首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Summary The behaviour of urease activity, ammoniacal N concentrations and pH in flood water and that of ammonia flux was investigated in a water-logged soil either in the presence or in the absence of rice and with three different treatments (control, urea and urea + phenyl phosphorodiamidate). In the presence of the phenyl phosphorodiamidate (PPD), that is a urease inhibitor, increases in ammoniacal N concentrations and in ammonia evolution were delayed but not eliminated. The degradation and/or the inactivation of PPD might have occurred, thus removing the inhibition of the enzyme activity.  相似文献   

2.
We studied the interacting effects on NH3 loss and grain yield of adding (1) urease inhibitors to retard the hydrolysis of urea (2) the algicide terbutryn to limit floodwater pH increases, and (3) C2H2 (provided by waxcoated calcium carbide) to prevent NH3 oxidation. The algicide treatment maintained the floodwater pH values below 8 for the first 3 days after the urea application and depressed the maximum values below 8.5 on subsequent days. As a consequence, NH3 loss was significantly (P<0.05) reduced in all treatments containing algicide. The addition of wax-coated calcium carbide effectively inhibited nitrification, as judged by the increased ammoniacal (NH3+NH4) N concentrations in the floodwater, However, these increased ammonical-N concentrations resulted in large losses of NH3. The results also showed that the effectiveness of a urease inhibitor cannot be judged solely from the ammonical-N concentrations in the floodwater of a single treatment with the inhibitor. Additional treatments with an algicide and a nitrification inhibitor are required to determine whether the low ammoniacal-N concentrations are caused by NH3 losses and nitrification. Thus N-(n-butyl)thiophosphorictriamide (NBPT) appeared to retard urea hydrolysis when judged by the low ammoniacal-N concentrations in the floodwater; however, treatments with NBPT, algicide, and C2H2 showed that the low concentrations were mainly a result of NH3 volatilization and nitrification. Even though NBPT did not completely inhibit urea hydrolysis, some treatments with this compound reduced NH3 losses and increased grain yields by up to 31%.  相似文献   

3.
Summary The efficiency of N use in flooded rice is usually low, chiefly due to gaseous losses. Emission of CH4, a gas implicated in global warming, can also be substantial in flooded rice. In a greenhouse study, the nitrification inhibitor encapsulated calcium carbide (a slow-release source of acetylene) was added with 75, 150, and 225 mg of 75 atom % 15N urea-N to flooded pots containing 18-day-old rice (Oryza sativa L.) plants. Urea treatments without calcium carbide were included as controls. After the application of encapsulated calcium carbide, 3.6 g N2, 12.4 g N2O-N, and 3.6 mg CH4 were emitted per pot in 30 days. Without calcium carbide, 3.0 mg N2, 22.8 g N2O-N, and 39.0 mg CH4 per pot were emitted during the same period. The rate of N added had a positive effect on N2 and N2O emissions, but the effect on CH4 emissions varied with time. Carbon dioxide emissions were lower with encapsulated calcium carbide than without. The use of encapsulated calcium carbide appears effective in eliminating N2 losses, and in minimizing emissions of the greenhouse gases N2O and CH4 in flooded rice.  相似文献   

4.
Summary The effectiveness of wax-coated calcium carbide (as a slow-release source of acetylene) and nitrapyrin in inhibiting nitrification and emission of the greenhouse gases N2O and CH4 was evaluated in a microplot study with dry-seeded flooded rice grown on a grey clay near Griffith, NSW, Australia. The treatments consisted of factorial combinations of N levels with nitrification inhibitors (control, wax-coated calcium carbide, and nitrapyrin). The rate of nitrification was slowed considerably by the addition of wax-coated calcium carbide, but it was inhibited only slightly by the addition of nitrapyrin. As a result, the emission of N2O was markedly reduced by the application of wax-coated calcium carbide, whereas there was no significant difference in rates of N2O emission between the control and nitrapyrin treatments. Both nitrification inhibitors significantly reduced CH4 emission, but the lowest emission rates were observed in the wax-coated calcium carbide treatment. At the end of the experiment 84% of the applied N was recovered from the wax-coated calcium carbide treatment compared with 43% for the nitrapyrin and control treatments.  相似文献   

5.
Summary Nitrification activity (formation of NO 2 + NO 3 per unit soil weight) was measured in the surface layer of 15 presubmerged soils incubated in petri dishes under flooded but aerobic conditions. soils with pH above 5 nitrified quickly, whereas soils with pH below this level did not nitrify or nitrified slowly. The pH values between 7 and 8.5 were optimal for nitrification. Organic-matter levels in the 15 soils of our study did not influence their nitrification activities. In a follow-up greenhouse pot study, after a period of 3 weeks, 15N-balance measurements showed that the loss of N through apparent denitrification did not follow the nitrification patterns of the soils observed in the petri dishes. Apparent denitrification accounted for 16.8% and 18.9% loss of 15N from a soil with insignificant nitrification activity and a soil with high nitrification activity, respectively. These results, thus, indicate a lack of correspondence between the nitrification activities of soil and the denitrification loss of N when the former was measured in the dark and the latter was estimated in the light. Soils that nitrified in the darkness of the incubator did not nitrify in the daylight in the greenhouse.  相似文献   

6.
Summary Alternative N-fertilizer management practices are needed to increase productivity and the N-use efficiency of flooded rice (Oryza sativa L.). In the 1987 dry season, a field study using 15N-labeled urea evaluated the effect of the time and method of fertilizer-N application on grain yield and N-use efficiency in transplanted and direct-seeded flooded rice. Conventional fertilizer application (broadcasting and incorporation) was compared with band placement of liquid urea and point placement of urea supergranules. With band or point placement, the grain yields were significantly greater, and the partial pressure of NH3 (pNH3) in the floodwater was significantly reduced. In the transplanted rice, conventional fertilizer-N application gave a 64% total 15N recovery and 38% crop (grain and straw) recovery. Band placement of liquid urea N resulted in 92% total and 73% crop recovery. In the direct-seeded flooded rice, a conventional N application gave 72% total and 42% crop recovery; band placement, 98% total and 73% crop recovery; and urea supergranule point placement, 97% total and 75% crop recovery.Dedicated to Prof. Dr. K. Mengel, Giessen, FRG, in honor of his 60th birthday.  相似文献   

7.
施肥培肥措施对春玉米农田土壤氨挥发的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
采用通气法进行不同秸秆还田方式、施肥时期和方法对春玉米农田土壤氨挥发影响的研究。结果表明,秸秆还田同秋季耕翻深施肥结合,可以大幅度减少春玉米农田土壤氨挥发损失。试验测定期间,春施肥各处理的田间土壤氨挥发总量较大且处理间有明显差异,特别是秸秆直接还田春施肥处理(S3)氨挥发量最高,达30.36kg/hm2,较不施肥处理多挥发26.91kg/hm2,田间氨挥发损失占到施N肥总量的17.94%;秋施肥各处理的田间土壤氨挥发总量介于5.57~6.92kg/hm2间,田间氨挥发损失仅占施N肥总量的0.28%~1.18%,各处理间差异甚微,氨挥发损失总量极低。春施肥同秋施肥处理间比较,田间土壤氨挥发总量也存在明显差异,以秸秆覆盖间(S2、A2)差异最小,为2.65kg/hm2,以秸秆直接还田间(S3、A3)差异最大,为25.58kg/hm2,氨挥发损失增加了1.77%~17.06%。  相似文献   

8.
Laboratory incubation study showed that iron pyrites retarded nitrification of urea-derived ammonium (NH4 +), the effect being greatest at the highest level (10000 mg kg–1 soil). Nitrification inhibition with 10000 mg pyrite kg–1 soil, at the end of 30 days, was 40.3% compared to 55.9% for dicyandiamide (DCD). The inhibitory effect with lower rates of pyrite (100–500 mg kg–1) lasted only up to 9 days. Urea+pyrite treatment was also found to have higher exchangeable NH4 +-N compared to urea alone. DCD-amended soils had the highest NH4 +-N content throughout. Pyrite-treated soils had about 7–86% lower ammonia volatilization losses than urea alone. Total NH3 loss was the most with urea+DCD (7.9% of applied N), about 9% more than with urea alone. Received: 11 November 1995  相似文献   

9.
不同施氮量下双季稻连作体系土壤氨挥发损失研究   总被引:9,自引:2,他引:9  
采用密闭室间歇通气法研究双季稻连作体系不同施氮量下土壤氨挥发损失。结果表明,早稻氨挥发损失主要发生在施肥后的15d内,第3~5d出现峰值,损失总量为N 22.60~162.0 kg /hm2,损失率为 29.29%~52.32%;晚稻氨挥发主要发生在施肥后的11d内,第3 d出现峰值,损失总量为N 22.35~141.4 kg /hm2,损失率为35.75%~46.82%。早、晚稻各生育期连作周期的氨挥发量均与施氮量呈显著线性关系。  相似文献   

10.
Denitrification losses from puddled rice soils in the tropics   总被引:4,自引:0,他引:4  
Summary Although denitrification has long been considered a major loss mechanism for N fertilizer applied to lowland rice (Oryza sativa L.) soils, direct field measurements of denitrification losses from puddled rice soils in the tropics have only been made recently. This paper summarizes the results of direct measurement and indirect estimation of denitrification losses from puddled rice fields and reviews the status of research methodology for measurement of denitrification in rice fields. The direct recovery of (N2+N2O)-15N from 15N-enriched urea has recently been measured at sites in the Philippines, Thailand, and Indonesia. In all 12 studies, recoveries of (N2+N2O)-15N ranged from less than 0.1 to 2.2% of the applied N. Total gaseous N losses, estimated by the 15N-balance technique, were much greater, ranging from 10 to 56% of the applied urea-N. Denitrification was limited by the nitrate supply rather than by available C, as indicated by the values for water-soluble soil organic C, floodwater (nitrate+nitrite)-N, and evolved (N2+N2O)-15N from added nitrate. In the absence of runoff and leaching losses, the amount of (N2+N2O)-15N evolved from 15N-labeled nitrate was consistently less than the unrecovered 15N in 15N balances with labeled nitrate, which presumably represented total denitrification losses. This finding indicates that the measured recoveries of (N2+N2O)-15N had underestimated the denitrification losses from urea. Even with a probable two-or threefold underestimation, direct measurements of (N2+N2O)-15N failed to confirm the appreciable denitrification losses often estimated by the indirect difference method. This method, which determines denitrification losses by the difference between total 15N loss and determined ammonia loss, is prone to high variability. Measurements of nitrate disappearance and 15N-balance studies suggest that nitrification-denitrification occurs under alternate soil drying and wetting conditions both during the rice cropping period and between rice crops. Research is needed to determine the magnitude of denitrification losses when soils are flooded and puddled for production of rice.  相似文献   

11.
 Effects of amending urea with pyrite (Py) or potassium chloride (KCl) alone and in combination with copper sulphate (CuSO4) on NH3 volatilization and N-use efficiency in an Alfisol were evaluated. NH3 volatilization from surface-applied urea fertilizers was measured using a closed dynamic air flow system. Kinetics of NH3 volatilization over a 10-day period showed that the peak rate of NH3 loss was on day 3 with the unamended urea, whilst it occurred on day 4 with all amended urea fertilizers. Total NH3 loss from the unamended urea was 48% of the applied N, which was reduced to 38 and 40% with U+Py and U+KCl, respectively. A further reduction in N loss was recorded with U+Py+CuSO4 (34%) and U+KCl+CuSO4 (36%). The inhibition of NH3 with U+Py+CuSO4 and U+KCl+CuSO4 was markedly high, at 30 and 25%, respectively. As compared to urea, all amended urea fertilizers resulted in a significantly higher dry matter yield, N uptake and apparent N recovery (ANR) efficiency by sunflower. An increase of 28 and 24% units in ANR over urea could be obtained with U+Py+CuSO4 and U+KCl+CuSO4, respectively. Since the chemical additives also have a fertilizer value besides being effective in controlling NH3 loss from urea and improving N-use efficiency, their use as amendment to urea could be a viable option. Received: 5 August 1999  相似文献   

12.
NH3 volatilization from surface-applied urea, diammonium phosphate (DAP), and calcium ammonium nitrate (CAN) was measured with chambers through which air was drawn continuously. Two sandy soils and two sandy loam soils, which had been treated with and without time for the last 25 years, were used for the experiments. The accumulated NH3 loss from CAN applied to an unlimed sandy soil was linearly related to time. For the other treatments the accumulated loss was exponentially related to time. The NH3 loss was exponentially related to the maximum soil pH of the fertilizer-amended soil, and was inversely related to the content of exchangeable H+. Due to the low cation exchange capacity of these light-textured soils the NH3 loss was not reduced as the soil CEC increased. The maximum pH after soil amendment was related to soil pH. Therefore, a model is proposed that relates the NH3 loss solely to fertilizers and soil pH. The NH3 loss was less than 5% from CAN, about 20% from DAP, and about 30% from urea, with the insignificant loss from urea applied to the unlimed sandy soil excluded. The NH3 loss from surface-applied DAP was related to the air flow rate and a transfer coefficient (K a) was estimated. K a increased exponentially with the flow rate. At a flow rate above 3.9 liters min–1 (20 volume exchanges min–1) no further increase was seen.  相似文献   

13.
Summary It is commonly assumed that a large fraction of fertilizer N applied to a rice (Oryza sativa L.) field is lost from the soil-water-plant system as a result of denitrification. Direct evidence to support this view, however, is limited. The few direct field, denitrification gas measurements that have been made indicate less N loss than that determined by 15N balance after the growing season. One explanation for this discrepancy is that the N2 produced during denitrification in a flooded soil remains trapped in the soil system and does not evolve to the atmosphere until the soil dries or is otherwise disturbed. It seems likely, however, that N2 produced in the soil uses the rice plants as a conduit to the atmosphere, as does methane. Methane evolution from a rice field has been demonstrated to occur almost exclusively through the rice plants themselves. A field study in Cuttack, India, and a greenhouse study in Fort Collins, Colorado, were conducted to determine the influence of rice plants on the transport of N2 and N2O from the soil to the atmosphere. In these studies, plots were fertilized with 75 or 99 atom % 15N-urea and 15N techniques were used to monitor the daily evolution of N2 and N2O. At weekly intervals the amount of N2+N2O trapped in the flooded soil and the total-N and fertilized-N content of the soil and plants were measured in the greenhouse plots. Direct measurement of N2+N2O emission from field and greenhouse plots indicated that the young rice plant facilitates the efflux of N2 and N2O from the soil to the atmosphere. Little N gas was trapped in the rice-planted soils while large quantities were trapped in the unplanted soils. N losses due to denitrification accounted for only up to 10% of the loss of added N in planted soils in the field or greenhouse. The major losses of fertilizer N from both the field and greenhouse soils appear to have been the result of NH3 volatilization.  相似文献   

14.
添加脲酶抑制剂NBPT对麦秆还田稻田氨挥发的影响   总被引:11,自引:2,他引:11  
氨挥发是稻田氮素损失的重要途径,为探明脲酶抑制剂NBPT对小麦秸秆还田稻田中氨挥发的影响,采用密闭室通气法,在太湖地区乌珊土上,研究了脲酶抑制剂n-丁基硫代磷酰三胺(NBPT)对小麦秸秆还田稻田中施肥后尿素水解和氨挥发动态变化的影响。结果表明:稻田氨挥发损失主要集中在基肥和分蘖肥时期。添加NBPT可明显延缓尿素水解,推迟田面水NH4+-N峰值出现的时间,并降低NH4+-N峰值,降低了田面水氨挥发速率和挥发量。NBPT的效果在基肥和分蘖肥施用后尤为明显,不加NBPT时施入的尿素在2~3 d内基本水解彻底,NH4+-N和氨挥发速率在第2 d即达到峰值,两次施肥后NH4+-N峰值分别为132.3 mg·L-1和66.3mg·L-1,氨挥发峰值为15.6 kg·hm-2·d-1和10.4 kg·hm-2·d-1;而添加NBPT后,NH4+-N峰值推迟至施肥后第4 d出现,NH4+-N峰值降至70.7 mg·L-1和51.6 mg·L-1,氨挥发峰值降至4.7 kg·hm-2·d-1和2.6 kg·hm-2·d-1。添加NBPT使稻田氨挥发损失总量从73.3 kg(N)·hm-2(占施氮量的24.4%)降低至34.5 kg(N)·hm-2(占施氮量的11.5%),降低53%。在添加小麦秸秆稻田中添加NBPT通过延缓尿素水解而显著降低了氨挥发损失。  相似文献   

15.
 The effects of floodwater algae and green manure on transformations of 15N-urea were studied in columns of a sandy loam soil in a growth chamber. The columns were flooded and either kept in the light, to allow algal growth, or in the dark (control) for 17 days before adding the labelled urea. Changes in urea-, NO3 - and NH4 +-N levels and the pH of the floodwater were measured over the subsequent 41-day period, during which the control column remained in the dark and those containing algae were maintained either in the dark to cause the death of the algae or in the light. Volatilized NH3 was monitored, and on termination of the experiment the distribution of 15N between NO3 , NH4 + and organic forms was measured in the soil. Urea hydrolysis was most rapid in the presence of both living algae and green manure, followed by dead algae, and was slowest in the control. The concentration of NH4 +-N in the floodwater was, however, reduced in the presence of algae due to assimilation and NH3 volatilization owing to the raised day-time pH in the floodwater. NH3 volatilization for the first 10 days was rather high in the columns kept in the light compared to those in the dark. Total volatilization plus denitrification losses were greatest where dead algae were present, owing to the absence of live algae which assimilated more than half of the applied N. Algal growth in floodwater increased the depth of the aerobic soil layer present at the soil-water interface. Subsequently, under dark conditions, stimulated algal growth reduced the depth of the aerobic layer causing less nitrification, which resulted in lower losses of N due to denitrification, i.e. 17% of the applied urea-N as compared to 39% in the light treatments. Although the presence of green manure caused a marked increase in the rate of hydrolysis, algal assimilation prevented excessive N losses via volatilization, indicating that the retention of higher quantities of NH4 +-N may have increased fertilizer-N use efficiency. Received: 22 January 1999  相似文献   

16.
Laboratory incubation experiments were conducted to study the influence of increasing concentrations of N-(n-butyl)phosphorothioic triamide (NBPT) on NH3 volatilization and rate of urea hydrolysis and evolution of mineral N in Ozzano, Rimini and Carpi soils with different physicochemical characteristics. Low concentrations of NBPT reduced NH3 losses due to volatilization after urea fertilization and the effectiveness of the inhibitor was related to the soil characteristics (e.g. high concentrations of organic C and sand). After 15 days of incubation, no significant reductions of losses were found for any of the NBPT concentrations employed in Rimini soil. The application of NBPT led to a considerable reduction of the formation of nitrite. This process was completely annulled with the highest dose of NBPT (0.5% w/wurea) in the Carpi soil after 15 days. In Rimini soil, however, the use of NBPT was less effective in influencing nitrite formation. The use of NBPT favoured accumulation of nitrate proportional to the NBPT concentration employed while it had no influence on the NH inf4 sup+ fixation by 2:1 layer silicates. The data obtained support previous evidence that NBPT is effective in reducing the problems encountered in using urea as fertilizer. However, environmental conditions and soil physicochemical characteristics may have an important influence on the effectiveness of NBPT.  相似文献   

17.
秸秆生物炭具有改善土壤生态环境、土壤蓄水保肥和减少温室气体排放等正效应,但其石灰效应会加大稻田氨挥发损失。为充分发挥生物炭吸铵特性,降低其石灰效应的不利影响,对不同热解温度(300、500、700 ℃)和酸化水平(pH值=5、7、9)稻草生物炭处理下的田面水NH4+-N浓度、氨挥发和水稻产量进行了研究。结果表明:偏酸性(pH值=5)、中性(pH值=7)生物炭处理在基肥期和分蘖肥期均能显著降低田面水NH4+-N峰值浓度(P<0.05),降幅达16.90%~35.60%。全生育期稻田氨挥发损失占施氮量的15.14%~26.05%(2019年)、15.10%~19.00%(2020年)。稻田增施热解温度为700 ℃、酸化水平为5(pH值=5)的生物炭(C700P5)降氨效果最好,两年氨挥发分别显著降低22.93%、12.61%(P<0.05)。高温热解配合偏酸性、中性生物炭(C700P5、C700P7)增产效果显著,增产率达9.92%~13.50%,结构方程模型表明,其增产原因是生物炭酸化处理降低了稻草生物炭的石灰效应,而热解温度调整提高了生物炭阳离子交换量(Cation Exchange Capacity,CEC),进而降低了田面水NH4+-N浓度和氨挥发损失,最终提高了水稻地上部氮素积累和水稻产量。研究可揭示不同热解温度和酸化水平制备的生物炭在稻田中的应用潜力,并为稻田合理施用生物炭和减少化肥施用量提供理论依据。  相似文献   

18.
The N loss from Vertisols was estimated by measuring the loss of 15N-labelled urea N under conditions that promote NH3 volatilization. Urea granules were placed on the top of 150-mm deep soil columns (Vertisols) collected from three sites with a range in pH, electrical conductivity, and cation exchange capacity. There were two contrasting moisture treatments, one near field capacity (wet) and another with intermittent wetting of the soil surface before allowing the columns to dry (moist-dry). The results indicated that losses were influenced markedly by pH and moisture treatment, being 29.5, 33.5, and 33% from the wet soils and 37, 42, and 40.5% from the moistdry soils with pH values of 7.7, 8.2, and 9.3, respectively. These observations clearly indicate that broadcasting of urea on the surface of Vertisols may cause substantial N losses.  相似文献   

19.
水氮用量对设施栽培蔬菜地土壤氨挥发损失的影响   总被引:10,自引:1,他引:10  
【目的】针对我国设施蔬菜生产中存在的水肥过量施用问题,研究不同水氮条件下黄瓜-番茄种植体系内的土壤氨挥发特征,探讨影响设施菜地土壤氨挥发的重要因子,为降低氮肥的氨挥发损失、 建立合理的灌溉和施肥制度提供参考。【方法】以华北平原设施黄瓜-番茄轮作菜地为研究对象,设常规灌溉(W1)和减量灌溉(W2)2个灌溉水平,每种灌溉水平下设不施氮(N0)、 减量施氮(N1)和常规施氮(N2)3个氮水平,共6个处理组合(W1N0、 W1N1、 W1N2、 W2N0、 W2N1、 W2N2)。采用通气法监测不同水氮条件下黄瓜-番茄轮作体系内的土壤氨挥发动态,分析与土壤氨挥发相关的主要影响因子。【结果】设施黄瓜-番茄种植体系内表层(0—10 cm)土壤铵态氮受施肥的影响波动较大,与常规施氮(N2)相比,相同灌水条件下减量施氮(N1)处理的0—10 cm土层铵态氮浓度最高值降低了25.1%~30.3%(P 0.05)。减量施氮可显著降低土壤氨挥发速率。与常规施氮(N2)相比,减量施氮处理(N1)在黄瓜季和番茄季内的氨挥发速率均值分别降低了21.1%~22.8%(P0.05)和16.5%~17.9%(P0.05)。整个黄瓜-番茄轮作周期内,土壤氨挥发损失量和氮肥的氨挥发损失率分别为17.8~48.1 kg/hm2和1.23%~1.44%。与常规施氮(N2)相比,减量施氮处理(N1)的土壤氨挥发损失量及氮肥的氨挥发损失率分别降低了19.3%~20.0%(P0.05)和0.85~0.92个百分点。各处理土壤氨挥发速率与0—10 cm土壤铵态氮浓度呈显著或极显著正相关,说明0—10 cm土壤铵态氮浓度是土壤氨挥发的重要驱动因子。与常规灌溉(W1)相比,减量灌溉(W2)条件下设施菜地土壤氨挥发速率及氨挥发损失量略有增加(P0.05)。适宜减少氮肥及灌溉量不仅能够维持较高的蔬菜产量,而且显著提高了灌溉水和氮肥的利用效率。其中减量施氮处理(N1)的氮肥农学效率比常规施氮(N2)提高了95.4%~146.4%; 减量灌溉(W2)的灌溉水农学效率比常规灌溉(W1)提高了27.7%~54.0%。【结论】通过合理的节水减氮措施可达到抑制氮肥氨挥发损失、 增加产量以及提高水氮利用效率的目的。在供试条件下,节水30%左右、 减施氮量25%的水氮组合(W2N1)具有较佳的经济效益与环境效应。  相似文献   

20.
 The influence of fertilizer N applied through nitrate and ammoniacal sources on the availability of nitrate, supply of C, and gaseous N losses via denitrification (using acetylene inhibition technique) in a semiarid subtropical soil (Typic Ustochrepts) was investigated in a growth chamber simulating upland [60% water-filled pore space (WFPS)], nearly saturated (90% WFPS), and flooded (120% WFPS) conditions. The rate of denitrification was very low in the upland soil conditions, irrespective of fertilizer N treatments. Increasing water content to nearly saturated and flooded conditions resulted in four- to sixfold higher rates of denitrification within 2 days, suggesting that the denitrifying activity commences quickly. Results of this study reveal that (1) under restricted aeration, these soils could support high rates of denitrification (∼6 mg N kg–1 day–1) for short periods when nitrate is present; (2) application of fertilizer N as nitrate enhances N losses via denitrification (∼10 mg N kg–1 day–1) – however, the supply of available C determines the intensity and duration of denitrification; (3) when fertilizer N is applied as an ammoniacal form, nitrification proceeds slowly and nitrate availability limits denitrification in flooded soil; (4) the nearly saturated soil, being partially aerobic, supported greater nitrification of applied ammoniacal fertilizer N than flooded soil resulting in higher relative rates of denitrification; and (5) under aerobic soil conditions, 26 mg mineral N kg–1 accumulated in control soil over a 16-day period, demonstrating a modest capacity of such semiarid subtropical soils, low in organic matter, to supply N to growing plants. Received: 7 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号