首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B. B. Singh    U. P. Singh    B. Rai  R. M. Singh 《Plant Breeding》1986,97(4):357-363
The components of genetic variation were studied in four F2 crosses (PG3× 5064, T163× B.V., T163× Arkel and 5064 × ED) for quantitative characters such as days to flowering, plant height, pod number, seed number, test weight and yield/plant. The overall epistasis (T type) was, in general, a major contributor for genetically controlling the expression of the characters in all the- four crosses except for the character seed number in crosses 1 and JV, where the j + l component at epistasis played a significant role in determining the expression of this attribute:. Though the ‘j + l’ component of the epistasis was significant, it was relatively less important than the ‘i’ type epistasis. Both the additive and dominance components of the genetic variation were highly significant for all the trans studied in all die four sets of crosses. The expression of the dominance was directional only for a few characters in certain crosses. The degree of dominance lies in the partial range, and heritability estimates obtained were high for most of the trails. The possible application of cross prediction in the isolation of superior recombinant inbred lines in pea is discussed.  相似文献   

2.
Hailu Tefera  W.E. Peat 《Euphytica》1997,96(2):193-202
The normal and selfed families of the triple test cross were employed to detect gene action in t'ef for grain yield and other useful agronomic characters in the breeding programme. Cultivars Kay Murri and Fesho were used as L1 and L2 testers, respectively. Eight randomly selected cultivars and two released varieties (DZ-01-354 and DZ-01-196) were crossed with the testers L1, L2 and L3 (the F1 of L1 × L2). In the case of the selfed families, 14 cultivars and two released varieties were used for crossing with the testers. The normal families were grown on an Inceptisol developed from volcanic ash whilst the selfed families were grown on a pellic Vertisol at the Debre Zeit Agricultural Research Centre, Ethiopia. The rainfall during the experimental season was 463 mm. Epistasis was detected for grain yield, yield per panicle, panicle weight, plant weight, harvest index, tiller number, panicle length, culm diameter, days to heading and days to maturity in the normal families of the triple test cross (TTC) of t'ef. Similarly the characters grain yield, yield per panicle, panicle weight, plant height, panicle length, days to heading and days to maturity showed epistasis in the selfed families of the TTC. Epistatic interaction was not important for shoot biomass and for harvest index (for the transformed data) in this family. Therefore, both the normal and selfed families of the TTC were in agreement with regard to detecting epistasis for grain yield, yield per panicle, panicle weight, panicle length, days to heading and days to maturity. Significant additive (D) and dominance (H) components were estimated for the characters in both families, although the magnitudes might have been inflated due to epistasis. The dominance component for panicle length was unimportant in both families of the TTC and as a result the additive components were not biased. In general, the additive, dominance and epistatic components were important in t'ef. Since the crop is self-fertilized only the additive and additive × additive terms are important to develop pure breeding varieties. Therefore, selection for superior segregants should start in advanced generations as homozygosity increases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
M. N. Barakat 《Euphytica》1996,87(2):119-125
Summary Estimates of gene actions were obtained for five in vitro traits of immature wheat (Triticum aestivum L.) embryo cultures from a cross of two wheat cultivars and the resulting reciprocal, F1, F2 and backcross populations. The contribution of additive gene effects to in vitro traits was not as important as the dominance gene effects. Epistatic gene effects were relatively more important than either additive or dominance gene effects. Of the individual types of digenic epistatic effects, the dominance x dominance estimates were relatively larger in magnitude for all in vitro culture traits measured. The maternal effect played a minor role in the inheritance of the in vitro studied traits since the difference among the reciprocal values was not significant. It is shown from the generation mean method that epistasis played a major role in the inheritance of most of the traits under study. The negative values of additive and dominance genetic variance were estimates of zero. Heritability estimates, in broad sense, were relatively high for the in vitro studied traits. In some cases, heritability estimates in broad and narrow senses are almost equal since the estimation of dominance genetic variance led to negative values. According to the results of the gene effects, dominance and epistasis were important for the shoot formation trait. Selection would be effective among the isolated genotypes on individual basis.  相似文献   

4.
Seed size, determined by 100-seed weight, is an important yield component and trade value trait in kabuli chickpea. In the present investigation, the small seeded kabuli genotype ICC 16644 was crossed with four genotypes (JGK 2, KAK 2, KRIPA and ICC 17109) and F1, F2 and F3 populations were developed to study the gene action involved in seed size and other yield attributing traits. Scaling test and joint scaling test revealed the presence of epistasis for days to first flower, days to maturity, plant height, number of pods per plant, number of seeds per plant, number of seeds per pod, biological yield per plant, grain yield per plant and 100-seed weight. Additive, additive?×?additive and dominance?×?dominance effects were found to govern days to first flower. Days to maturity and plant height were under the control of both the main as well as interaction effects. Number of seeds per pod was predominantly under the control of additive and additive?×?additive effects. For grain yield per plant, additive and dominance?×?dominance effects were significant in the cross ICC 16644?×?KAK 2, whereas, additive?×?additive effects were important in the cross ICC 16644?×?JGK 2. Additive, dominance and epistatic effects influenced seed size. The study emphasized the existence of duplicate epistasis for most of the traits. To explore both additive and non-additive gene actions for phenological traits and yield traits, selection in later generations would be more effective.  相似文献   

5.
Thirty progenies of mungbean were produced by crossing 10 true-breeding genotypes with three testers (NM 92, 6601, and their F1) in a Triple Test cross (TTC) fashion and evaluated with parents in the kharif (July-October) and spring/summer (March-June) seasons. The data on parents and F1s were analysed for pod clusters on main stem, pod clusters on branches, node of the first peduncle, nodes on main stem and average internode length to detect epistasis and estimate additive and dominance components of genetic variation. Epistasis was observed for node of the first peduncle and nodes on main stem in the kharif season. Partitioning of total epistasis revealed that both additive × additive (i type), and additive × dominance, and dominance × dominance (j and l types) interactions were significant with prevalent influence of i type interactions on these traits. Both additive and dominance components of genetic variation were significant for all those traits not significantly influenced by epistasis in either or both seasons. The additive component was predominant for pod clusters on main stem, pod clusters on branches and average internode length in the kharif season, and for the node of the first peduncle and nodes on main stem in spring/summer season whereas dominance component was important for pod clusters on main stem, pod clusters on branches, and average internode length in spring/summer season. These results suggested that particular generation of segregating population and specific breeding method for selection might be adopted in each season for the improvement of these traits in mungbean. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Hailu Tefera  W.E. Peat 《Euphytica》1997,96(2):185-191
Quantitative genetics of grain yield and other agronomic characters of t'ef (Eragrostis tef) were studied using the F1, F2, BC1, and BC2 of the cross Fesho × Kay Murri. The study was carried out to estimate gene effects controlling the inheritance of grain yield and related agronomic characters. Significant additive [d] and dominance × dominance [l] interaction effects were detected for grain yield. The variations of yield per panicle and panicle weight were explained in terms of [d], dominance [h], and additive × additive [i] interactions. Non-allelic gene interactions were also detected for kernel weight, harvest index, tiller number, plant height, days to heading and days to maturity. The simple additive-dominance model explained the variation for panicle length, culm diameter and plant weight, allowing unbiased estimates of additive (D) and dominance (H) variance components. Large dominance variances (H) were estimated for grain yield, yield per panicle, and panicle weight. The additive variances for plant height, panicle length, days to heading and days to maturity were higher than the respective dominance variances. High narrow-sense heritability (h2) values (> 0.50) were estimated for plant height, panicle length, days to heading and days to maturity. The lowest h2 (0.09) was obtained for kernel weight for which there was little variability. Since grain yield and several important agronomic characters of t'ef are influenced by non-allelic gene interaction, it is advisable to delay selection for yield to later generations with increased homozygosity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
M.A. Rahman  M.S. Saad 《Euphytica》2000,114(1):61-66
Inheritance of yield and yield contributing characters were investigated using generation mean analysis, utilising the means of six basic populations viz., P1, P2, F1, F2, BC1P1 and BC1P2 in four crosses of Vigna sesquipedalis. The analysis reiterated that the importance of dominance (h) gene effects for pod yield/plant and pods/plant as compared to additive (d) gene effects. However, significant and positive additive effects were noticed for pod yield/plant, pods/plant, pod weight and seed weight in different crosses. The three types of gene interactions (additive, dominance and epistasis) were significantly involved for pods/plant in cross KU 7 ×KU 8. Among the digenic epistatic interactions, both additive ×additive (i) and dominance × dominance (l) contributed more for pod yield/plant and pods/plant, however, it varied among the crosses. Populations having earliness can be developed as indicated by reducing dominance effects. Pedigree selection and heterosis breeding is suggested to exploit the fixable and non fixable components of variation respectively in Vigna sesquipedalis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A. Gallais 《Euphytica》1990,48(3):197-209
Summary The concepts of varietal ability and value in test of a genotype or group of genotypes are specified according to the type of variety (clones, hybrids, lines, synthetics) and the testing system (phenotype, S1, General combining ability (GCA), line value, General synthesizing ability (GSA)). Varietal ability and value in test are to be considered as any quantitative characters for which it is possible to define additive effects, dominance effects and epistasis. For diploids in recurrent selection, only additive effects and additive× additive epistasis for varietal value contribute to genetic advance. Genetic advance depends on the covariance between the testing value of the parents and the test value of the progeny by intercrossing. Such a parent-offspring covariance is, in the absence of epistasis and inbreeding, one half of the covariance between additive effects in test of the parents and additive effects in test of their progenies. This allows one to express directly the genetic advance in varietal value according to the type of variety and to the testing system used in recurrent selection. The case of biallelic populations is considered; it allows some discussions on the relative values of components of variance of varietal and test values.  相似文献   

9.
Summary The genetics of stem elongation ability in rice was studied in parents, F1, F2 and backcross generations of six crosses. Segregation analysis indicated dominance for stem elongation ability. Estimation of genetic parameters under epistatic model indicated more than one locus control stem elongation ability and both additive and nonadditive gene effects were important. Epistatic effects were predominant over additive and dominance effects with an important role of duplicate type of epistasis. The occurrence of significant additive and additive x additive types of genetic variation and the moderately high broad sense heritability indicated the possibility of selection for an increased manifestation of stem elongation ability.  相似文献   

10.
Summary A study to ascertain the epistatic bias in the estimates of genetic components of variance and sensitivity of the test for epistasis based on the deviation of regression coefficient from unity was conducted. It indicated that the absence of deviation of regression of Wr to Vr from unity is not always a sure test of the absence of epistasis. Graphical, combining ability and variance component analyses suggested the importance of both additive and non-additive components of variance for protein content. The non-additive component of variance was constituted both by dominance and epistatic variance. Predominantly, the epistasis observed, was reinforcing degree of dominance yet, the existence of the one reducing degree of dominance has not been ruled out. High protein content appears to be controlled by dominant genes. Positive (dominant) and negative (recessive) genes were equally frequent and were randomly distributed among the parents. The improvement in this character is possible through accumulation of favourable dominant genes.Contribution No. 73.8 from the Department of Plant Breeding, PAU, Ludhiana.  相似文献   

11.
Summary Effective utilization of uniculm wheat (Triticum aestivum L.) germplasm in breeding programs requires an understanding of the inheritance of the uniculm character. The parents, F1, F2, and first generation backcrosses (B1 and B2) of two crosses, each utilizing a uniculm spring wheat line and a locally adapted winter wheat cultivar, were space planted in an experiment to acquire information regarding the genetic control of culm number. Significant F1 deviations from midparent values revealed the presence of substantial non-additive gene effects. The scaling tests of Mather and the joint scaling test detected the presence of epistasis. Hayman's six-parameter model revealed that a negative dominance effect provided the major contribution to variation in culm number, while additive x additive and dominance x dominance gene effects were of considerable importance.  相似文献   

12.
Linghe Zeng  Jixiang Wu 《Euphytica》2012,187(2):247-261
Determination of genetic effects for lint yield and yield components in cotton (Gossypium hirsutum L.) germplasm is critical for its utilization in breeding programs. This study was designed to apply the conditional approach and an additive and dominant model to analyze genetic effects for lint yield and yield components. Forty-eight F2 populations derived from crosses between four existent Upland cotton cultivars as female parents and 12 germplasm lines as male parents were evaluated at two locations in 2008 and 2009. Conditional and unconditional variance components were estimated by the mixed linear model based conditional approach. Lint yield and yield components were mainly controlled by genotypic effects, i.e., additive variance and dominance variance (≥66 % of total phenotypic variation). Lint percentage and lint index had the highest proportions of additive variance component to the total phenotypic variances. SP156 and SP205 had positive additive effects for lint yield and yield components, and were also parents of the most hybrids with positive predicted dominant effects. Therefore, these two lines are good combiners for development of both pure lines and hybrids. Positive additive contribution effects to lint yield from lint percentage, boll number, boll weight, and seed index were detected in different parents. Adding seed index to boll number and lint percentage increased additive contribution effects to lint yield from these two components relative to the contribution effects from either boll number or lint percentage alone. Results in this study suggest that boll number, lint percentage, and seed index should be balanced in pure line development.  相似文献   

13.
The analysis of genetic correlations between fiber length (Len), strength (Str), micronaire, and 12 other traits was conducted using the additive (A)-dominance (D) genetic model, which considers genotype × environment interaction effects, in intraspecific upland cotton (Gossypium hirsutum L.) hybrids to effectively improve the quality of cotton cultivars in high planting density cases. Decision-making coefficients were computed based on the genetic correlation and path analysis of three fiber quality traits. The decision-making coefficient analysis of three fiber traits in cross breeding was beneficial for the improvement of Len by increasing the additive effects of Str and length of boll (LB) and decreasing lint percentage (LP), boll number of the top three fruit-bearing branches. The analysis was also beneficial for the improvement of Str and fiber fineness by increasing or decreasing the additive effects of other traits. Utilizing heterosis in hybrids was beneficial to the heterosis of Len by selecting the high dominance effects of number of nodes of the 1st fruit-bearing branch and LB and decreasing the dominance effects of diameter of boll (DB) and LP and for improving Str by increasing the dominance effects of DB and decreasing the dominance effects of number of fruit-bearing branches and number of nodes of the main stem (NNMS). Utilizing heterosis was also beneficial for improving fineness by increasing the dominance effects of LB, Str, and lint yield and decreasing the dominance effects of NNMS and Len.  相似文献   

14.
Basic information on genetics and inheritance of quantitative characters, which is necessary to develop future breeding programme, is not widely studied in pigeonpea. Hence, present study was conducted among 5 generations in four pigeonpea crosses to know significance of additive-dominance model, gene action involved in inheritance of quantitative characters, heritability and genetic advance. “Scaling” and “joint scaling test” was significant for most characters indicating that additive-dominance model alone is not enough to explain the inheritance of a character. Though additive variance was more, dominance variance also played important role for most of the traits. Positive and negative alleles were found to be distributed between parents. Additive gene effect (d) was significant for pods per plant and seeds per pod whereas dominance gene effect (h) was more predominant among pod yield and seed yield. Dominance × Dominance inter-allelic interactions (l) was more important than Additive × Additive type (i) for most of the traits studied which could be exploited by selecting individuals based on their performance in recurrent selection. Complementary gene action was observed among many traits with few exhibiting duplicate gene action. Heritability and genetic advance was high indicating the effectiveness of selection. Since dominance effects is also present along with additive effects selection could be practised in later generations to identify high yielding genotypes.  相似文献   

15.
Ploidy manipulations and interspecific crosses have allowed considerable genetic progress in Musa breeding, but estimation of genetic parameters for parental selection remains a major challenge. This study aimed to determine the components of genetic variance and the relative contribution of genetic effects to phenotypic variation of yield and phenological traits in secondary triploid hybrids from tetraploid–diploid crosses. The hybrids were evaluated in two consecutive growth cycles on a tropical forest site. Non-genetic effects accounted for a large fraction of the variation observed for most traits, except bunch weight. Partitioning of genetic variance into additive and dominance components confirmed the predominant role of additive genetic effects on the expression of bunch weight, fruit filling time, fruit length, plant height, and number of leaves while primarily non-additive effects accounted for suckering behavior and fruit circumference. Maternal general combining ability (GCA) effects accounted for the additive genetic variation in plant height and number of leaves, suggesting that selection for these traits should be carried out in tetraploid clones. Conversely, paternal GCA effects were the primary causes of genetic variation for fruit filling time, bunch weight, and fruit length, suggesting that these characters should be selected for in diploid clones. Specific combining ability (SCA) effects were observed for all traits, except fruit filling time, suggesting that additional genetic gain could be achieved through recombinative heterosis for these traits.  相似文献   

16.
Two F2 triple test crosses, augmented with F3s, produced from crosses between different inbred lines of swedes (Brassica napus ssp.rapifera L.) were assessed in field trials at Dundee in 1988 and 1989,respectively. This paper reports the analyses of resistance to powdery mildew, neck length, growth cracks, sugar content and hardness; analyses of yield have been published previously. Additive genetical variation was found for all traits while non-additive variation was less important, the highest degree of dominance being 0.44 for hardness. There was evidence of additive × dominance and dominance × dominance epistasis for mildew and additive × additive epistasis for neck length and hardness. Significant,consistent reciprocal differences were found and these were particularly large for neck length and growth cracks. Sugar determination was carried out on the basic generations of the second cross, the parental lines of which showed large differences in concentration of glucose, fructose and sucrose. Directional dominance was found for high glucose but not for fructose or sucrose. The implications of these results for swede breeding are discussed and it is proposed that inbred cultivars would be a more practical option than F1 hybrids. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Summary Three lentil (Lens culinaris Medic) crosses (cross 1 = Chilean × PI 297784; cross 2 = Tekoa × PI 212611; cross 3 = Precoz × PI 212611) were advanced in a hierarchal design from the F2 generation to the F5 generation and tested in replicated field experiments. The purpose was to estimate the genotypic variances and covariances for several characters and to partition these into components due to additive, dominance, and additive × additive variances.Additive genetic variance was the major component of variance in cross 2 for all characters, except plant height and seed weight. Unexpectedly, estimates of dominance variance appeared to be high in crosses 1 and 3. Estimates of the additive × additive component seemed very small in all three populations. The dominance variance component estimates were consistently high for plant height in the three crosses and for seed weight in crosses 2 and 3. Where parental means were close, additive variance estimates were often low and in many cases negative. The unexpected high ratio of dominance variance to additive variance indicated that dominance variance was important in the crosses we studied.Cooperative investigations of Agricultural Research Service, US Department of Agriculture and the College of Agriculture, Washington State University, Pullman, Washington 99164, Work sponsored by Fellowship from Univ. of Jordan, Amman, Jordan. Scientific paper no. 5825.Formerly: Department of Agronomy and Soils, Washington State University, Pullman, WA., USA. Presently: Department of Plant Production and Plant Protection, University of Jordan, Amman, Jordan.Statistical Services, Washington State University, Pullman, WA 99164, USA.US Department of Agriculture, Agricultural Research Service, Washington State University, Pullman WA 99164, USA.  相似文献   

18.
夏大豆主要农艺性状基因效应分析   总被引:3,自引:1,他引:2  
李星华  陈宛妹 《作物学报》1991,17(6):453-460
本文通过对大豆主要农艺性状的世代平均值分析,估算了 a、d、aa、ad 和 dd 各类基因效应。结果表明:主茎节数、分枝数、不稔荚和百粒重以加性基因效应为主,加性率均在50%以上。有效荚数、单株粒数和单株粒重的显性效应最重要,显性率分别是59.97%、64.73%和49.79%。所研究的9个性状均表现较高的上位效应,上位率在13.19%(单株粒  相似文献   

19.
P. Hsu  P. D. Walton 《Euphytica》1970,19(1):54-60
Summary Inheritance of yield and its component (number of ears per plant, number of spikelets per ear, number of kernels per ear, 1000-kernel weight), together with the inheritance of morphological characters (flag leaf length, flag leaf breadth, peduncle length, extrusion length and leaf sheath length) and anthesis date was studied in a 5-parent diallel cross of spring wheat varieties. The diallel analysis of gene actions indicated that a large part of the total genetic variation observed for all the characters studied was in the form of additive genetic effects. The degree of dominance was also determined for each character. Number of ears per plant showed most overdominance, followed by leaf sheath length. Full or nearly full dominance was found for anthesis date, flag leaf length and yield per plant. Other characters showed partial dominance. Correlation coefficients showed that yield per plant, as well as being correlated with the yield components, was also assiciated with flag leaf breadth and leaf sheath length. There was no evidence of genetic barriers to the combining of ideal characters among the varieties of different origin.  相似文献   

20.
Summary Genetic variances for cut-flower yield in Gerbera hybrida were partitioned into additive and dominance components. Mean additive variance was 37.3 with a standard error of 12.9. Mean dominance variance was 12.7 with a standard error of 32.6. The dominance ratio was 0.34. Narrow sense heritability, estimated from these components of variance, averaged 0.42 with a standard error of 0.13. Heritabilities estimated from parent-offspring regression averaged 0.25. Gain from selection was less then expected; realized heritabilities were approximately 0.20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号