首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
《畜牧与兽医》2014,(6):83-86
为了研究不同水温下多西环素在草金鱼体内过程,本试验采用对草金鱼以30 mg/kg的剂量单次口灌多西环素。结果显示:多西环素在草金鱼体内吸收迅速,分布广泛,消除半衰期长。房室模型分析表明,在2个水温条件下的药时数据均符合有吸收二室开放模型,15℃条件下的主要药物动力学参数为:吸收半衰期(T1/2ka)1.38 h;分布半衰期(T1/2α)2.06 h;达峰时间(Tmax)2.70 h;峰浓度(Cmax)4.57μg/mL;消除半衰期(T1/2β)62.57 h;药时曲线下面积(AUC)138.20μg·h/mL。25℃条件下的主要药物动力学参数为:吸收半衰期(T1/2ka)1.33 h;分布半衰期(T1/2α)0.77 h;达峰时间(Tmax)1.78 h;峰浓度(Cmax)4.06μg/mL;消除半衰期(T1/2β)25.73 h;药时曲线下面积(AUC)82.80μg·h/mL。  相似文献   

2.
为预测土霉素在鸡体内的药动学特点,建立了土霉素在鸡体内的血流限速生理房室模型。结果显示,土霉素在鸡体内的药动学参数:Tmax(达峰时间)为2.22h,Cmax(峰浓度)为0.62μg/mL,AUC(药时曲线下面积)为7.61(μg/mL)×h,Ka(吸收速率常数)为1.21h-1,Ke(消除速率常数)为0.10h-1,T1/2Ka(吸收半衰期)为0.57h,T1/2Ke(消除半衰期)为6.73h,V(表观分布容积)为6.38L/kg,CL(血浆清除率)为0.66L/h·kg。其结果表明,土霉素在鸡体内的药动学特点为:吸收迅速,分布广泛,消除缓慢。因此,运用生理房室模型可以预测药物的药动学参数。  相似文献   

3.
为了解自制1%多杀菌素微乳注射剂在新西兰兔体内的药代动力学规律,采用ELISA和HPLC两种不同检测方法,分别分析血清和血浆中的药物浓度,PKsolver软件非房室模型计算药代动力学参数。结果:高效液相色谱法和酶联免疫吸附测定法检测药物代谢动力学主要参数分别为:达峰时间Tmax为(4.00±0.00),(2.67±0.67)h,峰浓度Cmax为(363.25±13.39)ng/mL,(282.19±24.59)ng/mL;半衰期t1/2为(81.24±10.80)h,(70.61±15.38)h;药时曲线下面积AUC为(17.52±1.24)μg·h/mL,(17.39±2.38)μg·h/mL。相同注射方式,相同剂量的两种检测方法之间比较,血药浓度变化趋势基本一致,但实测数据峰浓度Cmax差异显著(P0.05),其余参数差异不显著(P0.05)。结论:新西兰兔皮下注射多杀菌素吸收快速,消除缓慢,药物作用半衰期长,可在体内持续发挥药效。  相似文献   

4.
本试验旨在探讨加丽素红中角黄素在鸡体内的药代动力学特征.选取19周龄的海兰蛋鸡12只,单次灌胃口服加丽素红9.6 mg/kg BW,在72 h内不同时间段分10次采集静脉血,用高效液相色谱法测定鸡血清中角黄素的质量浓度,并利用3P97药代动力学程序软件处理血药浓度-时间数据.结果如下:加丽素红经口服给药后,角黄素在鸡体内的血药浓度-时间数据符合一级吸收一室模型,其理论方程为C=0.471(e-0.036-e-0.190),主要药代动力学参数为:吸收半衰期t1/2(Ka)=(3.643±0.205)h,消除半衰期t1/2(Ke)=(19.263±1.312)h,达峰时间Tmax=(10.795±1.007)h,达峰浓度Cmax=(0.259±0.048)μg/mL,血药浓度-时间曲线下面积AUC=(10.607±1.029)μg/(mL·h),总体清除率CLB=(0.905±0.076)L/(kg·h),表观分布容积Vd=(2.515±0.133)L/kg.上述结果表明,角黄素在鸡体内血药浓度的变化表征了加丽素红在鸡体内代谢的变化规律,具有吸收分布较迅速、达峰快、体内分布广泛、消除速度较慢等特点.  相似文献   

5.
本实验采用高效液相色谱法测定猪血浆中阿莫西林的浓度,研究了丙磺舒对阿莫西林在健康猪体内药物动力学的影响。结果表明,单剂量肌肉注射阿莫西林后,阿莫西林吸收迅速,药峰时间为(0.19±0.11)h,药物浓度为(7.21±3.27)μg/mL,其动力学模型为一级速率一室模型。使用丙磺舒后,阿莫西林的半衰期由(0.86±0.18)h延长到(2.77±1.02)h(P<0.05),AUC由(12.38±5.69)μg/mL·h增加至(35.24±18.62)μg/mL·h,药峰时间为(0.42±0.32)h,药峰浓度为(6.24±3.43)μg/mL·h。  相似文献   

6.
《畜牧与兽医》2014,(7):73-76
为了解硫酸头孢喹肟口服和静注给药在鸡体内的动力学特征,用高效液相色谱法测定鸡血浆中的药物质量浓度,所得硫酸头孢喹肟血药浓度数据用3p97计算机软件处理。结果显示:硫酸头孢喹肟以每公斤体重10 mg单剂量静注给药,药物浓度-时间数据经药动学程序拟合符合无吸收二室开放动力学模型,主要药动学参数分别为:中央室分布容积V(c)(1.16±0.02)L·kg-1,分布半衰期T1/2α(0.29±0.03)h,消除半衰期T1/2β(1.69±0.24)h,曲线下面积AUC(6.57±0.18)mg·L-1·h,清除率CL/f(s)(1.53±0.04)mg·L-1·h。硫酸头孢喹肟以每公斤体重20 mg口服给药的血药浓度时间数据,符合一级吸收一室开放模型,主要动力学参数:吸收半衰期T1/2 ka(0.52±0.04)h,消除半衰期T1/2 ke(0.88±0.05)h,峰时Tmax(1.07±0.02)h,最高血药浓度Cmax(3.63±0.25)μg·mL-1,曲线下面积AUC(9.84±0.68)mg·L-1·h,表观分布容积V/f(c)(3.85±0.30)L·kg-1·h-1,生物利用度F(74.9±0.06)%。结果表明:硫酸头孢喹肟静注给药能迅速从血液分布进入组织中,在体液中具有良好的渗透和分布性能,体内分布广泛,能迅速从血液中消除。口服给药吸收迅速,达峰时间短。口服给药在鸡体内生物利用度稍低,可能由于硫酸头孢喹肟的脂溶性低,其在消化道吸收率低所致。但在8 h内能保持有效血药浓度范围(0.095.74μg·mL-1),可以有效控制常见细菌感染。  相似文献   

7.
为了研究5种土霉素注射液肌肉注射后在山羊体内的药动学特征,给临床用药及其研究提供参考依据,选取30只山羊为靶动物,将其随机分为5组,分别注射不同品种的土霉素注射液(10%A、B、C)和(20%D、E),然后采用高效液相色谱法对山羊体内的土霉素含量进行测定,3P97软件拟合血药浓度-时间曲线,计算药动学参数。结果显示,5种土霉素注射液均符合一级吸收二室模型,10%A、10%B、10%C、20%D和20%E主要药动学参数分别为:消除半衰期(t_(1/2β))为7.13μg/mL、6.62μg/mL、6.97μg/mL、21.16μg/mL和27.32μg/mL;达峰浓度(C_(max))为(2.71±0.37)μg/mL、(3.11±0.81)μg/mL、(3.60±0.83)μg/mL、(5.52±0.53)μg/mL和(4.69±1.20)μg/mL;达峰时间(T_(max))为(2.08±1.52) h、(2.17±2.2) h、(3.05±2.30) h、(2.05±0.80) h和(2.80±1.01) h;药时曲线下面积(AUC)为(61.41±20.94) h·μg/mL、(50.34±8.74) h·μg/mL、(58.57±7.31) h·μg/mL、(124.23±7.23) h·μg/mL和(109.47±22.35) h·μg/mL。表明高浓度(20%)的土霉素注射液具有半衰期长,峰浓度高,药时曲线下面积大等特点,与低浓度(10%)土霉素注射液之间差异显著,可能与有机溶媒的用量和种类有关,此结论为临床合理使用剂型提供依据和指导。  相似文献   

8.
研究了氧氟沙星缓释注射液肌注给药后在猪体内的药物动力学特征,给药剂量为10mg/kg,采用反相高效液相色谱荧光检测法(HPLC-FLD)测定血浆中氧氟沙星浓度。采用3p97药物动力学程序软件处理药-时数据,得出相关药物动力学参数。静注氧氟沙星注射液在猪体内的药物动力学过程符合无吸收一室开放式模型,肌注氧氟沙星注射液、缓释注射液在猪体内的药物动力学过程均符合一级吸收一室开放式模型。氧氟沙星缓释注射液的吸收半衰期(t1/2ka)为(0.292 0±0.102 4)h,消除半衰期(t1/2ke)为(6.902 2±0.901 9)h,达峰时间(Tmax)为(1.379 5±0.373 2)h,达峰浓度(Cmax)为(2.148 1±0.296 1)μg/mL,生物利用度为(95.70±12.56)%,在猪体内的持效时间(MIC=0.5μg/mL)为(15.736 4±1.854 2)h,与氧氟沙星注射液相比,该制剂的吸收半衰期延长,消除半衰期延长,达峰时间延迟,峰浓度降低,生物利用度提高,持效时间延长。  相似文献   

9.
为探究加米霉素在比格犬体内的药物代谢动力学特征,了解其在比格犬机体内的吸收、分布、转化以及排泄规律,选取6只比格犬,加米霉素以推荐剂量6 mg/kg皮下以及静脉分别单次给药,分别于不同时间点静脉采集犬血液,用高效液相色谱串联二级质谱法测定血液中药物浓度。用非房室模型对药时曲线进行分析,皮下注射药动学参数为:达峰时间(T_(max))为0.875 h±0.186 h,消除半衰期(T_(1/2β))为59.978 h±7.861 h,药时曲线下面积(AUC)为4.912μg·h/mL±0.738μg·h/mL。静脉注射药动学参数为:达峰时间(T_(max))为0.336 h±0.144 h,消除半衰期为(T_(1/2β))为49.028 h±5.012 h,药时曲线下面积(AUC)为3.774μg·h/mL±0.211μg·h/mL。试验结果表明,静脉或皮下注射加米霉素后,药物在比格犬体内的浓度较高,且皮下注射的生物利用度较高,推荐使用皮下注射的方式给药。  相似文献   

10.
采用体内药动学和体外药效学联合的方法,研究氟苯尼考在猪半体内抗大肠杆菌的活性,为合理应用氟苯尼考治疗猪大肠杆菌病提供参考.氟苯尼考在MH肉汤及血清中对猪大肠杆菌的最小抑菌浓度(MIC)分别为3.25和8.75 μg·mL-1.猪按20 mg·kg-1的剂量肌内注射氟苯尼考后,药物吸收缓慢且不规则,血浆药物达峰时间为(3.60±1.52)h,峰浓度为(5.28±1.48)μg·mL-1.氟苯尼考在猪体内消除缓慢,体内平均滞留时间为(26.61±9.81)h,消除半衰期为(17.49±8.04)h.半效浓度参数(EC50)为(7.76±4.53)h.AUC0→24h/MIC为(7.69±1.48)h,Cmax/MIC为(0.60±0.17).由于大肠杆菌对氟苯尼考的敏感性较差和氟苯尼考肌内注射药动学特征的限制,应用氟苯尼考,按照常规方案治疗猪大肠杆菌病,可能导致治疗失败.  相似文献   

11.
喹烯酮及其主要代谢物在猪体内的药动学研究   总被引:1,自引:1,他引:0  
本试验旨在研究喹烯酮及其主要代谢物在猪体内的药物代谢动力学过程。将喹烯酮按40 mg/kg的剂量对7头猪进行灌胃给药,采用HPLC-MS/MS法测定血浆中喹烯酮及其主要代谢物的浓度,药代动力学软件WinNonlin 5.2处理血浆中药物浓度-时间数据。灌胃给药后猪血浆中能检测到原药和N1-脱氧喹烯酮、脱二氧喹烯酮及3-甲基喹噁啉-2-羧酸(MQCA)3种代谢物。喹烯酮的浓度-时间数据符合一级吸收一室开放模型,其主要药代动力学参数为:T1/2Ka=(0.97±0.08)h,T1/2λz=(2.79±0.16)h,CL=(26.03±0.65)L/h·kg,Cmax=(0.26±0.01)μg/mL,Tmax=(2.23±0.06)h,AUC=(1.54±0.04)h·μg/mL;采用统计矩法处理N1-脱氧喹烯酮和脱二氧喹烯酮的浓度-时间数据,N1-脱氧喹烯酮主要药代动力学参数为:Tmax=(6.33±1.37)h,Cmax=(8.81±2.08) ng/mL,T1/2λz=(3.03±1.27)h,AUC=(0.07±0.01)h·ng/mL,MRT=(6.58±0.40)h;脱二氧喹烯酮的主要药动学参数:Tmax=(10.29±0.29)h,Cmax=(6.20±1.11)ng/mL,T1/2λz=(5.84±2.78)h,AUC=(0.15±0.01)h·ng/mL,MRT=(3.64±0.72)h。同时,在少数时间点检测到代谢物MQCA。猪口服喹烯酮后,吸收较快,消除较慢。血浆中检测到N1-脱氧喹烯酮、脱二氧喹烯酮及3-甲基喹噁啉-2-羧酸3种代谢物,且浓度较低、消除缓慢。  相似文献   

12.
本研究采用肺部支气管灌流技术对盐酸头孢噻呋注射液在健康猪和患巴氏杆菌病的感染猪体内的药动学特征进行了比较,为指导盐酸头孢噻呋注射液治疗猪巴氏杆菌病提供临床数据支持。选取12头健康仔猪,随机均分为健康组和感染组。感染组通过人工感染多杀性巴氏杆菌建立疾病模型。2组动物分别按交叉试验设计,肌内注射盐酸头孢噻呋注射液,在不同时间点采集血液和支气管肺泡灌洗液,用高效液相色谱法(HPLC)检测头孢噻呋含量。健康猪血浆及支气管肺泡灌洗液中的药峰浓度(Cmax)分别为22.33和2.49 μg/mL,相差近9倍;消除半衰期(T1/2)分别为19.51和70.19 h,在肺部的消除非常缓慢,时长是血浆的3.6倍;药-时曲线下面积(AUC0-∞)分别为372.05和94.59 μg·h/mL;表观分布容积(Vd/F)分别为0.41和5.24 L/kg,头孢噻呋与肺脏呈现高度结合。感染组血浆及支气管肺泡液Cmax分别为11.81和5.05 μg/mL,T1/2分别为11.79和24.65 h,AUC0-∞分别为162.65和29.73 μg·h/mL,Vd/F分别为0.53和4.65 L/kg,与健康组表现出相同的特点。结果表明,盐酸头孢噻呋注射液在猪体内具有吸收迅速,消除缓慢,生物利用度高的药代动力学特点,且其在血浆和支气管肺泡灌洗液中的药动学参数存在显著差异。  相似文献   

13.
The pharmacokinetics and pharmacodynamics of A77 1726 and leflunomide after intravenous (i.v.) and oral (p.o.) administration were evaluated in adult cats. Three treatments were administered: a single i.v. dose of A77 1726 (4 mg/kg), a single oral dose of leflunomide (4 mg/kg), and multiple oral doses of leflunomide (2 mg/kg). Mean pharmacokinetic parameter values after a single i.v. dose of A77 1726 were distribution (A) and elimination (B) intercepts (15.2 μg/mL and 34.5 μg/mL, respectively), distribution and elimination half-lives (1.5 and 71.8 h, respectively), area under the curve (AUC(0 → ∞); 3723 μg*h/mL), mean residence time (MRT; 93 h), clearance (Cl(obs); 1.1 mL/kg/h), and volume of distribution at steady state (Vd(ss); 97 mL/kg). Mean pharmacokinetic parameter values after a single oral dose of leflunomide were absorption and elimination rate constants (0.3 1/h and 0.01 1/h, respectively), absorption and elimination half-lives (2.3 and 59.1 h, respectively), AUC(0 → ∞) (3966 μg*h/mL), and maximum observed plasma concentration (C(max); 38 μg/mL). The bioavailability after a single oral dose of leflunomide was 100%. The mean ± SD A77 1726 concentration that inhibited 50% lymphocytes (EC(50) ) was 16 ± 13.5 μg/mL. The mean ± SD maximum A77 1726 concentration (EC(max)) was 61.0 ± 23.9 μg/mL.  相似文献   

14.
Pharmacokinetics of mequindox and one of its major metabolites (M) was determined in chickens after intravenous (i.v.), intramuscular (i.m.) and oral administration of mequindox at a single dose of 10 (i.v. and i.m.) or 20 mg/kg b.w. (oral). Plasma concentration profiles were analyzed by a non-compartmental pharmacokinetic method. Following i.v., i.m. and oral administration, the areas under the plasma concentration-time curve (AUC(0-∞)) were 0.71±0.15, 0.67±0.21, 0.25±0.10 μg h/mL (mequindox) and 37.24±7.98, 36.40±9.16, 86.39±16.01 μg h/mL (M), respectively. The terminal elimination half-lives (t(1/2λz)) were determined to be 0.15±0.06, 0.21±0.09, 0.49±0.23 h (mequindox) and 5.36±0.86, 5.39±0.52, 5.22±0.35 h (M), respectively. The bioavailabilities (F) of mequindox were 89.4% and 16.6% for i.m. and oral administration. Steady-state distribution volume (V(ss)) of 1.20±0.34 L/kg and total body clearance (Cl(B)) of 13.57±2.16 L/kg h were determined for mequindox after i.v. dosing. After single i.m. and oral administration, peak plasma concentrations (C(max)) of 3.04±1.32, 0.36±0.13 μg/mL (mequindox) and 3.81±0.92, 5.99±1.16 μg/mL (M) were observed at t(max) of 0.08±0.02, 0.32±0.12 h (mequindox) and 0.66±0.19, 6.67±1.03 h (M), respectively. The results showed that mequindox was rapidly absorbed after i.m. or p.o. administration and most of mequindox was transformed to metabolites in chickens, with much higher C(max)s and AUCs of metabolite (M) than those of mequindox in plasma.  相似文献   

15.
The pharmacokinetics of enrofloxacin (EF) was investigated after single intravenous (i.v.) and oral (p.o.) administration of 10 mg/kg body weight (b.w.) in 300 healthy allogynogenetic silver crucian carp at 24-26°C. The plasma concentrations of EF and its metabolite ciprofloxacin (CF) were determined by high-performance liquid chromatography. After i.v. administration, the plasma concentration-time data were described by an open two-compartment model. The elimination half-life (T(1/2β)), area under the concentration-time curve (AUC) and total body clearance of EF were 63.5 h, 239.6 μg·h/mL and 0.04 L/h/kg, respectively. Following p.o. administration, the plasma concentration-time data showed a double peak-shaped curve, indicating the possibility of enterohepatic recirculation of EF in allogynogenetic silver crucian carp. The maximum plasma concentration (C(max)), T(1/2β) and AUC of EF were 4.5 μg/mL, 62.7 h and 205.9 μg·h/mL, respectively. Absorption of EF was very good with a bioavailability (F) of 86%, which could be correlated with the unique structure of the alimentary canal in allogynogenetic silver crucian. CF, an active metabolite of EF, was not detected in this study.  相似文献   

16.
The comparative pharmacokinetics of enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP) were investigated in healthy and Aeromonas hydrophila‐infected crucian carp after a single oral (p.o.) administration at a dose of 10 mg/kg at 25 °C. The plasma concentrations of ENR and of CIP were determined by HPLC. Pharmacokinetic parameters were calculated based on mean ENR concentrations by noncompartmental modeling. In healthy fish, the elimination half‐life (T1/2λz), maximum plasma concentration (Cmax), time to peak (Tmax), and area under the concentration–time curve (AUC) values were 64.66 h, 3.55 μg/mL, 0.5 h, and 163.04 μg·h/mL, respectively. In infected carp, by contrast, the corresponding values were 73.70 h, 2.66 μg/mL, 0.75 h, and 137.43 μg·h/mL, and the absorption and elimination of ENR were slower following oral administration. Very low levels of CIP were detected, which indicates a low extent of deethylation of ENR in crucian carp.  相似文献   

17.
克蚕菌的药物动力学研究   总被引:6,自引:4,他引:2  
刘挺  黄可威 《蚕业科学》2002,28(2):129-133
采用微生物法测定 5龄健康家蚕食下克蚕菌后的经时过程血药浓度。用药物动力学软件结合EXCEL程序拟和计算 ,克蚕菌在蚕体内的血药浓度—时间曲线符合一级吸收动力学和单室模型特征。其血药浓度随时间变化的单室模型关系式为C =16 .6 2 87(e-0 119t-e-0 742t) ,实测血药浓度—时间曲线与理论血药浓度—时间曲线的相关系数R2 =0 .96 33。求得克蚕菌的药物动力学参数分别为 :ka=(0 .74 2± 0 .12 3) /h ;k =(0 .119± 0 .0 0 3) /h ;t1/ 2 (a)=(0 95 8± 0 180 )h ;t1/ 2 =(5 82 1± 0 15 3)h ;Cmax=(9 70 7± 0 16 3) μg/mL ;Tmax=(2 .971± 0 .32 2 )h ;VD=(0 .5 4 3± 0 .0 2 5 )L ;CL =(0 .0 6 5± 0 .0 0 1)L/h ;AUC =(117.5 0 3± 3.30 6 )h·(μg/mL)。  相似文献   

18.
喹烯酮在鸡体内的代谢及药物动力学研究   总被引:2,自引:0,他引:2  
以HPLC-MS/MS为定量手段,研究了喹烯酮经静脉注射(2.5 mg/kg)、口服(30 mg/kg)两种给药途径在鸡体内的代谢及药物动力学特征.鸡静脉注射喹烯酮后,血浆中检测到喹烯酮原药和1-脱氧喹烯酮;口服灌注喹烯酮后,血浆中检测到喹烯酮原药和3-甲基喹噁啉-2-羧酸(MQCA).喹烯酮在鸡体内的药动学数据采用统...  相似文献   

19.
Chicken infected with caecal coccidiosis (Eimeria tenella) was used to evaluate the effect of coccidiosis on the pharmacokinetic and bioavailability of amoxicillin. The level of amoxicillin was estimated by high‐performance chromatography (HPLC) to calculate the pharmacokinetic parameters and oral bioavailability. For i.v. injection of amoxicillin, Vd and CL were 0.29 and 0.27 (mg/kg)/(μg/mL)/h, respectively. Compared with healthy chicken, intravenous injection of amoxicillin in the infected chicken showed higher distribution and elimination constants, delayed clearance and statistically significant higher AUC and MRT. Oral administration in healthy chicken was accompanied by rapid absorption and high bioavailability with Tmax, Cmax and F about 1.03 h, 3.26 μg/mL and 40.2, respectively. Furthermore, oral administration in the infected chicken produced higher mean absorption time, delayed Tmax, lower Cmax, smaller AUC value and lower bioavailability (16.76). Based on these results, monitoring and adjustment of amoxicillin dosing could be practiced during the presence of coccidiosis. The measured Cmax values suggest the administration of 1.3‐folds of the normal dose to maintain the normal maximal serum concentrations of amoxicillin in chicken infected with caecal coccidiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号