首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of two varieties of grapefruit juice (white and ruby red) and its selected components (naringin, naringenin, and bergamottin) was investigated on the activity of the P-glycoprotein (P-gp) in male Sprague-Dawley rats. Talinolol, a nonmetabolized P-gp substrate, was used as a marker compound. The white grapefruit juice (GFJ) had a minor effect on talinolol pharmacokinetics, but the ruby red GFJ reduced the C max and the AUC (0-infinity) by 60% and 50% of the control, respectively. However, among the GFJ constituents tested, bergamottin (0.22 mg/kg) was the most potent component augmenting the C max and the AUC (0-infinity) of talinolol by 2.4- and 1.8-fold, respectively, if compared to the control group. The flavonoids naringenin (0.7 mg/kg) and naringin (2.4 and 9.4 mg/kg) had a similar effect increasing the talinolol C max and AUC (0-infinity) by 1.5- to 1.8-fold, respectively. In conclusion, the effect of GFJ on P-gp activity seems to depend on the variety, the concentration of compounds in the juice, and the composition of different ingredients.  相似文献   

2.
Toxicokinetic behavior and metabolism studies of metamitron and its effect on the cytochrome P(450) content of liver microsomal pellet were carried out in black Bengal goats after a single oral administration at 278 mg kg(-1) and consecutive oral administration of 30 mg kg(-1) for 7 days. Metamitron was detected in the blood sample at 0.08 h (12.0 +/- 0.87 microg mL(-1)), maximum at 4 h (84.3 +/- 8.60 microg mL(-1)) and minimum (14.6 +/- 1.67 microg mL(-1)) at 36 h blood sample after a single oral administration. The absorption rate constant was 0.69 +/- 0.09 h(-1). The Vd(area) (2.00 +/- 0.08 L kg(-1)) and t(1/2)beta (8.98 +/- 0.70 h) values suggested wide distribution and long persistence of the compound in the body. The values of T approximately B (0.80 +/- 0.04), F(c) (0.55 +/- 0.01), Cl(B) (0.15 +/- 0.00 L kg(-1) h(-1)), and K(21) (0.41 +/- 0.03 h(-1)) suggested that metamitron retained in the blood compared to that in the tissue. Maximum concentration of metamitron residue was found in the adrenal gland followed by bile on day 4 of single oral administration. The higher Cl(R) compared to Cl(H) value indicated the excretion of the major portion (34-40%) through urine compared to feces (20-26%). Maximum concentrations of metamitron and its metabolite, deaminometamitron, were excreted through urine and feces at 48 and 24 h samples, respectively. The recovery of metamitron including its metabolite in terms of parent compound varied from 69.3 to 80.1%, of which contribution of metabolite in terms of parent compound varied from 53.1 to 63.0%. Repeated oral administration of metamitron at 30 mg kg(-1) for 7 days caused induction of the cytochrome P(450) content of liver microsomal pellet of goat, suggesting oxidative deamination of metamitron.  相似文献   

3.
Genistein (4',5,7-trihydroxyisoflavone), a naturally occurring phenolic compound, possesses well-known preventive activity in breast and prostate cancer, cardiovascular diseases, and postmenopausal problems. The aim of this study is to investigate the distribution and dose-dependent absorption, metabolism, and excretion of genistein in rats. Genistein was orally administered to rats at different doses. At various time intervals, blood, bile, and urine samples were collected and incubated with glucuronidase to hydrolyze the glucuronidated genistein. Genistein was detected by HPLC. High levels of glucuronidated genistein were detected in the plasma, bile, and urine after genistein administration. When genistein was administered to rats at 6.25, 12.5, and 50 mg x kg (-1) doses, the AUC (0- t) values for genistein were 23.5, 80.9, and 177.9 mg x min x L (-1); the oral absolute bioavailabilities were 21.9, 33.5, and 19.0%; the AUC (0- t) values of glucuronidated genistein were 173.8, 470.7, and 1721.2 mg x min x L (-1), respectively. The cumulative biliary excretion of genistein respective to each dose was 42.6 +/- 6.5, 75.2 +/- 18.9, and 126.6 +/- 34.8 microg; the cumulative biliary excretion of glucuronidated genistein was 108.5 +/- 35.2, 423.5 +/- 158.3, and 853.7 +/- 320.8 microg for each dose, respectively. The cumulative urinary excretion of genistein was 34.8 +/- 10.8, 187.3 +/- 67.0 and 213.6 +/- 30.6 microg for each dose, respectively; the cumulative levels of glucuronidated genistein excreted in the urine were 217.8 +/- 52.1, 583.1 +/- 106.9, and 1108.4 +/- 88.1 microg, respectively. These results indicated that at high doses absorption, biotransformation, and excretion of genistein occurred in a nonlinear dose-dependent manner. Therefore, the results of these pharmacokinetic studies raise important questions about the therapeutic significance of consuming large quantities of genistein, genistein analogues, or soy-based neutraceuticals.  相似文献   

4.
Toxicokinetic behavior, recovery, and metabolism studies of ACTP ester and its effect on cytochrome P(450) content of liver microsomal pellet were carried out in black Bengal goat after a single intravenous administration of 11.88 mg kg(-1) and consecutive oral administration of 79.22 mg kg(-1) for 7 days. ACTP ester achieved a maximum blood concentration of 42.64 +/- 4.26 microg mL(-1) at 0.08 h after intravenous administration followed by a sharp decline until 0.5 h, and the minimum blood concentration was recorded at 36 h (1.93 +/- 0.14 microg mL(-1)) postdosing. The kinetic behavior of ACTP ester followed a "two-compartment open model". Comparatively shorter alpha (0.81 +/- 0.02 h(-1)) and greater t1/2 (alpha) (0.86 +/- 0.03 h) indicated a slower rate of distribution of ACTP ester in goat. The t1/2(beta)()) (14.83 +/- 1.49 h) and V(d(area)) (0.91 +/- 0.19 L kg(-1)) suggested a longer elimination phase with general distribution in all compartments of the body. The higher T/B and K12/K21 values associated with a lower f(c) value suggested longer persistence in the tissue compartment at higher concentration. The higher Cl(R) compared to Cl(H) indicated the major amount was eliminated by the kidney. Maximum concentration of ACTP ester including its metabolites, triclopyr acid and trichloropyridinol, was excreted through urine at 48 h. The recovery of ACTP ester including metabolites after repeated nontoxic oral dose administration was 70.09%, of which recovery from feces was 4.45%, suggesting the major portion of administered ACTP ester was absorbed through the gastrointestinal tract of the goat. All of the tissues contained ACTP ester and its metabolites. ACTP ester did not alter the cytochrome P(450) content of the liver tissue following repeated nontoxic oral dose administration for 7 days.  相似文献   

5.
Cycloalliin, an organosulfur compound found in garlic and onion, has been reported to exert several biological activities and also to remain stable during storage and processing. In this study, we investigated the pharmacokinetics of cycloalliin in rats after intravenous or oral administration. Cycloalliin and its metabolite, (3R,5S)-5-methyl-1,4-thiazane-3-carboxylic acid, in plasma, urine, feces, and organs was determined by a validated liquid chromatography-mass spectrometry method. When administered intravenously at 50 mg/kg, cycloalliin was rapidly eliminated from blood and excreted into urine, and its total recovery in urine was 97.8% +/- 1.3% in 48 h. After oral administration, cycloalliin appeared rapidly in plasma, with a tmax of 0.47 +/- 0.03 h at 25 mg/kg and 0.67 +/- 0.14 h at 50 mg/kg. Orally administered cycloalliin was distributed in heart, lung, liver, spleen, and especially kidney. The Cmax and AUC0-inf values of cycloalliin at 50 mg/kg were approximately 5 times those at 25 mg/kg. When administered orally at 50 mg/kg, cycloalliin was excreted into urine (17.6% +/- 4.2%) but not feces. However, the total fecal excretion of (3R,5S)-5-methyl-1,4-thiazane-3-carboxylic acid was 67.3% +/- 5.9% (value corrected for cycloalliin equivalents). In addition, no (3R,5S)-5-methyl-1,4-thiazane-3-carboxylic acid was detected in plasma (<0.1 microg/mL), and negligible amounts (1.0% +/- 0.3%) were excreted into urine. In in vitro experiments, cycloalliin was reduced to (3R,5S)-5-methyl-1,4-thiazane-3-carboxylic acid during anaerobic incubation with cecal contents of rats. These data indicated that the low bioavailability (3.73% and 9.65% at 25 and 50 mg/kg, respectively) of cycloalliin was due mainly to reduction to (3R,5S)-5-methyl-1,4-thiazane-3-carboxylic acid by the intestinal flora and also poor absorption in the upper gastrointestinal tract. These findings are helpful for understanding the biological effects of cycloalliin.  相似文献   

6.
The distribution of ivermectin in buffalo plasma and milk after administration of a single subcutaneous dose (0.2 mg kg(-)(1) b.w.) was studied. Ivermectin reached the maximal concentration in plasma (28.5 +/- 1.7 ng mL(-)(1)) and milk (23.6 +/- 2.6 ng mL(-)(1)) after 2.4 +/- 0.32 and 2.8 +/- 0.44 days, respectively. The drug showed a parallel disposition in milk and plasma, with a ratio of 1.12 +/- 0.16. Ivermectin concentrations were detected in mozzarella cheese obtained from milk collected on days 1, 3, 4, and 20 following administration. The highest values (81.4 +/- 3.26 ng g(-)(1)) were found in the cheese produced on day 3 and were 4-fold higher than those present in the milk.  相似文献   

7.
A liquid chromatography technique coupled with tandem mass spectrometry (LC-MS/MS) electrospray ionization was used to measure (-)-epigallocatechin-3-gallate (EGCG) in rat plasma. This method was applied to investigate the pharmacokinetics of EGCG in a conscious and freely moving rat by an automated blood sampling device. Multiple reaction monitoring (MRM) was used to monitor the transition of the deprotonated molecule m/z of 457 [M - H]- to the product ion 169 for EGCG and the m/z of 187 to 164 for the internal standard. The limit of quantification (LOQ) of EGCG in rat plasma was determined to be 5 ng/mL, and the linear range was 5-5000 ng/mL. The protein binding of EGCG in rat plasma was 92.4 +/- 2.5%. The brain distribution result indicated that EGCG may potentially penetrate through the blood-brain barrier at a lower rate. The disposition of EGCG in the rat blood was fitted well by the two-compartmental model after intravenous administration (10 mg/kg, iv). The elimination half-life of EGCG was 62 +/- 11 and 48 +/- 13 min for intravenous (10 mg/kg) and oral (100 mg/kg) administration, respectively. The pharmacokinetic data indicate that the oral bioavailability of EGCG in a conscious and freely moving rat was about 4.95%.  相似文献   

8.
Naringin/neohesperidin ratios can be used to differentiate orange juice which may contain added grapefruit juice from orange juice which may include juices from other naringin-containing cultivars. The naringin/neohesperidin ratios in juice vary from 14 to 83 in grapefruit (C. grandis) and from 1.3 to 2.5 in sour orange (C. aurantium) cultivars; the ratio is always less than 1 for the K-Early tangelo. Concentrations of both naringin and neohesperidin can be determined in orange juice by using a single liquid chromatographic isocratic reverse-phase system with a C-18 column. The detection limit for both compounds is 1 ppm with a linear working range to 500 ppm. Concentration relative standard deviations range from 0.47 to 1.06% for naringin and from 0.4 to 1.27% for neohesperidin. Naringin and neohesperidin recoveries ranged from 93 to 102% at concentrations of 5 and 50 ppm. Naringin values from blind duplicate samples of orange/grapefruit juice blends could be duplicated to +/- 3%.  相似文献   

9.
The anti-inflammatory properties of 3',4',3,5,6,7,8-heptamethoxyflavone (HMF), a citrus polymethoxylated flavone, were studied in the bacterial lipopolysaccharide (LPS)-challenge/tumor necrosis factor-alpha (TNFalpha) response in mice and in the carrageenan/paw edema assay in rats. In each of these trials, HMF administered by intraperitoneal (ip) injection exhibited anti-inflammatory activity, whereas HMF administered orally (po) produced no effects. The inhibition observed in the LPS-challenge/TNFalpha assay correlated with the HMF levels in the blood sera of mice dosed (ip) with either 33 or 100 mg/kg body weight. Low levels of HMF (0.035 +/- 0.024 ppm) were detected in the blood sera of mice dosed orally [100 mg of HMF (suspended in vegetable oil)/kg], whereas ip injection led to higher levels (0.517 +/- 0.051 ppm). This may account for the different levels of anti-inflammatory effects observed in mice following ip vs oral HMF administration. HMF metabolites, including a number of mono- and di-demethylated HMF metabolites and their glucuronic acid conjugates, were also detected, but results of these studies suggest that the glucuronidated metabolites of HMF are inactive in these inflammation models.  相似文献   

10.
Toxicokinetic behavior, recovery and metabolism of napropamide (a pre-emergent herbicide) and its effect on Cytochrome P(450) of liver microsomal pellet were studied following a single high-dose oral administration of 2.5 g kg(-1) and continuous (7 days) oral administration of 500 mg kg(-1) in black Bengal goat. Napropamide was detected in blood at 15 min and the maximum quantity was recovered at 3 h after administration. The absorption rate constant (Ka) value was low indicating poor absorption from the gastrointestinal tract. High elimination half-life (t(1/2) beta) and low body clearance (Cl(B)) values coupled with higher transfer of compound from tissue to central compartment (K(21)) suggest that napropamide persisted in the blood for a long time, i.e., after 72 h of oral administration. The recovery percentage of napropamide, including metabolites, from goats varied from 75.94 to 80.08 and excretion of the parent compound through feces varied from 18.86 to 21.59%, indicating that a major portion of the orally administered napropamide was absorbed from the gastrointestinal tract of goat. Napropamide significantly increased the Cytochrome P(450) content of liver microsomal pellet. The recovery of metabolites from feces, urine, and tissues ranged from 4.2--6.2, 40.81--49.42, and 2.7--11.6%, respectively, during a 4--7 day period. The material balance of napropamide (including metabolites) following a single high-dose oral administration at 2.5 g kg(-1) during 4--7 days after dosing was found to be in the range of 75--80%.  相似文献   

11.
Perchlorate accumulation in forage and edible vegetation   总被引:8,自引:0,他引:8  
The accumulation of perchlorate in vegetation is becoming a concern, with increasing numbers of sites reporting the presence of perchlorate in groundwater and surface water. This study investigated potential perchlorate uptake and distribution by a variety of forage and edible crops in both the laboratory and the field. Perchlorate concentrations in soybean leaves grown in the greenhouse were significantly higher than perchlorate concentrations in soybean seeds and pods. Perchlorate concentrations in alfalfa grown in sand were significantly lower than those in alfalfa grown in soil. The concentration of perchlorate in tomato was lower in the fruit than the leaves. Commercially grown wheat and alfalfa samples all contained perchlorate, 0.72-8.6 mg/kg of fresh weight (FW) in the wheat stems, 0.71-4.4 mg/kg of FW in the wheat heads, and 2.9 mg/kg of FW in alfalfa. All field garden samples tested (including cucumber, cantaloupe, and tomato) that were irrigated with perchlorate-tainted water contained perchlorate at various concentrations ranging from 0.040 to 1.65 mg/kg of FW. Bioconcentration factors (BCF), ratios of plant fresh weight concentrations to estimated or measured groundwater concentrations [(microg/kg of FW)/microg/L], were all in the same order of magnitude ranging from 215 +/- 126 for wheat stems to 233 +/- 264 for wheat heads and to 380 +/- 89 for alfalfa. BCF for garden fruit samples were much lower (0.5-20). Results from this study highlight the potential for perchlorate exposure by routes other than drinking water.  相似文献   

12.
Disposition kinetic behavior and metabolism studies of metamitron and its metabolite in terms of the parent compound were carried out in black Bengal goats after a single oral administration of a nontoxic oral dose at 30 mg kg(-1) of body weight. Metamitron was detected in the blood sample at 5 min (2.23 +/- 0.04 microg mL(-1)), maximum at 1 h (3.43 +/- 0.02 microg mL(-1)) and minimum at 12 h (0.41 +/- 0.01 microg mL(-1)), after a single oral administration. Metabolite [3-methyl-6-phenyl-1,2,4-triazin-5(4H)-one] in terms of the parent compound was detected in the blood sample at 5 min (0.47 +/- 0.006 microg mL(-1)), maximum at 6 h (5.12 +/- 0.02 microg mL(-1)) and minimum at 96 h (1.06 +/- 0.016 microg mL(-1)), after a single oral administration. The t(1/2 K) and Cl(B) values of metamitron were 3.63 +/- 0.05 h and 1.36 +/- 0.016 L kg(-1) h(-1), respectively, whereas the t(1/2K)(m) and Cl(B)(m) values of the metabolite were 38.15 +/- 0.37 h and 0.091 +/- 0.001 L kg(-1) h(-1), respectively, which suggested long persistence of the metabolite in blood and tissues of goat. Metamitron was excreted through feces and urine for up to 48 and 72 h, whereas the metabolite was excreted for up to 168 and 144 h, respectively. Metabolite alone contributed to 96 and 67% of combined recovery percentage of metamitron and metabolite against the administered dose in feces and urine of goat, respectively. All of the goat tissues except lung, adrenal gland, ovary, testis, and mammary gland retained the metabolite residue for up to 6 days after administration.  相似文献   

13.
Sesamol, generally regarded as the main antioxidative component in sesame oil, can be generated from sesamolin by roasting sesame seed or bleaching sesame oil. This paper reports the bioavailability of sesamol in Sprague-Dawley (SD) rats. Biological fluid was sampled following a dose of sesamol of 50 mg/kg by gastric gavage (p.o.) or by intravenous injection. The pharmacokinetic data of sesamol were calculated by noncompartmental model. The tissue distribution of sesamol (p.o., 100 mg/kg) in SD rats was also investigated. The concentration changes of sesamol were determined in various tissues and plasma within a 24 h period after oral administration of sesamol. The results showed that the oral bioavailability of sesamol was 35.5 +/- 8.5%. Sesamol was found to be able to penetrate the blood-brain barrier and go through hepatobiliary excretion. Sesamol conjugated metabolites were widely distributed in SD rat tissues, with the highest concentrations in the liver and kidneys and the lowest in the brain. It is postulated that sesamol is incorporated into the liver first and then transported to the other tissues (lung, kidneys, and brain). The major metabolites of sesamol distributed in the lung and kidney were glucuronide and sulfate.  相似文献   

14.
Citrus bergamia Risso et Poiteau fruits have been traditionally utilized, in Calabria (Italy), as a popular remedy for their hypolipidemic properties. C. bergamia juice total phenol content (2474.35+/-38 microg/mL) was evaluated by the Folin-Ciocalteu method; moreover, HPLC analysis led to the identification of naringin (520 ppm), neoeriocitrin (370 ppm), and neohesperidin (310 ppm). The present study was designed to investigate the hypolipidemic effects of C. bergamia juice and its protective effect on liver of hyperlipidemic rats. Chronic administration of C. bergamia (1 mL/rat/day) provoked a significant reduction in serum cholesterol, triglycerides, and low-density lipoprotein (LDL) levels and an increase in high-density lipoprotein (HDL) levels; moreover, histopathological observations showed, in rats submitted to C. bergamia treatment, a protection of hepatic parenchyma. In addition, fecal neutral sterols and fecal bile acid excretion was found to be increased after C. bergamia treatment. These results suggest that the hypocholesterolemic effect of C. bergamia may be mediated by the increase in fecal neutral sterols and total bile acids excretion. In addition to the hypolipidemic effect, the juice shows radical scavenging activity in the diphenylpicrylhydrazyl (DPPH) test; probably the two effects are related. These observations suggest that the positive intake of C. bergamia may reduce the risk of some cardiovascular diseases through its radical scavenging function and hypocholesterolemic action.  相似文献   

15.
Grapefruit juice (GFJ) has been found to interact with several medications, increasing their oral bioavailability and the risk of toxicity. Inhibition of CYP3A4 in the small intestine by flavonoids (such as naringin and naringenin) and furanocoumarins (including bergamottin and 6',7'-dihydroxybergamottin) present in GFJ seems to be the predominant mechanism, although P-glycoprotein and influx transporters in the small intestine are also involved. The quantity of interactive compounds ingested may affect the magnitude and mechanism of the food-drug interaction. Therefore, these four compounds were quantified by HPLC analysis in commercially available and fresh-squeezed GFJ and in grapefruit tissues. Considerable variability in naringin (174-1492 micromol/L), bergamottin (1.0-36.6 micromol/L), and 6',7'-dihydroxybergamottin (0.22-52.5 micromol/L) was observed, whereas naringenin could not be detected. White grapefruit showed higher concentrations of naringin and furanocoumarins located in the albedo and flavedo compared with red varieties. Findings from this study suggest considering concentrations of components with a potential for drug interactions in GFJ-drug interaction studies. The concentration of potentially contributing compounds may crucially influence the magnitude of observed interaction and impair direct comparison of studies in which different juices have been used.  相似文献   

16.
Tomato sauces were produced from unique tomato varieties to study carotenoid absorption in humans. Tangerine tomatoes, high in cis-lycopene, especially prolycopene (7Z,9Z,7'Z,9'Z), and high-beta-carotene tomatoes as an alternative dietary source of beta-carotene were grown and processed. Sauces were served after 2 week washout periods and overnight fasting for breakfast to healthy subjects (n = 12, 6M/6F) in a randomized crossover design. The serving size was 150 g (containing 15 g of corn oil), tangerine sauce containing 13 mg of lycopene (97.0% as cis-isomers) and high-beta-carotene sauce containing 17 mg of total beta-carotene (1.6% as the 9-cis-isomer) and 4 mg of lycopene. Blood samples were collected 0, 2, 3, 4, 5, 6, 8, and 9.5 h following test meal consumption and carotenoids determined in the plasma triacylglycerol-rich lipoprotein fraction by HPLC-electrochemical detection. Baseline-corrected areas under the concentration vs time curves (AUC) were used as a measure of absorption. AUC0-9.5h values for total lycopene in the tangerine sauce group were 870 +/- 187 (nmol.h)/L (mean +/- SEM) with >99% as cis-isomers (59% as the tetra-cis-isomer). The AUC0-9.5h values for total beta-carotene and lycopene after consumption of the high-beta-carotene sauce were 304 +/- 54 (4% as 9-cis-carotene) and 118 +/- 24 (nmol.h)/L, respectively. Lycopene dose-adjusted triacylglycerol-rich lipoprotein AUC responses in the tangerine sauce group were relatively high when compared to those in the literature and the high-beta-carotene group. The results support the hypothesis that lycopene cis-isomers are highly bioavailable and suggest that special tomato varieties can be utilized to increase both the intake and bioavailability of health-beneficial carotenoids.  相似文献   

17.
Phenolic compounds present in crude oil extracts from acai fruit ( Euterpe oleracea) were identified for the first time. The stability of acai oil that contained three concentrations of phenolics was evaluated under short- and long-term storage for lipid oxidation and phenolic retention impacting antioxidant capacity. Similar to acai fruit itself, acai oil isolates contained phenolic acids such as vanillic acid (1,616 +/- 94 mg/kg), syringic acid (1,073 +/- 62 mg/kg), p-hydroxybenzoic acid (892 +/- 52 mg/kg), protocatechuic acid (630 +/- 36 mg/kg), and ferulic acid (101 +/- 5.9 mg/kg) at highly enriched concentrations in relation to acai pulp as well as (+)-catechin (66.7 +/- 4.8 mg/kg) and numerous procyanidin oligomers (3,102 +/- 130 mg/kg). Phenolic acids experienced up to 16% loss after 10 weeks of storage at 20 or 30 degrees C and up to 33% loss at 40 degrees C. Procyanidin oligomers degraded more extensively (23% at 20 degrees C, 39% at 30 degrees C, and 74% at 40 degrees C), in both high- and low-phenolic acai oils. The hydrophilic antioxidant capacity of acai oil isolates with the highest phenolic concentration was 21.5 +/- 1.7 micromol Trolox equivalents/g, and the total soluble phenolic content was 1252 +/- 11 mg gallic acid equivalents/kg, and each decreased by up to 30 and 40%, respectively, during long-term storage. The short-term heating stability at 150 and 170 degrees C for up to 20 min exhibited only minor losses (<10%) in phenolics and antioxidant capacity. Because of its high phenolic content, the phytochemical-enriched acai oil from acai fruit offers a promising alternative to traditional tropical oils for food, supplements, and cosmetic applications.  相似文献   

18.
Atlantic salmon (approximately 1.3 kg) maintained in tanks of seawater at 5 +/- 1 degrees C were dosed with [3H]emamectin B1 benzoate in feed at a nominal rate of 50 microg of emamectin benzoate/kg/day for 7 consecutive days. Tissues, blood, and bile were collected from 10 fish each at 3 and 12 h and at 1, 3, 7, 15, 30, 45, 60, and 90 days post final dose. Feces were collected daily from the tanks beginning just prior to dosing to 90 days post final dose. The total radioactive residues (TRR) of the daily feces samples during dosing were 0.25 ppm maximal, and >97% of the TRR in pooled feces covering the dosing period was emamectin B1a. Feces TRR then rapidly declined to approximately 0.05 ppm by 1 day post final dose. The ranges of mean TRR for tissues over the 90 days post dose period were as follows: kidney, 1.4-3 ppm; liver, 1.0-2.3 ppm; skin, 0.04-0.09 ppm; muscle, 0.02-0.06 ppm; and bone, <0.01 ppm. The residue components of liver, kidney, muscle, and skin samples pooled by post dose interval were emamectin B1a (81-100% TRR) and desmethylemamectin B1a (0-17% TRR) with N-formylemamectin B1a seen in trace amounts (<2%) in some muscle samples. The marker residue selected for regulatory surveillance of emamectin residues was emamectin B1a. The emamectin B1a level was quantified in individual samples of skin and muscle using HPLC-fluorometry and was below 85 ppb in all samples analyzed (3 h to 30 days post dose).  相似文献   

19.
The aim of this investigation was to compare the influence of naringin versus red grapefruit juice on plasma lipid levels and plasma antioxidant activity in rats fed cholesterol-containing and cholesterol-free diets. The antioxidant activity of a correlated quantity of red grapefruit juice was higher than that of naringin. Forty-two male Wistar rats were randomly divided into six groups of 7 named control, naringin, grapefruit, Chol, Chol/naringin, and Chol/grapefruit. The rats of the control group were fed basal diet (BD) and 1-2 mL of distilled water. To the BD of the other five groups were added 0.46-0.92 mg of naringin dissolved in 1-2 mL of distilled water (naringin), 1-2 mL of red grapefruit juice (grapefruit), 1% of nonoxidized cholesterol (NOC) and 1-2 mL of distilled water (Chol), 1% of NOC and 0.46-0.92 mg of naringin in 1-2 mL of water (Chol/naringin), and 1% of NOC and 1-2 mL of red grapefruit juice (Chol/grapefruit). After 30 days of different feeding, it was found that diets supplemented with red grapefruit juice and to a lesser degree with naringin improved the plasma lipid levels mainly in rats fed cholesterol and increased the plasma antioxidant activity. In conclusion, naringin is a powerful plasma lipid lowering and plasma antioxidant activity increasing flavonone. However, fresh red grapefruit is preferable than naringin: it more effectively influences plasma lipid levels and plasma antioxidant activity and, therefore, could be used as a valuable supplement for disease-preventing diets.  相似文献   

20.
Acute and subacute intraperitoneal doses of fumonisin B(1) (FB(1)) were administered to test the efficacy of the FB(1)-glucose reaction products in detoxifying FB(1) in swine. In the acute study at 11 mumol of FB(1)/kg of body weight, five of six pigs administered FB(1) and four of six pigs administered FB(1)-glucose died from acute pulmonary edema. Analysis of weight gain, serum aspartate aminotransferase and gamma-glutamyltransferase, total cholesterol, and pathological evaluation did not provide evidence of protection against FB(1) toxicity by the FB(1)-glucose reaction products. In the subacute study at 5.5 mumol of FB(1)/kg of body weight, one pig administered FB(1) died from liver damage. Analysis of serum aspartate aminotransferase, gamma-glutamyltransferase, and total bilirubin showed protection against FB(1) toxicity by the FB(1)-glucose reaction products. The levels of sphinganine and sphinganine/sphingosine ratios in serum and liver as well as pathologic findings provided definitive evidence of protection against the FB(1) toxic effects by this detoxification procedure (p < 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号