ha compared to the other treatments. Grazing systems did not affect feedlot ADG (P>0.53), but IES (175 d on feed) steers did have a higher (P<0.01) feedlot total BW gain than the SLS steers (154 d on feed). Using IES positively affected (P<0.08) dressing percentage and longissimus area compared to SLS; however, these differences in carcass characteristics were probably the result of the longer feeding period.  相似文献   

18.
Two trials were conducted to determine the NE value of ensiled wet corn gluten feed (WCGF) in corn silage finishing diets for beef cattle. In Trial 1, 96 Angus-crossbred yearling steers were fed corn silage-based diets containing 0, 20, 40, or 60% ensiled WCGF. Increased dietary WCGF resulted in improved DMI (linear, P less than .05), ADG (linear; P less than .05), and feed/gain (linear, P less than .05). Levels of WCGF had no (P greater than .05) effect on fat thickness, marbling, quality grade, carcass protein, and carcass fat. In Trial 2, four Angus-crossbred yearling steers were used in a 4 x 4 Latin square design to determine the effect of feeding 0, 20, 40, or 60% WCGF on DE and ME values. Level of WCGF had no (P greater than .05) effect on dietary DE and ME values. Regression equations were developed for predicting NEm (Y = 1.51 + .0009X; R2 = .22) and NEg (Y = 1.04 + .0028X; R2 = .35) in which Y = predicted diet NE values in megacalories/kilogram and X = percentage of dietary WCGF. The NEg value increased .06 Mcal/kg for each 20% increase in WCGF. Predicted NEm and NEg values for WCGF are 1.60 and 1.32 Mcal/kg, respectively.  相似文献   

19.
A metabolism study and two feedlot trials were conducted to evaluate urea supplementation of peanut skin (PS) diets and ammoniation of PS as methods of reducing detrimental effects of tannins in PS on nutrient digestibility and performance of beef cattle. Tannin content of PS was reduced by 42% after ammoniation. Digestibility coefficients for dry matter, crude protein, nitrogen free extract, energy and total digestible nutrients were higher (P less than .05) for the control diet without PS compared with urea-supplemented PS (UPS) and ammoniated PS (APS) diets. Ether extract digestibility was higher (P less than .05) for UPS and APS diets compared with the control diet. Fecal N was higher (P less than .05) and N retention was lower (P less than .05) in steers fed UPS and APS diets compared with controls, which suggested that in UPS and APS diets dietary protein was being complexed with tannins and excreted. Steers fed the APS diet had lower (P less than .05) plasma urea nitrogen compared with control and UPS diets at 2, 4 and 6 h post-feeding. Eighteen heifers were fed control, UPS and APS diets individually for 84 d, resulting in similar (P less than .05) feedlot performance and carcass traits for heifers on all dietary treatments. Rumen fluid propionic acid levels were similar for control and APS heifers and somewhat lower (P greater than .05) for UPS heifers at 3 and 6 h post-feeding on d 62 of the trial. The experimental diets were fed to 54 steers (360 kg initial wt) ad libitum. After 98 d on dietary treatments average daily gains (ADG), final weights, carcass weights and carcass quality grades were not different (P greater than .05) for control and APS steers. Live weight and ADG were lower (P less than .05) for UPS steers on d 98 compared with control and APS steers, and UPS steers continued in the feedlot through d 147. After 98 d on control or APS diets 72.2% of the beef carcasses produced on each diet graded USDA Choice, and 100% of the carcasses of steers fed UPS graded USDA Choice after 147 d. A urea-supplemented PS diet or a diet containing ammoniated PS was ineffective in improving digestibility and N retention of PS diets when limit-fed to steers. However, ad libitum feeding of an ammoniated PS diet was effective in overcoming detrimental effects of tannins on feedlot performance of heifers and steers.  相似文献   

20.
Two trials were conducted to evaluate the influence of malic acid supplementation on ruminal fermentation. In Trial 1, six Holstein steers (300 kg) with ruminal cannulas were used in a crossover design experiment to study the influence of malic acid (MA) on ruminal metabolism during glucose-induced lactic acidosis. Treatments consisted of a 77% steam-flaked barley-based finishing diet supplemented to provide 0 or 80 g/d of MA. After a 13-d dietary adjustment period, 1 kg of glucose was infused into the rumen 1 h after the morning feeding. Ruminal pH was closely associated (R2 = .70) with ruminal DL-lactate concentration. Malic acid supplementation increased (P < .01) ruminal pH 3 h after the glucose infusion. However, there were no treatment effects (P > .10) on ruminal VFA molar proportions or ruminal and plasma DL-lactate concentrations. In Trial 2, four Holstein steers (150 kg) with cannulas in the rumen and proximal duodenum were used in a crossover design experiment to evaluate the influence of MA supplementation on characteristics of digestion. Treatments consisted of an 81% steam-flaked barley-based finishing diet supplemented to provide 0 or 80 g/d of MA. There were no treatment effects (P > .10) on ruminal and total tract digestion of OM, ADF, starch, and feed N or on ruminal microbial efficiency. Malic acid supplementation increased (P < .05) ruminal pH 2 h after feeding. As with Trial 1, there were no treatment effects (P > .10) on ruminal VFA and DL-lactate concentrations. We conclude that supplementation of high-grain finishing diets with MA may be beneficial in promoting a higher ruminal pH during periods of peak acid production without detrimental effects on ruminal microbial efficiency or starch, fiber, and protein digestion. There were no detectable beneficial effects of MA supplementation on ruminal and plasma lactic acid concentrations in cattle fed high-grain diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号