首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In wheat, the transition from the vegetative to reproductive stage is primarily controlled by the series of vernalisation (Vrn-1) genes located on the homoeologous group 5 chromosomes. Up to 2009, only two alleles at the Vrn-B1 locus were known: one dominant, spring, allele (now designated Vrn-B1a) and the other recessive, winter, (vrn-B1) allele. Recently, two additional dominant alleles, Vrn-B1b and Vrn-B1c, were described. In this study, we screened a range of hexaploid spring wheat germplasms for the presence of different Vrn-B1 alleles using new diagnostic molecular markers. Our results show that the Vrn-B1a allele was the most prevalent, being present in 55.3 % of the 2,495 accessions examined, followed by the recessive vrn-B1 allele, which occurred in 31.5 % of the accessions. The novel alleles Vrn-B1b and Vrn-B1c were found in 5.3 and 7.9 % of all accessions, respectively.  相似文献   

2.
Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in Australia and elsewhere. In order to identify molecular markers associated with partial seedling resistance to this disease, bulked segregant analysis and quantitative trait loci (QTL) mapping approaches were undertaken using a population of 145 doubled haploid lines constructed from ‘2‐49’ (partially resistant) × ‘Janz’ (susceptible) parents. Phenotypic data indicated that the trait is quantitatively inherited. The largest QTLs were located on chromosomes 1D and 1A, and explained 21% and 9% of the phenotypic variance, respectively. Using the best markers associated with five QTLs identified by composite interval mapping, the combined effect of the QTLs explained 40.6% of the phenotypic variance. All resistance alleles were inherited from ‘2‐49’ with the exception of a QTL on 2B, which was inherited from ‘Janz’. A minor QTL on 4B was loosely linked (19.8 cM) to the Rht1 locus in repulsion. None of the QTLs identified in this study were located in the same region as resistance QTLs identified in other populations segregating for Fusarium head blight, caused by Fusarium graminearum.  相似文献   

3.
Preharvest sprouting of wheat results in significant financial loss at all steps in the production and marketing chain. Due to its intermittent nature in many wheat‐growing regions, direct selection for tolerance to preharvest sprouting is difficult. DNA markers linked to genes conditioning tolerance offer a more consistent and reliable approach to genetic improvement in tolerance. This investigation assessed the value of previously identified markers linked to quantitative trait loci contributing to tolerance, across multiple genetic backgrounds. A significant contribution to tolerance was demonstrated for QPhs.pseru‐3AS, previously identified from the hard white winter wheat ‘Rio Blanco’. Marker alleles for this locus were associated with enhanced tolerance in three of four investigated populations. In addition, positive contributions of QPhs.pseru‐2B1 and QPhs.pseru‐2B2 also were documented. Simultaneous selection for putative marker alleles at two independent loci resulted in significantly higher mean tolerance scores. DNA markers linked to loci contributing to variation in preharvest sprouting tolerance offer an efficient and effective alternative to direct phenotypic selection.  相似文献   

4.
The objective of this study was to determine the Vrn1 allelic composition of spring wheat germplasm from the Pacific Northwest region of the USA. Individual plants from 56 spring wheat lines were crossed to near‐isogenic tester lines carrying the dominant allele Vrn‐A1, Vrn‐B1 or Vrn‐D1. F2 progeny were evaluated for growth habit in the field and Vrn‐1 allelic composition was determined through chi‐square analysis. Lines also were analysed with DNA sequence‐based Vrn‐1 allele‐specific markers. A majority of the germplasm carried the dominant allele Vrn‐A1a alone or in combination with Vrn‐B1, Vrn‐D1 or Vrn‐B3 alleles. Vrn‐B1 and Vrn‐D1 were almost always associated with other dominant Vrn‐1 allele(s). Based on DNA sequence analysis, a novel Vrn‐B1 allele referred to as Vrn‐B1b, which carried a single nucleotide polymorphism (SNP) and a 36 bp deletion, was identified in cultivar ‘Alpowa’. These results will be useful to wheat breeders for choosing parents with different Vrn‐1 alleles for crossing to maximize diversity at the Vrn‐1 loci with an expectation of identifying superior Vrn‐1 allelic combinations for cultivar improvement.  相似文献   

5.
I. Leonova    E. Pestsova    E. Salina    T. Efremova    M. Röder  A. Börner  G. Fischbeck 《Plant Breeding》2003,122(3):209-212
An F2 population segregating for the dominant gene Vrn‐B1 was developed from the cross of the substitution line ‘Diamant/'Miro‐novskaya 808 5A’ and the winter wheat cultivar ‘Bezostaya 1′. Microsatellite markers (Xgwm and Xbarc) with known map locations on chromosome 5B of common wheat were used for mapping the gene Vrn‐B1. Polymorphism between parental varieties was observed for 28 out of 34 microsatellite markers (82%). Applying the quantitative trait loci mapping approach, the target gene was mapped on the long arm of chromosome 5B, closely linked to Xgwm408. The map position of Vrn‐B1 suggests that the gene is homoeologous to other vernalization response genes located on the homoeologous group 5 chromosomes of wheat, rye and barley.  相似文献   

6.
K. Iwaki    S. Haruna    T. Niwa  K. Kato 《Plant Breeding》2001,120(2):107-114
Geographical variation of growth habit was studied for 749 landraces from various parts of the world, with special reference to their adaptation and ecogeographical differentiation. The total frequency of spring‐type landraces was 49.9%, and varied between localities. Spring‐type landraces were frequent in two distinct areas where the average January temperature was either below ‐7°C or above 4°C, with winter‐type landraces in areas from ‐7°C to 4°C. These results indicated that geographical variation of growth habit is closely related to the degree of winter coldness. An analysis of the Vrn genotype for 216 spring‐type landraces demonstrated the uneven distribution of four Vrn genes, with Vrn4 being the least frequent. The adaptive Vrn genotype was different between localities. Genotypes carrying Vrn‐A1 and additional Vrn gene(s) were frequent in two distinct areas where the average January temperature was either below ‐7°C or over 10°C, while genotypes with any of three Vrn genes, except Vrn‐A1, adapted to areas with temperatures from 4°C to 10°C. Therefore, it was concluded that the adaptability of wheat landraces differed depending on their growth habit and Vrn genotype, and that ecotypes with different Vrn genotypes were allopatrically distributed as a result of adaptation to different winter temperature. However, the differential distribution of Vrn‐B1, Vrn‐D1 and Vrn4 could not be explained by their adaptability, and might reflect the polyphyletic origin of common wheat.  相似文献   

7.
Genes for frost resistance in wheat   总被引:4,自引:0,他引:4  
J. Sutka 《Euphytica》2001,119(1-2):169-177
Wheat varieties differ in their responses to low temperatures. Geneticstudies on frost resistance in wheat are difficult because the effects arequantitative in nature and thus require precise genetic material andreproducible experimental conditions. The detailed diallel analyses indicatedthat the inheritance of frost resistance is polygenic and mostly additive.Nevertheless, studies using monosomic, ditelosomic and substitution lineshave identified specific chromosomes that carry genes responsible for frostresistance. In particular, the chromosomes 5A and 5D appear to carrymajor genes. Using molecular markers (RFLP, AFLP) and recombinantsubstitution lines it was shown that the Vrn-A1 (vernalization) and Fr1 (frost resistance) loci were located closely linked on the distal portionof the long arm of 5A, but recombination between them was found (cM = 2). The RFLP markers Xpsr426 and Xwg644 were tightlylinked to the Vrn-A1 locus. Loci Vrn-D1 and Fr2are located on the long arm of 5D. Fr2 and Vrn-D1 arehomoeologous to Fr1 and Vrn-A1. A physical map of theVrn-A1 and Fr1 genes was constructed on chromosome 5Ausing deletion lines. This cytogenetically based physical map could be usefulin further work on genome mapping and gene cloning.  相似文献   

8.
Wheat, among all cereal grains, possesses unique characteristics conferred by gluten; in particular, high molecular weight glutenin subunits (HMW‐GS) are of considerable interest as they strictly relate to bread‐making quality and contribute to strengthening and stabilizing dough. Thus, the identification of allelic composition, in particular at the Glu‐B1 locus, is very important to wheat quality improvement. Several PCR‐based molecular markers to tag‐specific HMW glutenin genes encoding Bx and By subunits have been developed in recent years. This study provides a survey of the molecular markers developed for the HMW‐GS at the Glu‐B1 locus. In addition, a selection of molecular markers was tested on 31 durum and bread wheat cultivars containing the By8, By16, By9, Bx17, Bx6, Bx14 and Bx17 Glu‐B1 alleles, and a new assignation was defined for the ZSBy9_aF1/R3 molecular marker that was specific for the By20 allele. We believe the results constitute a practical guide for results that might be achieved by these molecular markers on populations and cultivars with high variability at the Glu‐B1 locus.  相似文献   

9.
Producing higher yields under organic conditions is generally hampered by weeds and lesser nutrient supply. In wheat certain adaptive traits like early season vigour, taller plants, and shorter life cycle have been reported to help plants compete with weeds and produce satisfactory yields. In this experiment we tested the hypothesis ‘that early flowering and maturity conferred by insensitive vernalization alleles Vrn-A1a and/or Vrn-B1 has a yield advantage under organic conditions’ in Canadian spring wheat germplasm. We genotyped 32 cultivars for their vernalization gene composition (Vrn-A1a, Vrn-B1 and Vrn-D1) and studied these cultivars in organic and conventional management systems. We found 88 % of the cultivars possessed vernalization (Vrn) insensitive allele Vrn-A1a either alone or in combination with Vrn-B1. There were no differential affects between the cultivars having insensitive Vrn allele at either single locus (Vrn-A1a) or two (Vrn-A1a, Vrn-B1) under organic and conventional field conditions; except for days to maturity, where cultivars having only Vrn-A1a allele matured earlier. This earlier maturity did not translate to any yield advantage under organic field conditions. Overall, the cultivars grown under organic conditions were earlier flowering, lower yielding with lower test weight compared to the conventional management system. Significant cultivar × environment interactions were found for grain yield, grain protein content and grain fill rate. For grain protein content, cross-over interactions of the cultivars between the management systems were observed. Three cultivars (Marquis, Unity and Minnedosa) exhibited minimal comparative loss in grain yield and grain protein content under organic field conditions, and hence could potentially serve as parents for organic wheat breeding programs.  相似文献   

10.
The powdery mildew resistance allele Pm5d in the backcross-derived wheat lines IGV1-455 (CI10904/7*Prins) and IGV1-556 (CI10904/7*Starke) shows a wide spectrum of resistance and virulent pathotypes have not yet been detected in Germany. Although this allele may be distinguished from the other documented Pm5 alleles by employing a differential set of Blumeria graminis tritici isolates, the use of linked molecular markers could enhance selection, especially for gene pyramiding. Pm5d was genetically mapped relative to six microsatellite markers in the distal part of chromosome 7BL using 82 F3 families of the cross Chinese Spring × IGV1-455. Microsatellite-based deletion line mapping placed Pm5d in the terminal 14% of chromosome 7BL. The closely linked microsatellite markers Xgwm577 and Xwmc581 showed useful variation for distinguishing the different Pm5 alleles except the ones originating from Chinese wheat germplasm. Their use, however, would be limited to particular crosses because they are not functional markers. The occurrence of resistance genes closely linked to the Pm5 locus is discussed. Ghazaleh Nematollahi and Volker Mohler equally contributed to this work.  相似文献   

11.
Increasing grain yield is a key breeding goal in bread wheat. Several authors have suggested that a spike fertility index (SF), that is the quotient between grain number per unit spike (GNS) and spike chaff dry weight (SCDW), could be used as a yield‐related selection criterion, especially if molecular markers were available. Here, the effects of Ppd‐B1 and Ppd‐D1 genes on SFm, GNSm and SCDWm (measured at maturity) and the relationship between these variables were analysed in field experiments carried out during three crop seasons at Balcarce, Argentina, on an association mapping population of 100 bread wheat cultivars of diverse origin released in Argentina between 1927 and 2010. Results show that both Ppd‐B1 and Ppd‐D1 are associated with SFm with similar effects. Cultivars with insensitive alleles at both genes showed a mean SFm 9.2% greater than those with sensitive alleles at both genes; at each gene, difference in SFm between insensitive and sensitive alleles was ~4.5%. In turn, each gene showed a differential effect on GNSm and SCDWm, as Ppd‐B1 was more related to SCDWm, whereas Ppd‐D1 was only related to GNSm. Although more research needs to be carried out in order to ascertain the physiological pathway by which these genes affect spike fertility, this study represents a first approximation in order to elucidate the molecular and genetic basis underlying SF and related physiological traits.  相似文献   

12.
C. He  G. R. Hughes 《Plant Breeding》2003,122(4):375-377
Common bunt caused by Tilletia tritici and T. laevis has occurred worldwide and reduces yield and quality in common and durum wheats. The development of DNA markers linked to bunt resistance to race T1 in the cross, ‘Laura’(S) בRL5407’ (R), was carried out in this study based on the single head derived F4:5 and single seed derived F4:6 populations. Bulked segregant analysis was used to identify two random amplified polymorphic DNA (RAPD) markers linked to the gene for resistance to race T1 in the spelt wheat ‘RL5407′. The two markers identified, UBC548590 and UBC274988, flanked the resistance gene with a map distance of 9.1 and 18.2 cM, respectively. The former was linked in repulsion phase to bunt resistance while the later was in coupling phase. The two RAPD markers and the common bunt‐resistance gene all segregated in Mendelian fashion. Use of these two RAPD markers together could assist in incorporating the bunt‐resistance gene from spelt wheat into common wheat cultivars by means of marker‐assisted selection.  相似文献   

13.
小麦雄性不育主要是通过花粉的败育表现,其不育材料对小麦杂种优势的利用研究具有重要意义和价值,国外研究表明,某些特定普通小麦品种间杂交F1表现的花粉部分不育现象,受控于核基因组花粉致死基因Ki,为了筛选小麦花粉致死基因Ki的连锁标记,利用现代分子生物学技术通过定位该基因,克隆出花粉致死基因连锁标记片段,为小麦雄性不育种质材料的转育提供有效的选择标记。对小麦花粉致死基因Ki进行了分子标记定位,以‘中国春’和澳大利亚春小麦品种的BC1F1代作为定位群体,利用分离群体分组分析法(BSA)对位于小麦6B染色体上85对SSR引物进行多态性筛选,具有多态性的引物再通过BC1F1定位群体进行验证,从中筛选出与目的基因连锁的2个SSR标记Xgwm626和Xgpw4138。运用Mapmaker 3.0软件进行连锁分析。结果表明,Xgwm626和Xgpw4138与Ki基因的遗传距离分别为9.2 cM和6.9 cM,且2个SSR标记位于目的基因两侧,并将Ki定位于小麦6BL染色体上。研究结果为Ki基因的分子标记辅助选择和进一步精细定位奠定了基础。  相似文献   

14.
A.F. Stelmakh 《Euphytica》1992,65(1):53-60
Summary The Vrn1, Vrn2 and Vrn3 genes have different values of effects on heading date and related yield components. The genetic background and environment do not affect the ranking of Vrn genotypes according to earliness within near-isogenic line sets; however, they do influence the level of differences between heading dates of particular genotypes and between effect values, respectively. The frequencies of defined Vrn genotypes in the global set of spring bread wheat cultivars are associated with grain weight per plant predicted on the basis of Vrn gene effects averaged over backgrounds and over environments. Peculiarities of backgrounds and environments alter the grain yield ranges of Vrn genotypes. For early photoperiod-insensitive wheats, planted in stress conditions at grain filling, the highest yield was predicted for double dominant Vrn genotypes with Vrn3. This gene is rarely used by the breeders in middle latitudes and its wider adoption is encouraged.  相似文献   

15.
B. K. Das    A. Saini    S. G. Bhagwat    N. Jawali 《Plant Breeding》2006,125(6):544-549
The stem rust resistance gene Sr31, transferred from rye (Secale cereale) into wheat (Triticum aestivum L.) imparts resistance to all the virulent pathotypes of stem rust (Puccinia graminis f. sp. tritici) found in India. Wheat genotypes including carriers and non‐carriers of the Sr31 gene were analysed using arbitrary primed polymerase chain reaction (AP‐PCR). AP‐PCR markers viz. SS30.2580(H) associated with the Sr31 gene and SS26.11100 associated with the allele for susceptibility were identified. Linkage between the markers and phenotypes was confirmed by analysing an F2 population obtained from a cross between a resistant and a susceptible genotype. The markers were tightly linked to the respective alleles. Both the AP‐PCR markers were converted into sequence characterized amplified region (SCAR) markers, viz. SCSS30.2576 and SCSS26.11100 respectively. The markers were validated in two more segregating populations and 49 wheat genotypes. Using both markers it was possible to distinguish the homozygous from the heterozygous carriers of the Sr31 gene in the F2 generation. The markers developed in this study can be used for pyramiding of the Sr31 gene with other rust resistance genes and in marker‐assisted selection.  相似文献   

16.
Flood  R. G.  Halloran  G. M. 《Euphytica》1984,33(1):91-98
Summary Studies were made of days to ear emergence under the constant temperatures of 9, 14, 19 and 25°C and 16 h photoperiod in three sets of wheat lines each possessing genotypes differing for developmental responses.Days to ear emergence in three near-isogenic lines of the wheat cultivar Triple Dirk, which differed for vernalization response, increased as the strength of the response increased. At the four temperatures Triple Dirk D (Vrn 1 vrn 2) was not significantly different from normal Triple Dirk (Vrn 1 Vrn 2) but Triple Dirk B (vrn 1 Vrn 2) was significantly (P=0.01) later than normal Triple Dirk at each temperature. This indicates that the vrn 1 allele confers stronger vernalization response than vrn 2 over the range of temperatures (9–24°C). However, Triple Dirk C (vrn 1 vrn 2) failed to head after 120 days at each temperature indicating strong interaction between vrn 1 and vrn 2 with each other (and possibly the Triple Dirk back-ground) to give a much stronger vernalization response than predictions from additivity of their individual effects.The second set comprised the four Chinese Spring/Thatcher chromosome substitution lines CS/T 3B, 6B, 7B and 5D, plus Chinese Spring and Thatcher, and were grown in the unvernalized condition. CS/T 5D was similar in days to ear emergence as Chinese Spring at all four temperatures but the other three lines were earlier to ear emergence, particularly as the temperature increased. Days to ear emergence was fastest at 14°C in all lines, except CS/T 3B, in which it decreased progressively from 9 to 24°C.The third set of Chinese Spring and Thatcher and the homoeologous group 2 chromosomes of Thatcher substituted in Chinese Spring, the group which is considered to be involved in the control of photoperiod sensitivity. The three substitution lines responded differently to temperature compared with Chinese Spring and with each other, with chromosome 2D being the least, and chromosome 2B the most, responsive to temperature.  相似文献   

17.
Y. J. Yi    H. Y. Liu    X. Q. Huang    L. Z. An    F. Wang    X. L. Wang 《Plant Breeding》2008,127(2):116-120
Powdery mildew, caused by Blumeria graminis (DC.) E.O. Speer f. sp. tritici, is an important disease in wheat (Triticum aestivum L.). Bulk segregant analysis (BSA) was employed to identify SRAP (sequence‐related amplified polymorphism), sequence tagged site (STS) and simple sequence repeat (SSR) markers linked to the Pm4b gene, which confers good resistance to powdery mildew in wheat. Out of 240 SRAP primer combinations tested, primer combinations Me8/Em7 and Me12/Em7 yielded 220‐bp and 205‐bp band, respectively, each of them associated with Pm4b. STS‐241 also linked to Pm4b with a genetic distance of 4.9 cM. Among the eight SSR markers located on wheat chromosome 2AL, Xgwm382 was found to be polymorphic and linked to Pm4b with a genetic distance of 11.8 cM. Further analysis was carried out using the four markers to investigate marker validation for marker‐assisted selection (MAS). The results showed that a combination of the linked markers STS?241, Me8/Em7?220 and Xgwm382 could be used for marker‐assisted selection of the resistance gene Pm4b in wheat breeding programmes.  相似文献   

18.
Waxy (Wx) protein is a key enzyme for synthesis of amylose in endosperm. Amylose content in wheat grain influences the quality of end‐use products. Seven alleles have been described at the Wx‐D1 locus, but only two of them (Wx‐D1b, Wx‐D1e) were genotyped with codominant markers. The waxy wheat line K107Wx1 developed by treating ‘Kanto 107’ seeds with ethyl methanesulphonate carries the Wx‐D1d allele. However, no molecular basis supports this nomenclature. In the present study, DNA sequence analysis confirmed that a single nucleotide polymorphism in the sixth exon of Wx‐D1 changed tryptophan at position 301 into a termination codon. Based on this sequence variation, a PCR‐based KASP marker was developed to detect this point mutation using 68 BC8F1 plants and 297 BC8F2 lines derived from the cross ‘Ningmai 14’*9/K107Wx1. Combined with codominant markers for the Wx‐A1 and Wx‐B1 alleles, waxy and non‐waxy near‐isogenic lines were distinguished. The KASP marker was efficient in identifying the mutant allele and can be used to transfer waxiness to elite lines.  相似文献   

19.
W-C. Zhou    F. L. Kolb    G-H. Bai    L. L. Domier    L. K. Boze  N. J. Smith 《Plant Breeding》2003,122(1):40-46
The objectives of this study were to validate the major quantitative trait locus (QTL) for scab resistance on the short arm of chromosome 3B in bread wheat and to isolate near‐isogenic lines for this QTL using marker‐assisted selection (MAS). Two resistant by susceptible populations, both using ‘Ning7840’ as the source of resistance, were developed to examine the effect of the 3BS QTL in different genetic backgrounds. Data for scab resistance and simple sequence repeat (SSR) markers linked to the resistance QTL were analyzed in the F2:3 lines of one population and in the F3:4 lines of the other. Markers linked to the major QTL on chromosome 3BS in the original mapping population (‘Ning7840’/‘Clark’) were closely associated with scab resistance in both validation populations. Marker‐assisted selection for the QTL with the SSR markers combined with phenotypic selection was more effective than selection based solely on phenotypic evaluation in early generations. Marker‐assisted selection of the major QTL during the seedling stage plus phenotypic selection after flowering effectively identified scab resistant lines in this experiment. Near‐isogenic lines for this 3BS QTL were isolated from the F6 generation of the cross ‘Ning7840’/‘IL89‐7978’ based on two flanking SSR markers, Xgwm389 and Xbarc147. Based on these results, MAS for the major scab resistance QTL can improve selection efficiency and may facilitate stacking of scab resistance genes from different sources.  相似文献   

20.
L. Reddy    R. E. Allan    K. A. Garland  Campbell 《Plant Breeding》2006,125(5):448-456
In wheat, variation at the orthologus Vrn‐1 loci, located on each of the three genomes, A, B and D, is responsible for vernalization response. A dominant Vrn‐1a allele on any of the three wheat genomes results in spring habit and the presence of recessive Vrn‐1b alleles on all three genomes results in winter habit. Two sets of near‐isogenic lines (NILs) were evaluated for DNA polymorphisms at their Vrn‐A1, B1 and D1 loci and for cold hardiness. Two winter wheat cultivars, ‘Daws’ and ‘Wanser’ were used as recurrent parents and ‘Triple Dirk’ NILs were used as donor parents for orthologous Vrn‐1 alleles. The NILs were analysed using molecular markers specific for each allele. Only 26 of 32 ‘Daws’ NILs and 23 of 32 ‘Wanser’ NILs had a plant growth habit that corresponded to the marker genotype for the markers used. Freezing tests were conducted in growth chambers programmed to cool to ?21.5°C. Relative area under the death progress curve (AUDPC), with a maximum value of 100 was used as a measure of death due to freezing. The average relative AUDPC of the spring habit ‘Daws’Vrn‐A1a NILs was 86.15; significantly greater than the corresponding winter habit ‘Daws’Vrn‐A1b NILs (42.98). In contrast, all the ‘Daws’Vrn‐A1bVrn‐B1aVrn‐D1b and Vrn‐A1bVrn‐B1bVrn‐D1a NILs (spring habit) had relative AUDPC values equal to those of their ‘Daws’ sister genotypes with Vrn‐A1bVrn‐B1bVrn‐D1b NILs (winter habit). The average AUDPC of spring and winter habit ‘Wanser’ NILs differed at all three Vrn‐A1, Vrn‐B1 and Vrn‐D1 locus comparisons. We conclude that ‘Daws’ and ‘Wanser’ have different background genetic interactions with the Vrn‐1 loci influencing cold hardiness. The marker for Vrn‐A1 is diagnostic for growth habit and cold hardiness but there is no relationship between the Vrn‐B1 and Vrn‐D1 markers and the cold tolerance of the NILs used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号