共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface podzolization has so far been diagnosed from morphological observations, selective extraction and mineralogical investigations. We studied this process in two Cambisol profiles developed in loess, one with a fibrimor humus and the other with a dysmoder humus, by characterizing the chemical composition and the complexing properties of the soil solution. The solutions were sampled bimonthly for 3 years at four depths (4, 8, 13, 25 cm) using both zero‐tension and low‐tension capillary‐wick lysimeters. The leachates from the Ah horizon of the soil with fibrimor contained less nitrate, sulphate and calcium than those from the one with a dysmoder because there was less bioturbation and mineralization in it. Both the complexation capacity and the density of ligand binding sites were larger in the soil solutions of the Ah (4 cm) and AB (8 cm) horizons of the soil with the fibrimor. In this soil, the complexing properties of the liquid phase induced a depletion of inorganic monomeric aluminium. In this environment, the hydroxy interlayered 2:1 clay minerals lose their Al‐interlayers and transform into vermiculite and smectite, which in turn weather, producing large amounts of magnesium in the soil solution. This was found to be a major characteristic of weathering by complexation and incipient podzolization in the Cambisol with the fibrimor. In this process, nitric acid probably contributes to mineral dissolution. 相似文献
2.
Abstract. This research aims to assess how the variability in soil morphology of Luvisols along a microtopographic sequence influences the condition of pedunculate oak ( Quercus robur ). The condition of 205 pedunculate oaks was observed during one growth season and related to morphological soil properties. Results show that the presence of a consolidated argillic B horizon or fragipan in Luvisols, has a negative influence on the condition of Q.robur . 相似文献
3.
This paper explored the potential of application of in situ ion exchange resin membrane (IEM) technique for assessing soil
nitrogen (N) availability and spatial distribution in New Zealand grazed pastures. Field and incubation experiments conducted
to test the technique proved IEM technique to be a useful approach to monitoring the continuous changes in soil mineral N
in pasture soils. The field testing showed that the IEM technique reflects both differences in pool size and mineral N flux,
while 2-M KCl extraction reflects only pool size at the sampling. Testing the effects of residence time, temperature, soil
inorganic N content, and soil water content through diffusion modeling offers further support for using IEM to explore the
complex dynamics of nitrogen availability in pasture soils. 相似文献
4.
Abstract An investigation was conducted on physico‐chemical properties of humic acids (HAs) in Venezuelan soils. The HAs were extracted by the NaOH method from a Banco‐Bajio‐Estero soil toposequence (local names for soils located at high, intermediate and low topographic levels), in the Venezuelan plains (Mantecal, Apure State). The extracted HAs were analyzed for elemental composition and characterized by fluorescence, Fourier transform infrared (FT‐IR) and electron spin resonance (ESR) spectroscopies. The results showed that free radical concentration of HAs increased from soils at the highest to soils at the lowest topographic position. High carbon (C), nitrogen (N), and carboxyl group contents, E 4/E 6 ratio, aliphatic character and concentration of free radicals, and low oxygen (O) and phenolic hydroxyl group contents and total acidity were typical of HA from soils at the lower relief position. The FT‐IR spectra indicated that the HA from the soil at the lowest topographic position tended to have a slightly higher content of carboxyl groups than the HAs from soils at higher topographic levels. The observed fluorescence was attributed to the presence of condensed aromatic moieties and/or conjugated unsaturated systems of various complexity in the HA macromolecules. 相似文献
5.
The present study was conducted to determine the spatial heterogeneity of bulk density, soil moisture, inorganic N, microbial biomass C, and microbial biomass N in the ridge tillage system of Turiel compared to conventional mouldboard ploughing on three sampling dates in May, July, and August. The soil sampling was carried out under vegetation representing the ridge in a high spatial resolution down the soil profile. Bulk density increased with depth and ranged from 1.3 g cm −3 at 10 cm depth to 1.6 g cm −3 at 35 cm in ploughed plots and from 1.0 g m −3 at 5 cm to 1.4 g m −3 at 35 cm in the ridges. In the ploughed plots, the contents of microbial biomass C and microbial biomass N remained roughly constant at 215 and 33 μg g −1 soil, respectively, throughout the experimental period. The microbial biomass C/N ratio varied in a small range around 6.4. In the ridged plots, the contents of microbial biomass C and microbial biomass N were 5% and 6% higher compared to the ploughed plots. Highest microbial biomass C contents of roughly 300 μg g −1 soil were always measured in the crowns in July. The lowest contents of microbial biomass C of 85–137 μg g −1 soil were measured in the furrows. The ridges showed strong spatial heterogeneity in bulk density, soil water content, inorganic nitrogen and microbial biomass. 相似文献
6.
The poor physical, chemical and biological properties make Stagnic Luvisol highly susceptible to water erosion on sloping terrains. The objective of this paper is to estimate the effect of different tillage treatments and crops (maize, soybean, winter wheat, spring barley, oilseed rape) on water erosion. The highest erosion in investigation period (1995–2014) was recorded in the control treatment with fallow, followed by the treatment that involved ploughing and sowing up and down the slope. Significantly, lower soil losses were recorded in no-tillage and treatments with ploughing and sowing across the slope. Regarding the crops significantly higher soil losses were recorded in spring row crops (maize and soybean) compared to high-density winter crops (wheat and oilseed rape) and double crop (spring barley with soybean). In the studied period, an average loss of 46 mm of the plough layer was recorded in the control treatment, while in treatment with ploughing and sowing up and down the slope average annual soil loss was 10 mm. According to the results of this study no-tillage and tillage across the slope are recommended as tillage which preserves soil for the next generations in agro-ecological conditions of continental Croatia. 相似文献
7.
Abstract The attribute that ion‐exchange resins remove ions from solutions moving through them can be used to measure nitrate transport through soils. The characteristics of nitrate adsorption by resins must be known to interpret nitrate accumulation on ion‐exchange resins embedded in soil. The extent to which anion exchange resins retain NO 3‐ from soil leachate was measured in 15.9 cm diam.by 60 cm long intact cores of Nolin (fine silty mixed mesic Dystric Fluventic Eutrochroept) soil. A NC 3 ‐‐selective resin and a non‐selective resin were tested. Columns were fertilized at a rate of 300 kg N/ha and 150 kg Br/ha and leached with 50 cm of water. Under these conditions, both resins retained approximately 80% of the NO 3‐ and Br ‐ leached through the soil. This compared with greater than 95% retention in laboratory columns containing only resin. The difference in retention was attributed to different flow through the resin associated with the method of resin emplacement. 相似文献
8.
The effects of up to 23 years of agricultural cropping of a boreal forest soil on soil organic carbon (SOC) and N, P, and K pools were studied. The cropping systems studied were: (a) continuous barley, (b) continuous forage bromegrass, (c) continuous forage legume, and (d) barley/grass-legume forage rotation. Continuous bromegrass increased while other cropping systems decreased SOC in the surface soil. Kjeldahl N in soil approximately followed the trend in SOC. The net gain in N under continuous grass was attributed mostly to nonsymbiotic N fixation. Changes in SOC content appeared to be also influenced by cropping and tillage frequencies. Changes in fixed (intercalary) ammonium were small. There was no measurable change in total P, in part, because input was only slightly higher than crop offtake. Organic P increased under continuous bromegrass, and tended to decrease under continuous legume. The C/N and C/P ratios of soil organic matter decreased slightly with cropping. Exchangeable K (K ex) was decreased by cropping systems containing a legume crop to a greater extent than those without a legume crop. Most of the decrease occurred in the 0–15 cm depth. Nitric acid extractable K was not affected by cropping. Since net loss of K ex to 30 cm depth was substantially less than crop offtake, it is suggested that subsoil K reserves and matrix K were supplying a major portion of the crops' K requirement. It is concluded that the effects of cropping systems on SOC, N, P and K are influenced by crop type, and cropping and tillage frequencies. 相似文献
10.
Laccases- or laccase-like multicopper oxidases (LMCO) catalyze the oxidation of various substrates, such as phenols, diamines and metals, coupled with the reduction of molecular oxygen to water. Compared to studies on function and diversity of LMCO in plants and fungi, little is known about this enzyme type in bacteria and especially on their possible implication in degradation of organic matter in soils. This study presents a molecular investigation of the diversity and distribution of bacterial LMCO genes among three upper horizons of a forest Cambisol and in a grassland Cambisol. Some culture strains of soil bacteria were also analyzed at the molecular level and for their capability to oxidize naturally occurring 2,6-dimethoxyphenol, a LMCO substrate. A high LMCO gene diversity was found in the Cambisol soil samples with 16 distinct sequence type clades, of which approximately one half was not matching with any reference sequence of known bacteria. The highest richness of bacterial LMCO genes was observed in the organic horizon of the forest soil, which is concomitant with a previous analysis of the diversity of fungal laccase genes and corresponding soil laccase activity. Some clusters of sequence types showed a specific distribution in one of the soils or in horizons, while others appeared more ubiquist. Multiple bacterial LMCO genes were described in Agromyces salentinus and Sinorhizobium morelense, what so far was only known from fungi. 相似文献
11.
No-till (NT) system for grain cropping is increasingly being practised in Australia. While benefits of NT, accompanied by stubble retention, are almost universal for soil erosion control, effects on soil organic matter and other soil properties are inconsistent, especially in a semi-arid, subtropical environment. We examined the effects of tillage, stubble and fertilizer management on the distribution of organic matter and nutrients in the topsoil (0–30 cm) of a Luvisol in a semi-arid, subtropical environment in southern Queensland, Australia. Measurements were made at the end of 9 years of NT, reduced till (RT) and conventional till (CT) practices, in combination with stubble retention and fertilizer N (as urea) application strategies for wheat ( Triticum aestivum L.) cropping. In the top 30 cm depth, the mean amount of organic C increased slightly after 9 years, although it was similar under all tillage practices, while the amount of total N declined under CT and RT practices, but not under NT. In the 0–10 cm depth, the amounts of organic C and total N were significantly greater under NT than under RT or CT. No-till had 1.94 Mg ha−1 (18%) more organic C and 0.20 Mg ha−1 (21%) more total N than CT. In the 0–30 cm depth, soil under NT practice had 290 kg N ha−1 more than that under the CT practice, most of it in the top 10 cm depth. Microbial biomass N was similar for all treatments. Under NT, there was a concentration gradient in organic C, total N and microbial biomass N, with concentrations decreasing from 0–2.5 to 5–10 cm depths. Soil pH was not affected by tillage or stubble treatments in the 0–10 cm depth, but decreased significantly from 7.5 to 7.2 with N fertilizer application. Exchangeable Mg and Na concentration, cation exchange capacity and exchangeable Na percentage in the 0–10 cm depth were greater under CT than under RT and NT, while exchangeable K and bicarbonate-extractable P concentrations were greater under NT than under CT. Therefore, NT and RT practices resulted in significant changes in soil organic C and N and exchangeable cations in the topsoil of a Luvisol, when compared with CT. The greater organic matter accumulation close to the soil surface and solute movement in these soils under NT practice would be beneficial to soil chemical and physical status and crop production in the long-term, whereas the concentration of nutrients such as P and K in surface layers may reduce their availability to crops. 相似文献
12.
Abstract The 2M potassium chloride (KCl) extraction method used to measure soil nitrate (NO 3 ‐‐N) concentrations in soils may introduce some artifacts caused by soil sampling, processing, and handling. Furthermore, this method provides soil NO 3 ‐‐N concentrations for soil sampled at a particular time, whereas the dynamics of this anion in situ need to be better understood. In order to develop a reliable in situ method as an alternative, an anion exchange membrane (AEM) was tested for its ability to adsorb NO 3 ‐‐N from a soil cropped to corn ( Zea mays L.) and amended with manure or inorganic nitrogen (N). In a field study, we compared the amount of NO 3 ‐‐N adsorbed on an AEM and extracted with the 2M KCl method. The AEM was calibrated in the laboratory and placed at 15‐cm soil depth for 2‐wk periods during the corn growing season. Nitrate adsorption on the AEM and KCl‐extractable NO 3 ‐‐N were larger in the inorganic N treatment than in the manure or the control treatments throughout the growing season. The NO 3 ‐‐N concentrations measured by the AEM method were correlated with NO 3 ‐‐N extracted with 2M KCl (r 2 = 0.78***), suggesting that the AEM method could be used to measure NO 3 ‐‐N concentrations in agricultural soils. 相似文献
13.
对采自全国各地 2 0个土壤样品进行测定 .结果表明 ,树脂膜法测定的土壤磷值与碳酸氢钠法测定的土壤有效磷和植物实际吸磷量间具有极显著的相关性 ,国产树脂膜可代替进口树脂膜用于大田土壤有效磷测定 相似文献
14.
A procedure is discussed for the estimation of bacterial numbers using plant-infection assays in which the probability of bacteria reaching and infecting the test plants is not fixed but follows a probability distribution. Application of the procedure to counting populations of Rhizobium spp. is considered. 相似文献
15.
Weathering of soil minerals under forest seems to depend on the species present. To study the influence of tree species we placed unweathered vermiculites in the soil and assessed the impact in terms of saturation index of earth‐alkaline cations and cation exchange capacity in 64 forest stands, dominated by different species and growing side by side at 20 sites on acidic soils. The vermiculites were of two types, one with a large charge and the other with a small charge. Minerals were maintained in the soil for 1 and 3 years. The minerals placed in the topsoil and in soils with low buffering capacity were more acidified and weathered than those deeper in the soil and in less acid conditions. The vermiculites were transformed into hydroxylated interlayered vermiculites, and the formation of hydroxides in the interlayer space decreased the vermiculites' cation exchange capacities. The high‐charge vermiculite had a greater affinity for aluminium than the low‐charge variety. The effect of tree species was significant but small compared with factors such as soil type, depth and duration of incubation. Nevertheless, we can rank the acidifying and weathering caused by the trees in the following order: Picea abies, Abies alba > Pinus sylvestris, Pseudotsuga menziesii > Quercus spp., Fagus sylvatica. This in situ experimental approach enabled us to study potential trends in pedogenesis in few years. 相似文献
16.
Abstract Prediction of the ionic composition of a soil solution which is at equilibrium with an exchanger phase is one of the main problems in soil chemistry. To date the most practical way to achieve this objective is to adopt a thermodynamic approach for the study of soil-solution systems. As of 1979 more than 300 sets of data on cation exchange on various clay minerals and soils had been subjected to thermodynamic analysis (Bruggenwert and Kamphorst 1979). 相似文献
17.
Sulfur mineralization rates, changes in organic and inorganic S constituents and arylsulfatase activity were determined in four soil horizons (O2, B21h, B22hir and B23) which represent the major portion of a forest Spodosol (Becket). Biweekly, for 20 weeks, soil subsamples were leached with deionized water and analyzed for S constituents. Rates of water-soluble sulfate release were 123, 39, 34 and 18 nmol S g ?1 dry mass week ?1 for O2, B22hir, B23 and B21h horizons, respectively. Only in the organic O2 horizon did non-sulfate inorganic S (Zn-HCl-S) increase (15 nmol S g ?1) while phosphate extractable S decreased in all the mineral horizons (13, 19 and 28 nmol S g ?1 week ?1, B21h, B22hir and B23, respectively) due to desorption. Ester sulfate was mineralized in the B22hir and B23 horizons (?66 and ?22 nmol S g ?1 week ?1) and increased in the O2 (174 nmol S g ?1 week ?1). Arylsulfatase activity varied among horizons and decreased with time. Carbon-bonded S decreased in all horizons, especially those with high respiration rates (i.e. O2 and B21h), but changes were not significant. Only the B22hir horizon exhibited a significant loss of total S (128 nmol S g ?1 week ?1). The interrelationships among inorganic and organic S dynamics were outlined. 相似文献
18.
The susceptibility of loess soils in the lower Mississippi to runoff and erosion losses varies as a function of landscape position and mapping units. This study was conducted to determine the effects of soil drainage on physical and chemical properties that influence erodibility through their control of aggregate stability. Soil samples were collected from the A- and B-horizons of the five representative pedons in the Memphis catena whose drainage class varied from well-drained to poorly-drained. The fine earth fraction (< 2 mm) of each soil was characterized for a range of basic soil physical and chemical properties. Additional sub-samples (< 8 mm) were placed in a rainfall simulator pan (0.6 m × 0.6 m test area) and subjected to simulated rainfall at an intensity of 64 mm h − 1. Soil erodibility was assessed by the use of an aggregation index (AI) computed from water dispersible clay (WDC) relative to total clay contents. The data show that as soil drainage classes became wetter, the percentage of sediment < 53 µm increased with a decrease in soil AI resulting from a loss of Fe, Al, and Si oxide cementing agents. These results suggest that cementing agents responsible for soil aggregate stabilization are mobilized under conditions of relatively low redox potentials which increase soil erodibility. 相似文献
19.
The distribution of boron between particle-size fractions was studied after removing sesquioxides. Most of the relatively large amount of boron in the glauconite contained in this soil remained in the clay minerals when the glauconite broke down. The soil lost a larger amount of boron from other minerals than from glauconite. 相似文献
20.
Rainfall simulations were conducted on a loess derived silt loam soil (Henan province, P.R. China) under conventional tillage. This tillage practice is widespread and involves the turning of the plough layer and the wheat stubble in July (primary tillage), followed by a secondary tillage operation in October. Soil samples were collected and in situ measurements were done before each rainfall simulation in order to analyse soil physical properties after successive simulated rainfall events. The purpose of this study was to determine rainfall induced changes in saturated hydraulic conductivity, bulk density, penetration resistance, water retention and soil erodibility. The results only showed significant differences in soil bulk density and erodibility when applying successive rainfall events. Penetration resistance and water retention (at matric potentials ≤ − 3 kPa) were not significantly affected and soil surface sealing was not observed. This was also confirmed by the infiltration measurements, where no significant differences in saturated hydraulic conductivity were found. From a soil conservation point of view, this study indicated that the primary tillage operation (i.e. ploughing at the beginning of July) is rather disadvantageous: the saturated hydraulic conductivity is not significantly affected, but the soil erodibility is considerably higher in comparison to a consolidated soil. Furthermore, the beneficial effects of the wheat stubble on soil and water conservation are lost by the tillage operation. 相似文献
|